04;07 Оптическая ректификация сильно сфокусированных импульсов ближнего инфракрасного диапазона в плазмонном волноводе

© В.А. Кукушкин

Институт прикладной физики РАН, 603950 Нижний Новгород, Россия e-mail: vakuk@appl.sci-nnov.ru

(Поступило в Редакцию 8 ноября 2007 г.)

Рассмотрена генерация импульсов терагерцового (ТГц) диапазона в результате смешения фурье-гармоник одиночных накачивающих сильно сфокусированных лазерных импульсов ближней инфракрасной области в заполненном нелинейной средой плазмонном волноводе. При определенном выборе параметров такой волновод обеспечивает эффективное поперечное ограничение ТГц моды и малую дисперсию ее показателя преломления. В результате в данной системе становится возможной генерация коротких сравнительно мощных ТГц импульсов. По сравнению с традиционными (без волновода) схемами генерации ТГц импульсов из одиночных накачивающих импульсов (оптическая ректификация) предлагаемый метод позволяет значительно (в \sim 50 раз) уменьшить мощность накачки, обеспечивая при этом ту же интенсивность выходного ТГц импульса и эффективность конверсии. Для частного примера структуры Ag/GaP/Ag найдены оптимальные параметры плазмонного волновода и импульса накачки и вычислены характеристики выходного ТГц импульса.

PACS: 42.65.Lm, 42.79.Gn

Введение

В последнее время все большее внимание исследователей привлекает генерация электромагнитных полей терагерцового (ТГц) диапазона (как в непрерывном, так и в импульсном режимах), которые являются необходимым инструментом во многих фундаментальных и прикладных исследованиях, в том числе в медицине и биологии. Однако их использование в науке и технике ограничивается сравнительно низкой интенсивностью излучения, достигнутой в этой частотной области спектра. Хотя было предложено много методов генерации ТГц полей, оптическая ректификация (т.е. генерация импульса низкочастотного поля за счет биений фурьекомпонент отдельного высокочастотного, типично относящегося к ближней инфракрасной (ИК) области, лазерного импульса накачки в среде с нелинейностью второго порядка) [1] остается одним из наиболее перспективных путей получения импульсного ТГц излучения. Однако даже для этого процесса эффективность конверсии η (т.е. отношение энергии выходного ТГц импульса к энергии входного накачивающего импульса), как правило, невысока. Очевидный путь увеличения *η* заключается в использовании импульсов накачки с бо́льшими интенсивностями, что позволяет усилить нелинейное взаимодействие их фурье-компонент.

Этот путь, однако, требует применения мощных фемтосекундных лазеров, которые являются сложными и дорогостоящими установками, часто доступными лишь в лабораторных условиях. В то же время, так как интенсивность выходного ТГц импульса и величина η зависят от интенсивности (а не от мощности) импульса накачки [1], можно, поддерживая неизменной интенсивность накачивающего излучения, значительно уменьшить его мощность и тем не менее получить те же значения для указанных двух величин. Это, очевидно, можно осуществить путем фокусировки накачивающего лазерного пучка в двух (или даже одном) поперечных направлениях до размера порядка нескольких микрон (так как типичная вакуумная длина волны импульса накачки для оптической ректификации составляет $\sim 1 \, \mu m \, [2]$), обеспечивая тем самым ту же интенсивность испульса накачки при уменьшении его мощности. В этом случае, однако, благодаря дифракции генерируемый ТГц пучок будет существенно уширяться на расстоянии, много меньшем нескольких миллиметров — характерной толщиной нелинейных кристаллов, используемых в экспериментах по оптической ректификации (ее значение определяется наименьшей из двух величин: длины линейного поглощения в ТГц диапазоне, La, и длины, на которой происходит заметное увеличение длительности импульса накачки за счет дисперсии групповой скорости $(\Pi\Gamma C), L_{GVD}$ [3]). В результате практически на всем протяжении кристалла интеграл поперечного перекрытия этих пучков будет малым, а соответствующая эффективность преобразования низкой. Тем не менее в этом случае можно существенно увеличить η и интенсивность выходного ТГц импульса путем применения волноведущей структуры, обеспечивающей поперечное ограничение ТГц поля. Однако чтобы не уменьшить основные достоинства метода оптической ректификации, такой волновод, во-первых, должен вносить достаточно низкие потери как для накачивающего, так и для ТГц импульсов, так, чтобы результирующая длина поглощения в ТГц диапазоне была больше или порядка min (L_a, L_{GVD}) ; во-вторых, он должен характеризоваться низкой дисперсией показателя преломления, \bar{n} , в ТГц области, что необходимо для генерации коротких (и следовательно, достаточно мощных) ТГц импульсов длительностью порядка длительности импульсов накачки (подробности в разд. 2 статьи); в-третьих, должен обеспечивать выполнение условия фазового синхронизма, необходимого для эффективной оптической ректификации [4].

В настоящей статье, показано, что все эти требования удовлетворяются в двойном плазмонном волноводе (подобном используемому в квантовых каскадных лазерах [5]) с выбранными определенным образом параметрами. Такой волновод состоит из слоя нелинейного кристалла, помещенного между двумя слоями металла или сильно допированного полупроводника, обладающего высокой проводимостью. Физическая причина низкой дисперсии *n* в ТГц диапазоне в такой системе заключается во зваимной компенсации отрицательной дисперсии высокопроводящих внешних слоев и положительной дисперсии нелинейного кристалла, а выполнение условия фазового синхронизма обеспечивается специальным выбором параметров волновода и несущей длины волны импульса накачки. Подробному рассмотрению этих вопросов посвящены два следующих раздела статьи, в которых приведены основные уравнения, описывающие распространение электромагнитных волн в двойном плазмонном волноводе (разд. 1) и для конкретного примера структуры Аg/GaP/Ag найдены его оптимальные параметры, а также вычислены характеристики выходного ТГц импульса (ризд. 2). В заключение перечислены основные результаты работы, наиболее интересные с практической точки зрения.

Модель двойного плазмонного волновода

Рассмотрим пластинку нелинейного кристалла толщины 2a и ширины $2b \gg 2a$, помещенную между двумя слоями металла или сильно допированного полупроводника (рис. 1). Вследствие условия $2b \gg 2a$ ниже будет считаться, что данный волновод характеризуется той же системой мод, как если бы он имел бесконечное протяжение вдоль у. Частотная зависимость диэлектрических проницаемостей типичных нелинейных кристал-

Рис. 1. Двойной плазмонный волновод и система координат, используемая в тексте.

лов, применяемых для оптической ректификации, ε_d , моделируется подгоночными функциями, согласно результатам работы [6], тогда как для описания частотной дисперсии диэлектрических проницаемостей металлов, ε_m , используется модель Друде [7]:

$$\varepsilon_m = 1 + 4\pi i \sigma(\omega) / \omega, \tag{1}$$

где $\sigma(\omega) = \sigma_0/(1 - i\omega\tau)$ — проводимость металла, τ — время релаксации импульсов электронов, $\sigma_0 \equiv \equiv ne^2\tau/m$ — величина σ в статическом пределе, n электронная концентрация, e — элементарный заряд, m — эффективная электронная масса.

Численный анализ данной системы с использованием приведенных ниже уравнений (3), (4) показывает, что коэффициенты линейного поглощения ближнего ИК и ТГц импульса минимальны, если они формируются модами ТЕ и ТМ соответственно. Поэтому в дальнейшем будет считаться, что накачивающий импульс образуется суперпозицией ТЕ-мод, а ТГц — ТМ, причем в обоих случаях все моды имеют одинаковый тип поперечной структуры (а именно являются низшими симметричными модами [8]) и различаются лишь частотами (и следовательно, волновыми числами вдоль z, а также количественными характеристиками поперечного распределения полей). Данная ситуация является оптимальной, так как параметры волновода подбираются таким образом, что только для этих двух мод выполняется условие фазового синхронизма и конверсия накачки в ТГц импульс оказывается эффективной, а распространение накачивающего поля также и в виде других мод привело бы к тому, что лишь часть его энергии могла бы эффективно преобразовываться в ТГц излучение. Однако так как при параметрах волновода, найденных ниже, в ближнем ИКдиапазоне в нем возможно распространение большого числа мод ТЕ и ТМ [8], для возбуждения лишь одной ближней ИК-моды необходимо применять особый способ ввода излучения накачки в волновод.

Запишем комплексные амплитуды $\dot{\mathbf{E}}_{p,\text{THz}}$ и $\dot{\mathbf{B}}_{p,\text{THz}}$ электрического, $\mathbf{E}_{p,\text{THz}}$, и магнитного, $\mathbf{B}_{p,\text{THz}}$, полей накачивающего и ТГц импульсов в виде

$$\tilde{\mathbf{E}}_{p,\mathrm{THz}} \equiv A_{p,\mathrm{THz}} \mathbf{e}_{p,\mathrm{THz}}, \quad \tilde{\mathbf{B}}_{p,\mathrm{THz}} \equiv A_{p,\mathrm{THz}} \mathbf{b}_{p,\mathrm{THz}}, \quad (2)$$

где $\mathbf{e}_{p,\text{THz}}$ и $\mathbf{b}_{p,\text{THz}}$ — безразмерные комплексные векторы, определяющие структуры мод [8]. Пусть ω — частоты фурье-компонент накачивающего и TГц импульсов, $h_{p,\text{THz}}(\omega) = -h_{p,\text{THz}}^*(-\omega)$ — их *z*-волновые числа в волноводе, $\bar{n}_{p,\text{THz}} \equiv c \operatorname{Re}(h_{p,\text{THz}})/\omega$ — соответствующие показатели преломления. Величины $h_{p,\text{THz}}$, а также $g_{p,\text{THz}}$ и $p_{p,\text{THz}}$, определяющие поперечную структуру мод [8], находятся из систем уравнений [8]

$$g_{p}a = \arctan(p_{p}/g_{p}),$$

$$h_{p}^{2} + g_{p}^{2} = (\omega/c)^{2}\varepsilon_{d},$$

$$h_{p}^{2} - p_{p}^{2} = (\omega/c)^{2}\varepsilon_{m},$$
(3)

$$g_{\text{THz}}a = \arctan\left[\varepsilon_d p_{\text{THz}}/(\varepsilon_m g_{\text{THz}})\right],$$

$$h_{\text{THz}}^2 + g_{\text{THz}}^2 = (\omega/c)^2 \varepsilon_d,$$

$$h_{\text{THz}}^2 - p_{\text{THz}}^2 = (\omega/c)^2 \varepsilon_m.$$
(4)

Полное электрическое или магнитное поле накачивающего или ТГц импульсов определяется выражением

$$(\mathbf{E}, \mathbf{B})_{p, \text{THz}} \equiv \frac{1}{2\pi} \int_{-\infty}^{+\infty} (\tilde{\mathbf{E}}, \tilde{\mathbf{B}})_{p, \text{THz}} \exp(-i\omega t) d\omega.$$
(5)

Будем считать, что для импульса накачки частотная зависимость *A_p* имеет вид

$$A_p(\omega) = A_{p0}(\omega - \omega_p) + A_{p0}^*(-\omega - \omega_p),$$

где $A_{p0}(\omega)$ есть узкая функция с шириной ~ $1/\tau_p \ll \omega_p$ вокруг нулевого значения ее аргумента, описывающая медленно меняющуюся огибающую импульса накачки с несущей частотой ω_p и длительностью ~ τ_p . Имея в виду типичную ситуацию, когда $\omega_p \tau_p \gg 1$ и, следовательно, спектр накачивающего импульса узок, в дальнейших расчетах будет пренебрегаться небольшим различием поперечного распределения полей для его различных фурье-компонент.

Конверсия ближнего ИК-импульса в ТГц в двойном плазмонном волноводе

Распространяясь в волноводе, импульс накачки создает низкочастотную поляризацию с комплексной амплитудой [9]

$$\tilde{P}_{i}(\omega) = 2\chi_{i22}\cos^{2}(g_{p}x)\exp(i\omega\bar{n}_{pg}z/c)$$

$$\times \int_{-\infty}^{+\infty} A_{p0}(\omega')A_{p0}^{*}(\omega'-\omega)d\omega'/(2\pi), \quad (6)$$

где $\bar{n}_{pg} \equiv c \left(\partial \operatorname{Re}(h_p) / \partial \omega \right)_{\omega = \omega_p}$ — групповой индекс накачки в волноведущей структуре. Уравнение (6) написано в пренебрежении частотной зависимостью тензора нелинейной восприимчивости второго порядка, χ_{ijk} , и увеличением длительности импульса накачки вследствие ДГС, поскольку считается, что длина волновода меньше, чем

$$L_{GVD} \equiv \tau_p^2 / |\partial^2 \operatorname{Re}(h_p) / \partial \omega^2|_{\omega = \omega_p} \equiv c \tau_p^2 / (\partial \bar{n}_{pg} / \partial \omega)_{\omega = \omega_p}.$$

В уравнении (6) и ниже не учитывается также ослабление накачивающего излучения с увеличением z вследствие малости длины волновода по сравнению с $1/ \text{Im } h_p(\omega_p)$. Это условие действительно выполняется для конкретных материалов, выбранных в данной статье для численных расчетов (см. ниже).

Поляризация (6) создает плотность тока с комплексной амплитудой $\tilde{j}_i(\omega) = -i\omega\tilde{P}_i(\omega)$, которая служит источником, возбуждающим ТГц импульс. Согласно стандартной теории возбуждения волноводов [8], величина $A_{\text{THz}}(\omega, z)$ задается формулой

$$\begin{aligned} A_{\rm THz}(\omega, z) &\equiv 2b \int_{-a}^{a} \int_{0}^{z} \tilde{j}_{x} e_{\rm THz\,x}(-z') dx dz' / N_{\rm THz} \\ &= -8iab\omega \chi_{122} M z (2\pi N_{\rm THz})^{-1} \sin c \left\{ \frac{\omega [\bar{n}_{pg} - \bar{n}_{\rm THz}(\omega)] z}{2c} \right\} \\ &\times \exp\left\{ i \, \frac{\omega [\bar{n}_{pg} + \bar{n}_{\rm THz}(\omega)] z}{2c} \right\} \int_{-\infty}^{+\infty} A_{p0}(\omega') A_{p0}^{*}(\omega' - \omega) d\omega'. \end{aligned}$$

$$(7)$$

Здесь $\sin c(x) \equiv \sin(x)/x$,

$$M \equiv \int_{-a}^{a} e_{py}^{2} |_{z=0} e_{\text{TH}zx} |_{z=0} dx / (2a)$$

= $-\bar{n}_{\text{TH}z} \Big\{ \sin(g_{\text{TH}z}a) / g_{\text{TH}z} + \big[2g_{p} \sin(2g_{p}a) \cos(g_{\text{TH}z}a) \big] \Big\}$

$$-g_{\rm THz}\cos(2g_{p}a)\sin(g_{\rm THz}a)]/(4g_{p}^{2}-g_{\rm THz}^{2})\Big\}/(2a) \quad (8)$$

интеграл перекрытия накачивающей и ТГц мод,

$$N_{\text{THz}} \equiv -(c/2\pi)2b \int_{-\infty}^{+\infty} [\mathbf{e}_{\text{THz}} \mathbf{b}_{\text{THz}}] \Big|_{z=0} \mathbf{z}^0 dx$$
$$= -(bc\bar{n}_{\text{THz}}/\pi) \{ \varepsilon_d \left[a + \sin(2g_{\text{THz}}a)/(2g_{\text{THz}}) \right]$$
$$+ \varepsilon_m g_{\text{THz}}^2 \sin^2(g_{\text{THz}}a)/p_{\text{THz}}^3 \}$$
(9)

— комплексная норма ТГц моды, и член, пропорциональный χ_{322} , исчезает вследствие антисимметрии произведения $\cos^2(g_p x) \sin(g_{\text{TH}z} x)$ по отношению к замене $x \to -x$. В (7) не учитывается поглощение ТГц импульса, так как даже для максимального *z* (равного длине волновода) *z* Im $h_{\text{TH}z} \lesssim 1$ (см. ниже).

Величина χ_{122} в (7) зависит от ориентации волновода по отношению к кристаллографическим осям нелинейного кристалла. Простой численный анализ показывает, что в кристаллах со структурой цинковой обманки (например, GaAs, GaP, InP и др.) χ_{122} имеет максимум $\simeq 0.58\chi_{123}^0$ (где χ_{123}^0 — элемент тензора нелинейной восприимчивости второго порядка в системе координат с осями вдоль осей простой кубической ячейки [7]), если на рис. 1 ось *z* близка к направлению $\langle \bar{4}13 \rangle$, а *y* к $\langle 111 \rangle$.

Определим интенсивности накачивающего и ТГц импульсов, $I_{p, \text{THz}}$, как *z*-проекции соответствующих векторов Пойнтинга (в случае импульса накачки усредненного также по периоду осцилляций несущей $2\pi/\omega_p$), т.е.

$$I_{p,\text{THz}} = (c/4\pi) \big[\mathbf{E}_{p,\text{THz}}(\mathbf{r},t) \mathbf{B}_{p,\text{THz}}(\mathbf{r},t) \big] \mathbf{z}^0$$
(10)

для обсуждаемых здесь немагнитных сред. Для гауссового импульса накачки

$$I_{p} = -\frac{I_{p\max} \operatorname{Re}(e_{py}b_{px})}{\bar{n}_{p}} \exp\left[-\frac{2(t-\bar{n}_{pg}z/c)^{2}}{\tau_{p}^{2}}\right], \quad (11)$$

где $I_{p \max}$ — максимальная интенсивность, достигаемая при $t = \bar{n}_{pg} z / c$ в плоскости x = 0, и поэтому

$$A_{p0}(\omega) = \pi \tau_p \sqrt{2I_{p \max}/(c\bar{n}_p)} \exp(-\tau_p^2 \omega^2/4).$$
(12)

Используя (7), (2), (5) и (10), можно найти I_{THz} и мощность ТГц импульса P_{THz}

$$P_{\rm THz} \equiv 2b \int_{-\infty}^{+\infty} I_{\rm THz} dx.$$
 (13)

При выполнении этой процедуры будем считать, что для центральной частоты спектра ТГц импульса ω_{THz} выполняется условие фазового синхронизма, необходимое для эффективной оптической ректификации [4], т.е. $\bar{n}_{pg} = \bar{n}_{\text{THz}}(\omega_{\text{THz}})$, и для всего спектра ТГц импульса $\omega[\bar{n}_{pg} - \bar{n}_{\text{THz}}(\omega)]l/(2c) \ll 1$, где l — оптимальная длина волновода, определяемая ниже. В результате в (7) можно положить

$$\begin{split} &\sin c \left\{ \omega \big[\bar{n}_{pg} - \bar{n}_{\text{THz}}(\omega) \big] z / (2c) \right\} \\ &\times \exp \{ i \omega \big[\bar{n}_{pg} - \bar{n}_{\text{THz}}(\omega) \big] z / (2c) \} \simeq 1. \end{split}$$

Численное решение (3), (4) с $\varepsilon_d(\omega)$ и $\varepsilon_m(\omega)$, взятыми из [6,7], показывает, что для конкретного состава двойного плазмонного волновода такая ситуация может быть действительно реализована с помощью определенного выбора толщины нелинейного кристалла 2*a* (рис. 1) и несущей длины волны накачки. Так, для кристалла GaP, помещенного между двумя слоями из Ag разность $\omega[\bar{n}_{pg} - \bar{n}_{\text{THz}}(\omega)]l/(2c)$ при 2*a* = 6.4 μ m и $\lambda_p \equiv 2\pi c/\omega_p = 1.013 \,\mu$ m оказывается меньше единицы практически для всего спектра ТГц импульса (для оптимальной длины волновода $l \simeq 2$ mm, найденной ниже), и, более того, $\bar{n}_{\text{THz}}(\omega)$ имеет почти нулевую производную при центральной частоте ТГц импульса $\nu = 1$ THz (рис. 2).

Физическая причина такой частотной зависимости $\bar{n}_{\text{THz}}(\omega)$ состоит в том, что эта величина определяется показателями преломления как кристалла, так и металла, куда частично проникает ТГц мода. Величина $\text{Re}\sqrt{\varepsilon_d}$ характеризуется положительной дисперсией в ТГц области [6], а $\text{Re}\sqrt{\varepsilon_m} \simeq \sqrt{2\pi\sigma_0/\omega}$ — отрицательной. Взаимная компенсация этих двух вкладов в $\bar{n}_{\text{THz}}(\omega)$ и приводит к практической нулевой дисперсии $\bar{n}_{\text{THz}}(\omega)$ вблизи $\nu = 1$ THz.

Рис. 2. Фазовый синхронизм в двойном плазмонном волноводе: разность между \bar{n}_{pg} и $\bar{n}_{THz}(\nu)$ как функция ν вблизи центральной частоты ТГц импульса 1 THz для кристалла GaP, помещенного между двумя слоями Ag; $a = 3.2 \, \mu$ m, $\lambda_p \equiv 2\pi c / \omega_p = 1.013 \, \mu$ m.

Оптимальная величина $I_{p \max}$ для рассматриваемой структуры равна 10¹⁰ W/cm² и определяется следующими двумя факторами. Во-первых, так как $P_{\text{THz}} \propto I_{p \text{ max}}^2$ [1], выгодно повышать $I_{p \text{ max}}$. Во-вторых, I_{р тах} не должна быть слишком высокой, чтобы 3-фотонное поглощение накачки (которое в широкозонных полупроводниковых кристаллах типа GaP при длине волны накачки $\sim 1\,\mu m$ значительно сильнее 2-фотонного) и поглощение ТГц импульса на свободных электронах и дырках, генерируемых импульсом накачки, было пренебрежимо мало на длине волновода. Согласно [3], для $l = 2 \,\mathrm{mm}$ это ведет к данной оценке $I_{p \,\mathrm{max}}$. Что касается определения оптимальной длины волновода, то очевидно, что рост *l* благоприятствует генерации ТГц излучения, так как это означает увеличение дистанции нелинейного взаимодействия накачки с ТГц полем и поэтому приводит к возрастанию выходной мощности ТГц импульса. Однако, с другой стороны, *l* не должна быть больше меньшей одной из следующих двух величин: длины поглощения ТГц импульса в волноводе, $1/(2 \operatorname{Im} h_{\text{THz}})$ (согласно численному решению (4) с указанными выше параметрами, равному $\simeq 2 \,\mathrm{mm}$), и L_{GVD} ($\simeq 8 \,\mathrm{mm}$ [3]), и поэтому оптимальное значение $l = 1/(2 \, \text{Im} \, h_{Thz}) \simeq 2 \, \text{mm}$. В связи с этим необходимо отметить, что для чистого кристалла GaP длина поглощения ТГц излучения $L_a \simeq 6 \, {\rm mm}$ [3], так что максимально возможная толщина этого материала в традиционной (без волновода) схеме оптической ректификации $\min(L_a, L_{GVD}) = L_a \simeq 6 \,\mathrm{mm}$. В случае рассматриваемой здесь оптической ректификации в волноводе максимальная длина волновода, допускаемая поглощением ТГц излучения, составляет, как было сказано выше, примерно 2 mm. Таким образом, введение волновода не очень сильно уменьшает максимально возможную длину нелинейного взаимодействия волн.

Что касается поглощения накачки, численное решение (3) для указанных выше параметров дает для Im h_p величину $4 \cdot 10^{-3}$ cm⁻¹, так что ее ослаблением в волноводе с длиной $l \simeq 2$ mm можно пренебречь. Можно также не учитывать истощение импульса накачки вследствие его преобразования в ТГц импульс, так как соответствующая степень конверсии оказывается $\ll 1$ (см. ниже).

Благодаря отмеченной выше слабой дисперсии $\bar{n}_{\text{THz}}(\omega)$ вблизи $\nu = 1$ ТГц, как показывают численные расчеты, выходной ТГц импульс состоит лишь из одной осцилляции поля и имеет примерно ту же длительность, что и импульс накачки. Это позволяет значительно увеличить пиковые мощность и интенсивность ТГц импульса по сравнению со случаем сильной дисперсии $\bar{n}_{\text{THz}}(\omega)$ в ТГц области, когда длительность генерируемого ТГц импульса оказывается значительно большей длительности импульса накачки [3].

Для импульса накачки длительностью $\tau_p = 318$ fs, принимая, что в случае GaP $\chi^0_{123} \simeq 1.7 \cdot 10^7$ cm/statV (1 cm/statV = 4.189 $\cdot 10^{-4}$ m/V) ω_{THz} [10], численные расчеты приводят к пиковым интенсивности и мощности ТГц импульса $I_{\text{THz max}} \simeq 8 \cdot 10^5$ W/cm² и $P_{\text{THz}} \simeq 30$ W. Эффективность конверсии η , согласно ее определению, дается формулой

$$\eta = \int_{-\infty}^{+\infty} P_{\text{THz}} dt / \int_{-\infty}^{+\infty} P_p dt \qquad (14)$$

и при данных параметрах $\simeq 10^{-4}$. В связи с этими оценками необходимо отметить, что, поскольку I_{THz max} и η зависят от интенсивности (а не мощности) накачки, в традиционной схеме оптической ректификации без применения волновода те же $I_{\text{THz max}}$ и η достигаются при пиковой мощности накачивающего излучения в S/(4ab) раз больше, чем в настоящем методе. Здесь S — площадь поперечного сечения накачивающего пучка в фокусе, и ее минимально возможное значение может быть оценено из условия, чтобы дифракционное расхождение ТГц излучения на расстоянии в несколько миллиметров (характерная длина поглощения в нелинейных кристаллах [11]), определяющая верхний предел на толщину кристалла, используемого в традиционной схеме оптической ректификации) было пренебрежимо мало. Это дает $S_{\min} \simeq 2 \cdot 10^{-3} \, {\rm cm}^2$. Следовательно, без волновода те же $I_{\text{THz max}}$ и η были бы достигнуты при пиковой мощности импульса накачки, в ~ 50 раз большей, чем в настоящем методе. В результате применение описанной волноведущей структуры позволяет существенно понизить требования на мощность фемтосекундного лазера, необходимую для достижения высокой интенсивности выходного ТГц импульса и большой степени конверсии *η*.

Заключение

Таким образом, в данной работе показано, что применение достаточно простой двойной плазмонной волноведущей структуры для оптической ректификации позволяет работать с сильно сфокусированными (с размерами поперечного сечения в несколько микрон) накачивающими пучками. Это, в свою очередь, дает возможность значительно (в ~ 50 раз) уменьшить мощность импульса накачки по сравнению с традиционной (без волновода) схемой оптической ректификации и в то же время получить те же пиковую интенсивность ТГц импульса и степень конверсии. Последнее значение в данном методе может быть достаточно высоким для оптической ректификации (в частности, благодаря эффективному поперечному ограничению ТГц поля в рассматриваемой волноведущей структуре) и достигать 0.01% в рассмотренном частном примере системы Ag/GaP/Ag. Необходимо отметить также, что дисперсия показателя преломления ТГц моды в рассмотренном волноводе весьма мала, что позволяет генерировать короткие (содержащие всего одну осцилляцию поля) и поэтому достаточно мощные ТГц импульсы длительностью порядка нескольких сотен фемтосекунд, т.е. близкими к длительностям импульсов накачки.

Работа выполнена при финансовой поддержке РФФИ (гранты № 05-02-17525 и 07-02-00486) и Совета по поддержке ведущих научных школ России (грант № 4588.2006.2).

Список литературы

- [1] Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных импульсов. М.: Наука, 1988. С. 129.
- [2] Sakai K., Tani M. Terahertz Optoelectronics / Ed. by K. Sakai. Berlin: Springer, 2005. P. 11.
- [3] Kukushkin V.A. // JOSA B. 2006. Vol. 23. N 12. P. 2528-2534.
- Kaindl R., Eickemeyer F., Woerner M., Elsaesser T. // Appl. Phys. Lett. 1999. Vol. 75. N 8. P. 1060–1062.
- [5] Rochat M., Ajili L., Willenberg H., Faist J., Beere H., Davies G., Linfield E., Ritchie D. // Appl. Phys. Lett. 2002. Vol. 81. N 8. P. 1381–1383.
- [6] Пихтин А.Н., Яськов А.Д. // ФТП. 1978. Т. 12. Вып. 6. С. 1047–1053.
- [7] Ашкрофт Н., Мермин Н. Физика твердого тела. М.: Мир, 1979. Т. 1. С. 31, 101. (Ashcroft N.W. and Mermin N.D. Solid State Physics. N.Y.: Holt, Rinehart and Winston, 1976).
- [8] Вайнштейн Л.А. Электромагнитные волны. М.: Сов. радио, 1988. С. 220.
- [9] Гурзадян Г.Г., Дмитриев В.Г., Никогосян Д.Н. Нелинейнооптические кристаллы. Свойства и применение в квантовой электронике. М.: Радио и связь, 1991. С. 4.
- [10] Flytzanis C. // Phys. Rev. B. 1972. Vol. 6. N 4. P. 1264–1290.
- [11] *Palik E.D.* Handbook of Optical Constants of Solids. N.Y.: Academic, 1985.