01;05;07 Латеральный сдвиг рентгеновских пучков и проблема определения фазы при рефлектометрии многослойных периодических структур

© М.М. Барышева, А.М. Сатанин

Институт физики микроструктур РАН, 603950 Нижний Новгород, Россия e-mail: arkady@ipm.sci-nnov.ru

(Поступило в Редакцию 9 июля 2007 г. В окончательной редакции 12 декабря 2007 г.)

Аналитически и численно исследовано латеральное смещение рентгеновских пучков при брэгтовском отражении от многослойной периодической структуры (MC). Найдено распределение полей внутри MC, а также смещение отраженного и прошедшего пучков. В приближении спектрально узких пучков получены аналитические выражения для величин сдвигов. Поскольку величина смещения определяется фазой коэффициента отражения (прохождения), существует принципиальная возможность извлечения информации о фазе отражения (прохождения) путем измерения пространственного сдвига.

PACS: 07.85.Fv, 41.50.+h, 83.85.Hf, 68.65.Ac, 61.10.Kw

Введение

Проблема определения параметров многослойной периодической структуры (МС) по данным рефлектометрии — обратная задача рентгеновской оптики — существует довольно давно. Для ее решения ранее были предложены различные подходы [1]. В частности, показано, что по угловым зависимостям коэффициента отражения (брэгговским пикам) можно восстановить некоторые характеристики структуры: период, соотношение толщины, дисперсию слоев и т.д. [2]. Трудности, возникающие при решении обратной задачи, общеизвестны: детектор дает информацию о величине интенсивности рассеянного сигнала, а информация о фазе волн теряется. Соответственно удается восстановить только амплидуту, но не фазу коэффициента отражения МС. Попытки определить фазу, привлекая дисперсионные соотношения типа Крамерса-Кронига, не приводят к успеху, поскольку требуется дополнительная информация о частотной зависимости диэлектрической проницаемости, которая зачастую не может быть получена в рентгеновском диапазоне [1,3]. Применение методов эллипсометрии [4], позволяющих эффективно восстанавливать фазу волн в оптическом диапазоне, мессбауэровской спектроскопии [5] и трехволновых процессов [6,7] пока не привели к существенному продвижению в данном направлении.

В настоящей работе будет показано, что дополнительная фазовая информация может быть получена при изучении латерального смещения сколлимированных волновых пучков при отражении от МС. Первоначально этот эффект (сдвиг Гооса-Хенхен) был предсказан и наблюдался для полного внутреннего (френелевского) отражения [8,9], затем был обобщен на случай сред с плавной зависимостью фазы отражения от угла падения [10]. В рентгеновском диапазоне случай симметричной брэгговской дифракции на кристаллах был рассмотрен А.В. Андреевым и др. и позднее обобщен Р. Беренсон на несимметричный случай. Авторы работ [11–13] отмечали, что спектрально узкие пучки испытывают незначительное (по сравнению со своей шириной) смещение, в то время как пучки с широким спектром заметно сдвигаются, претерпевая одновременно сильное искажение. Представляется важным изучение аналогичных эффектов в случае дифракции рентгеновских пучков на МС. Кроме того, в данной работе будут исследованы поведение прошедшего пучка, зависимость величины смещения от параметров структуры, а также проанализировано волновое поле внутри среды. Будет показано, что латеральный сдвиг отраженного пучка для реальных зеркал содержит дополнительную информацию о параметрах МС и может достигать нескольких микрон, что является экспериментально измеримой величиной.

1. Постановка задачи

Геометрия изучаемой системы представлена на рис. 1. В начале координат поместим формирующее волновой пучок устройство, например диафрагму шириной 2*w*.

Рис. 1. Геометрия структуры и схема сдвига отраженного пучка.

Полученное волновое поле представляется разложением:

$$E_0(x, y) = \int_{-\infty}^{\infty} C(p) \exp(i\chi(p)x + ipy) dp, \qquad (1)$$

где p и $\chi(p) = \sqrt{k_0^2 - p^2}$ — проекции волнового вектора на координатные оси, а $k_0 = \omega/c$ — волновое число в вакууме. Спектральные коэффициенты C(p) для диафрагмы имеют вид

$$C(p) = \frac{E_0}{\pi} \frac{\sin(p - p_0)w}{(p - p_0)}$$
(2)

и при $\lambda \ll w$ могут быть аппроксимированы гауссовой функцией:

$$C(p) = \frac{E_0 w}{2\sqrt{\pi}} \exp\left(-\frac{w^2 (p - p_0)^2}{4}\right).$$
 (3)

Рассмотрим МС, образованную чередующимися слоями веществ с диэлектрической проницаемостью $\varepsilon_{1,2}$ и толщиной $d_1 = \beta d$ и $d_2 = (1 - \beta)d$, где d — период структуры; N — число периодов, образующих MC, L = Nd — ее толщина. Расположение MC относительно координатных осей представлено на рис. 1.

Каждая гармоника падающего пучка (1) отражается и преломляется независимо от других, соответственно поле отраженного сигнала на ближней границе среды x = h записывается в виде

$$E_r(h, y) = \int_{-\infty}^{\infty} C(p)r(p) \exp(i\chi(p)h + ipy)dp, \qquad (4)$$

а поле прошедшего сигнала на дальней границе x = h + L

$$E_t(h+L, y) = \int_{-\infty}^{\infty} C(p)t(p) \exp(i\chi(p)(h+L) + ipy)dp,$$
(5)

где r(p), t(p) — комплексные коэффициенты отражения и прохождения МС для соответствующих гармоник, выражаемых через свои амплитуды и фазы соотношениями

$$r(p) = \sqrt{R(p)} \exp(i\varphi), \quad t(p) = \sqrt{T(p)} \exp(i\psi).$$
 (6)

Выражения (4) и (5) полностью характеризуют волновое поле отраженного и прошедшего пучков, в частности, они описывают изменение формы и смещение исходного пучка вдоль оси у. Частично это смещение, очевидно, связано просто с наклонным падением исходного пучка, в дальнейшем называем его геометрическим. Кроме того, есть дополнительное смещение (рис. 1), обусловленное эффектами взаимодействия волнового поля со средой, далее под латеральным сдвигом будем иметь в виду именно его.

Рис. 2. Сечение структуры при вычислении распределения поля внутри МС.

Перейдем теперь к описанию распределения поля внутри МС, для чего мысленно выделим в среде вблизи x₀ бесконечно узкую полость (рис. 2). Поле произвольной гармоники в ней запишем в виде суммы прямой и обратной волн:

$$E_{\rm in}(p) = a \exp(i\chi(p)x_0) + b \exp(-i\chi(p)x_0)$$

Введя теперь комплексные коэффициенты отражения r_L, r_R и прохождения t_L, t_R , соответствующие левому и правому (относительно полости) сегментам МС, получим следующие матричные уравнения:

$$\begin{pmatrix} a \\ r \end{pmatrix} = \begin{pmatrix} \overleftarrow{r}_L & \overrightarrow{t}_L \\ \overleftarrow{t}_L & \overrightarrow{r}_L \end{pmatrix} \begin{pmatrix} b \\ 1 \end{pmatrix}, \quad \begin{pmatrix} t \\ b \end{pmatrix} = \begin{pmatrix} \overleftarrow{r}_R & \overrightarrow{t}_R \\ \overleftarrow{t}_R & \overrightarrow{r}_R \end{pmatrix} \begin{pmatrix} 0 \\ a \end{pmatrix},$$
(7)

где коэффициенты со знаками "→" и "←" соответствуют падению волны на одну и ту же структуру слева и справа и не являются обозначением векторной величины; $\overleftarrow{t} = \overrightarrow{t} = t$, равенство $\overleftarrow{r} = \overrightarrow{r} = r$ достигается только для симметричных сред.

Используя (7), можно записать волновое поле внутри среды в виде суперпозиции двух пучков $E_{in}(x_0, y) =$ $= E_{in}(x_0, y) + E_{in}(x_0, y)$, движущихся по оси *x* и против нее, в дальнейшем будем называть эти пучки "прямой" и "обратный":

$$E_{\rm in}(x_0, y) = \int C(p) \frac{t_L(x_0)}{1 - \overleftarrow{r_L} \overrightarrow{r_R}} e^{i\chi x_0 + ipy} dp + \int C(p) \frac{t_L(x_0) \overrightarrow{r_R}(x_0)}{1 - \overleftarrow{r_L} \overrightarrow{r_R}} e^{-i\chi x_0 + ipy} dp. \quad (8)$$

Нетрудно видеть, что на границах МС это выражение дает соответственно отраженный и прошедший пучки.

В заключение раздела приведем явные выражения для коэффициентов отражения и прохождения периодической МС, которые могут быть получены методом укороченных уравнений [14–16]. В случае *s*-поляризованного

78

излучения вблизи *т*-го дифракционного пика имеем

$$\overrightarrow{r}(p) = \frac{i\Delta_{-}\operatorname{th}(\gamma(p)L)}{\gamma(p) - iu(p)\operatorname{th}(\gamma(p)L)}, \quad \overleftarrow{r}(p) = \frac{\Delta_{+}}{\Delta_{-}}r(p)$$

$$t(p) = \frac{\gamma(p) \operatorname{ch}^{-1}(\gamma(p)L)}{\gamma(p) - iu(p) \operatorname{th}(\gamma(p)L)}, \quad \gamma(p) = \sqrt{\Delta_{+}\Delta_{-} - u^{2}(p)},$$
(9)

где

$$u = \frac{d}{2\pi m} \left[k_0^2 \varepsilon_0 - \left(\frac{\pi m}{d}\right)^2 - p^2 \right], \quad \Delta_{\pm} = \frac{k_0^2 d}{2\pi m} \varepsilon_{\pm m} \quad (10)$$

— комплексные параметры размерности обратной длины, $\varepsilon_0 = \beta \varepsilon_1 + (1 - \beta) \varepsilon_2$, $\varepsilon_{\pm m}$ — *m*-й коэффициент разложения диэлектрической проницаемости в ряд Фурье. Коэффициент Re *u* имеет смысл отстройки от резонанса, Re *u* = 0 соответствует условию Брэгга $2d \cos \theta = m\lambda$, импульс *p* при этом равен брэгговскому $p_B = (k_0^2 \varepsilon_0 - (\pi m)^2/d^2)^{1/2}$. Произведение $\Delta_+\Delta_-$ характеризует ширину дифракционного пика; если функция $\varepsilon(z)$ четна, то $\Delta_0 = \Delta_+^*$; именно этот случай и будет подразумеваться в дальнейшем.

Для *p*-поляризованного излучения в (9), (10) следует произвести замену $\varepsilon_{\pm m} \rightarrow -\varepsilon_{\pm m} \cos(2\theta_B)$. Поскольку коэффициенты отражения и прохождения для *s*- и *p*поляризаций различны, будет различаться также латеральное смещение, претерпеваемое пучками разных поляризаций, откуда следует теоретическая возможность пространственного разделения пучков.

2. Приближение спектрально узких пучков

Совокупность выражений (4), (5), (8) и (10) описывает пространственное распределение полей отраженного, прошедшего и распространяющегося внутри МС пучков. Однако в общем случае анализ приведенных выражений может быть выполнен только численными методами. Упрощения имеют место в приближении спектрально узких пучков. В этом случае каждый из интегралов (4), (5), (8) можно переписать, выделяя зависимость от поперечной координаты у, в виде

$$E(x, y) = \int_{-\infty}^{\infty} C(p, y) Q(p) e^{iS(p, y)} dp, \qquad (11)$$

где Q(p), S(p, y) — действительные функции. В приближении хорошо определенных пучков $\lambda \ll w \sin(\theta)$ можно воспользоваться разложением по малому параметру $1/wp_0 \ll 1$: образующая C(p) существенно отлична от нуля в области шириной 1/w т. е. фактически импульс p изменяется в пределах $p_0(1-1/2wp_0) . Спектрально уз$ кими будем называть волновые пакеты, ширина которых в обратном пространстве много меньше ширины брэгговского резонанса, что соответствует медленному изменению Q(p), S(p, y) в области интегрирования. Разложив S(p, y) в ряд вблизи p_0 с точностью до линейного члена и используя метод перевала, для гауссовой функции C(p) можно получить

$$E(x, y) \cong E_0 Q(p_0) \exp\left[-\left(S'(p_0)/w\right)^2\right] \exp\left(iS(p_0)\right),$$
(12)

где штрихом здесь и далее обозначена производная по p. Смысл (12) легко понять на примере отраженного пучка: производная $S'(p_0) = y + h\chi'(p_0) + \varphi'(p_0)$, что соответствует смещению волнового пакета как целого вдоль поверхности структуры относительно y = 0 (диафрагма). Часть сдвига $-h\chi'(p_0) > 0$ связана с наклонным распространением пучка, на границе x = h он одинаков у падающего и отраженного пучков. Дополнительное латеральное смещение, появляющеееся вследствие многократного переотражения от границ слоев, составляет

$$\delta_r = -\frac{\partial \varphi(p_0)}{\partial p} > 0. \tag{13}$$

т.е. формально имеет тот же вид, что и классический сдвиг Гооса—Хенхен в оптике, который, как известно, определяется фазой коэффициента отражения [9].

Аналогичное разделение латерального сдвига на геометрический и дополнительный можно провести для прошедшего пучка, а также для прямого и обратного пучков внутри МС. При этом для прошедшего пучка геометрическое смещение составит $-(h + L)\chi'(p_0) > 0$, а дополнительное

$$\delta_t = -\frac{\partial \psi(p_0)}{\partial p} > 0. \tag{14}$$

Для прямого и обратного пучков внутри среды дополнительные смещения определятся выражениями,

$$\vec{\delta} = -d\left(\arg \frac{t_L(x_0)}{1 - \overleftarrow{r_L}\overrightarrow{r_R}}\right) / dp$$

И

$$\overleftarrow{\delta} = -d\left(\arg\frac{t_L(x_0)\vec{r}_R(x_0)}{1-\vec{r}_L\vec{r}_R}\right) \middle/ dp.$$
(15)

Отметим, что учет в разложении S(p, y) квадратичного члена дает поправку к дисперсии волновых пакетов, не оказывая влияния на пространственный сдвиг. В частности, для отраженного и прошедшего пучков в первом приближении $w_{r,t} = w$, во втором $w_r^2 = w^2 - 2i\chi''(p_0)h_{r,t} - 2i\varphi''(p_0)$ (для w_t^2 аналогично).

Далее будут подробно рассмотрены характерные частные случаи, приведены результаты численных расчетов, демонстрирующие зависимость латерального смещения от параметров МС и возможность извлечения из соответствующих измерений дополнительной информации для решения обратной задачи.

Непоглощающая среда

Для симметричной непоглощающей многослойной среды на основе (10) можно получить

$$\varphi(p) = -\arctan\left(\frac{\gamma(p)}{u(p)\operatorname{th}(\gamma(p)L)}\right), \quad \psi(p) = \frac{\pi}{2} + \varphi(p),$$
(16)

откуда следует равенство дополнительных латеральных смещений отраженного и прошедшего пучков: $\delta_{r,t} = \varphi'(p_0)$. Отметим, во-первых, что в классической схеме эффекта Гооса—Хенхен для смещений действует "правило 1/2" [17]. Во-вторых, утверждение о равенстве сдвигов отраженного и прошедшего пакетов в одинаковой степени справедливо как для *s*- так и для *p*-поляризованного излучений, хотя, конечно, $\delta^s \neq \delta^p$. В явном виде латеральное смещение описывается соотношением

$$\delta_{r,t} = \frac{p_0 d}{\pi m \gamma} \frac{\Delta_+ \Delta_- \operatorname{th}(\gamma L) + u^2 \gamma L[\operatorname{th}(\gamma L) - 1]}{\gamma^2 + u^2 \operatorname{th}^2(\gamma L)}.$$
 (17)

Величина $L_{\rm ex} = 1/|p|$ имеет смысл длины экстинкции, т. е. характерного расстояния, на котором интенсивность волнового поля спадает в глубь среды. В зависимости от соотношения *L* и $L_{\rm ex}$ традиционно выделяют предельные случаи слабого кинематического ($L \ll L_{\rm ex}$) и сильного динамического ($L \gg L_{\rm ex}$) отражения. Учитывая условие Брэгга, асимптотики (16) можно переписать в виде

$$\delta_{r,t} \cong \frac{\sin \theta}{\cos \theta_B} \begin{cases} L, & L \ll L_{\text{ex}}; \\ L_{\text{ex}}, & L \gg L_{\text{ex}}. \end{cases}$$
(18)

В режиме брэгговского резонанса $\theta = \theta_B$ полученные выражения имеют простой физический смысл: латеральное смещение пакета в кинематическом приближении соответствует смещению, которое претерпел бы пучок при отражении от одного диэлектрического слоя с толщиной *L* и близкой к единице диэлектрической проницаемостью $\varepsilon < 1$; сдвиг в динамическом приближении происходит, как от диэлектрического слоя толщиной L_{ex} .

Поскольку значения длины экстинкций для *s*- и *p*-поляризованных пучков различаются, в динамическом приближении они будут претерпевать разное латеральное смещение. В частности, при выполнении условия Брэгга $\delta^p \cong \delta^s / \cos(2\theta_B)$, при приближении θ_B к углу Брюстера $\pi/4$ величина δ^p неограниченно возрастает. Отсюда следует очевидный вывод о возможности пространственного разделения поляризаций [12,13], однако не следует забывать об относительной малости коэффициента отражения для *p*-поляризации по сравнению с *s*-поляризацией вблизи угла $\pi/4$.

Следует обратить внимание на принципиальное отличие поведения $\delta_{r,t}$ как функции λ в длинноволновом и коротковолновом случаях. В динамическом приближении при $\theta = \theta_B$ перепишем (18) в виде

$$\delta_{r,t} \cong \frac{\lambda}{(\varepsilon_2 - \varepsilon_1)} \frac{m \sin(\theta_B)}{\sin(\pi m \beta)}.$$
 (18a)

В оптическом диапазоне частот, где диэлектрическую проницаемость веществ можно считать не зависящей от длины волны падающего излучения, имеем $\delta_{r,t} \propto \lambda$, при фиксированном θ_B смещение возрастает с увеличением длины волны. В то же время в рентгеновском диапазоне частоты $\varepsilon_{1,2}$ существенно зависят от частоты и связаны с атомными факторами рассеяния $f_{1,2} = f'_{1,2} + i f''_{1,2}$ соотношением

$$\begin{pmatrix} 1 - \operatorname{Re}(\varepsilon_{1,2}) \\ \operatorname{Im}(\varepsilon_{1,2}) \end{pmatrix} = \frac{r_0}{\pi} \lambda^2 N_a \begin{pmatrix} f'_{1,2} \\ f''_{1,2} \end{pmatrix}, \quad (19)$$

где $r_0 = e^2/m_e c^2$ — классический радиус электрона, N_a — концентрация атомов. Соответственно получаем обратную зависимость от длины волн: $\delta_{r,t} \propto 1/\lambda$, т.е. в рентгеновском диапазоне для увеличения латерального смещения следует выбирать как можно меньшие длины волн. В качестве примера рассмотрим модельную структуру Cr/Sc (атомные факторы рассеяния в зависимости от энергии кванта приведены в [18], поглощением пренебрежем) с геометрическими параметрами d = 3.14 nm, $\beta = 0.47$, N = 300. При $\lambda = 3.12$ nm разность диэлектрических проницаемостей $\Delta \varepsilon \sim 10^{-2}$, величина сдвига (m = 1) должна составить $\delta_{r,t} \approx 0.2 \,\mu$ m; при $\lambda = 0.154$ nm имеем $\Delta \varepsilon \sim 2.5 \cdot 10^{-5}$, тогда $\delta_{r,t} \approx 6.4 \,\mu$ m, что подтверждает сделанные выводы.

Слабопоглощающая среда

В случае поглощающей МС явное выражение для величины латерального сдвига (16) слишком громоздко. Однако в частном случае слабого поглощения, характеризующемся выполнением неравенств $Im(\gamma_m), Im(u_m) \ll Re(\gamma_m), Im(u_m)L \ll 1$, в динамическом пределе при $p = p_B$ можно получить

$$\delta_r = \delta_{r,t}^{\text{ideal}} \left[1 - \left(\frac{\text{Im}\,\Delta_-}{\text{Re}\,\Delta_-} + \frac{\text{Im}\,\Delta_+}{\text{Re}\,\Delta_+} \right)^2 \right],\tag{20}$$

$$\delta_t = \delta_{r,t}^{\text{ideal}} [1 + \operatorname{Im} uL], \qquad (21)$$

где $\delta_{r,t}^{\text{ideal}}$ обозначает соответствующее смещение для случая непоглощающей среды. Поскольку Im u > 0 для любой поглощающей среды, то на основании (20), (21) можно заключить, что слабое поглощение увеличивает дополнительное латеральное смещение прошедшего и уменьшает таковое для отраженного пучков. При этом количественно влияние поглощения на прошедший пучок оказывается сильнее. Отметим также, что введенные поправочные коэффициенты оказываются одинаковыми для обеих возможных поляризаций падающего излучения.

Поглощающая среда

Воспользовавшись (10), (13) и (14), можно рассчитать зависимость величины сдвига отраженного и прошедшего пучков от отстройки для реальных (поглощающих) сред. Соответственно графики для вышеописанной

Рис. 3. Величина сдвига *s*-поляризованного пучка при отражении (a) и пропускании (b) в зависимости от отстройки для MC на основе Cr/Sc в случаях с поглощением (сплошная кривая) и без него (пунктир).

структуры Cr/Sc при $\lambda = 3.12$ nm приведены на рис. 3, 4. Отметим, что использование разложения (4) по малому параметру допустимо только в областях плавности фазы — соответственно за пределами резонансной области полученные результаты неприменимы. Анализ рисунков подтверждает правильность оценки влияния поглощения, сделанного выше.

Дифракция спектрально широких пучков

В случае волновых пакетов, угловая ширина которых в обратном пространстве сравнима с шириной дифракционного максимума, изучим латеральное смещение и изменение формы отраженного и прошедших пучков при взаимодействии с МС численными методами. Для вычисления коэффициентов отражения/прохождения одной спектральной гармоники используем метод рекуррентных соотношений Паррата [3], а для расчета интегралов — метод быстрого преобразования Фурье. Численное моделирование выполнено с использованием программы, написанной М.М. Барышевой.

Будем рассматривать латеральное смещение пучков шириной $w = 0.12 \,\mu$ m и с длиной волны $\lambda = 3.12 \,$ nm, что соответствует случаю $1/w \sim \Delta$.

Результаты расчета, приведенные на рис. 5, демонстрируют смещение волнового пакета на величину порядка *w*, сопровождающееся значительным искажением формы сигнала, причем наиболее сильно оно выражено для *p*-поляризационного пучка. Однако в силу существенного различия интенсивностей отраженных пучков для разных поляризаций наблюдать расщепление изначально неполяризованного пакета в данном случае затруднительно.

Рис. 4. Величина сдвига *p*-поляризованного пучка при отражении (a) и пропускании (b) в зависимости от отстройки для MC на основе Cr/Sc в случаях с поглощением (сплошная кривая) и без него (пунктир).

Численно смещение искаженного негауссового пучка удобно характеризовать положением центра "тяжести", вячисляемым по формуле

$$Y = \int y |E_r(h, y)|^2 dy \bigg/ \int |E_r(h, y)|^2 dy,$$

где $E_r(h, y)$ — поле отраженного сигнала, определяемое (4) (для гауссова пучка центр тяжести совпадает с центром пучка).

На рис. 6, *а*, *b* приведены зависимости *Y* от угла падения в случае спектрально широкого ($w = 0.12 \,\mu$ m) и спектрально узкого ($w = 0.78 \,\mu$ m) волновых пакетов для разных значений межслоевой широховатости σ . Брэгговский угол составляет $\theta_B = 59.68^\circ$, углы максимального отражения θ_{max} и ширины $\Delta \theta_{\text{max}}$ дифракционных пиков, которые в общем случае зависят от межслоевых шероховатостей.

С точностью до шага кривых можно утверждать, что наибольшее смещение пучка достигается вблизи максимума коэффициента отражения, при этом шероховатости заметно влияют на величину *Y*. Так, увеличение шероховатости от нуля до 3 Å уменьшает максимальный сдвиг на 0.15 w для широкого пучка и на 0.07 w — для узкого (в абсолютных единицах длины это составит 18 и 54 nm соответственно).

Влияние шероховатостей на вид кривой $Y(\theta)$ объясняется сглаживанием угловой зависимости коэффициента отражения при увеличении σ . При этом узкий пучок непосредственно прописывает все более гладкую зависимость $\varphi'(\theta)$ (отсюда возникает пересечение кривых), в то время как широкий, захватывающий всю область дифракционного максимума для каждого θ , дает простое уменьшение величины Y.

Проведенные нами исследования также продемонстрировали чувствительность величины Y к изменению других параметров MC, таких как β , $\rho_{1,2}$, что позволяет

Рис. 5. Поведение интенсивностей спектрально широкого пучка при дифракции на Cr/Sc MC: 1 — падающий пучок, 2 — отраженный *s*-поляризованный, 3 — отраженный *p*-поляризованный, 4 — отраженный неполяризованный пучок.

Рис. 6. Зависимость смещения центра тяжести спектрально широкого (*a*) и узкого (*b*) пучков от угла падения в единицах ширины пучка для разных шероховатостей: $1 - \sigma = 0, 2 - 3, 3 - 6$ Å.

говорить о возможности извлечения дополнительной информации о структуре по измерению величины смещения отраженного сигнала.

4. Распределение поля внутри среды

Согласно разд. 2, в приближении спектрально узких пучков дополнительное смещение прямого и обратного пучков внутри среды определяется с помощью выражения (15). Представление смещений в явном виде затруднительно, поэтому прибегнем к численному анализу. На рис. 7 для спектрально широкого пучка приведены зависимости интенсивностей прямого и обратного пучков от положения сечения x_0 ($h < x_0 < L + h$) внутри MC, позволяющие наблюдать за распределением волнового поля внутри среды (угол падения $\theta = \theta_B$).

Качественно иное поведение наблюдается для спектрально узких пучков. На основании формул (9), (15) может быть показано, что эффекты интерференции в

Рис. 7. Распределение интенсивностей полей прямого (a) и обратного (b) пучков в различных сечениях МС (выбранных с шагом в 20 периодов по глубине структуры Cr/Sc): 1a — падающий пучок, 1b — отраженный, 2a — прошедший, кривая 2b соответствует $x_0 = (L + h) - 20d$ (при $s_0 = L + h$ обратный пучок отсутствует).

непоглащающей симметричной среде приводят к постоянству дополнительного смещения обратного пучка с глубиной: $\delta(x_0) = \text{const} = \delta(L+h)$ для произвольного θ (для прямого — зависимость монотонно растущая). Для реальных поглощающих сред описанная особенность пропадает при удалении $\theta = \theta_B$.

Заключение

Исследовано поведение отраженного и прошедшего МС волновых пакетов, конфигурация поля внутри среды. Продемонстрировано качественное различие зависимости величины смещения от длины волны в рентгеновском и оптическом диапазонах частот. Показано, что смещение пучка определяется фазой коэффициента отражения (прохождения) волн и является экспериментально измеримой величиной, что подтверждают численные оценки для типичной структуры Cr/Sc. Наличие дополнительной информации о MC, содержащейся в фазовой функции, позволит сузить интервал поиска параметров структуры, что может способствовать дальнейшему продвижению в решении обратной задачи рентгеновской оптики.

Авторы выражают благодарность Н.Н. Салащенко и Н.И. Чхало за внимание к работе и полезные обсуждения.

Работа поддержана грантом РФФИ № 07-02-01132.

Список литературы

- [1] Toll J.S. // Phys. Rev. 1956. Vol. 104. P. 1760.
- [2] Платонов Ю.Я., Полушкин Н.И., Салащенко Н.Н., Фраерман А.А. // ЖТФ. 1987. Т. 57. Вып. 11. С. 2192.
- [3] Виноградов А.В., Брытов И.В., Грудский А.Я. и др. Зеркальная рентгеновская оптика / Под общ. ред. А.В. Виноградова. Л.: Машиностроение, 1989. С. 15–20, 79–81.
- [4] Основы эллипсометрии / Под ред. А.В. Ржанова. Новосибирск: Наука, 1979. С. 232–244, 290–306.
- [5] Андреева М.А., Кузьмин Р.Н. Мессбауэровская гаммаоптика. М.: Изд-во Моск. ун-та, 1982. 277 с.
- [6] Hart M, Lang A.R. // Phys. Rev. Lett. 1961. Vol. 7. P. 120.
- [7] Post B. // Phys. Rev. Lett. 1977. Vol. 39. P. 760.
- [8] Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. М.: Гостехиздат, 1954. 367 с.
- [9] Goos F., Hanchen H. // Ann. Phys. 1947. Vol. 1. P. 333.
- [10] Бреховских Л.М. Волны в слоистых средах. М.: Наука, 1973. С. 71, 111–143.
- [11] Tamir T., Bertoni H.L. // JOSA. 1971. Vol. 61. P. 1397.
- [12] Андреев А.В., Горшков В.Е., Ильинский Ю.А. // ЖТФ. 1987. Т. 57. Вып. 3. С. 511.
- [13] Berenson R. // Phys. Rev. B. 1989. Vol. 40. P. 20.
- [14] Ярив А., Юх П. Оптические волны в кристаллах. М.: Мир, 1987. С. 179. 195.
- [15] Vinogradov A.V., Zeldovich B.Ya. // Appl. Opt. 1977. Vol. 16. P. 89.
- [16] Виноградов А.В., Зельдович Б.Я. // Опт. и спектр. 1977. Т. 42. Вып. 4. С. 708.
- [17] Fan J., Dogariu A., Wang L.J. // Opt. Expr. 2003. Vol. 11. N 4. P. 299.
- [18] http://www-cxro.1b1.gov/optical_constants/