01;04 Нелинейные адиабатические модели ионно-звуковых волн в пылевой плазме

© А.Е. Дубинов, М.А. Сазонкин

Саровский государственный физико-технический институт, Саров, Нижегородская область, Россия e-mail: dubinov-ae@yandex.ru

(Поступило в Редакцию 9 октября 2007 года)

Развиты нелинейные адиабатические модели ионно-звуковых волн в пылевой плазме. В рамках предположения о постоянстве заряда пылинок аналитически точно решена задача о структуре дозвуковой периодической и сверхзвуковой уединенной ионно-звуковой волны и найдены критические числа Маха для уединенной волны. Численно решена задача о структуре волны в случае, когда заряд пылинок считался непостоянным.

PACS: 52.27.Lw, 52.35.Fp

Введение

Пылевая плазма, т.е. плазма, в которой взвешены электрически заряженные микрочастицы конденсированного вещества (пылинки, капельки или крупные молекулярные кластеры), в последнее время стала одним из наиболее популярных объектов теоретического и экспериментального исследования. Причиной тому является разнообразие форм существования пылевой плазмы в космосе (планетарные кольца, хвосты комет, туманности и др.), а также множество предсказанных и обнаруженных новых эффектов, часть из которых описана, например, в обзорах [1-4]. Оказалось, что и в лабораторной газоразрядной плазме пылевая фракция часто является непременным атрибутом и образуется в ряде технологических процессов (в процессе сгорания топлива, при травлении и напылении микросхем, в производстве наночастиц и т.д.). Обратим внимание также на то, что свойства лабораторной пылевой плазмы исследовались в условиях микрогравитации на космических станциях "Мир" [5] и МКС [6].

Наиболее интересными представляются нелинейные коллективные процессы, возникающие в пылевой плазме. К ним относятся как те, которые происходят только в пылевой плазме, так и те, которые ранее были известны и для чистой плазмы, но наличие пылевой фракции вносит в них качественно новые особенности. К последним можно отнести нелинейные ионнозвуковые волны, которые в пылевой плазме существенно модифицируются благодаря движению и электрической зарядке микрочастиц. Впервые на особенности ионнозвуковых волн в пылевой плазме (DIAW — dusty ionаcoustic waves) было обращено внимание в работе [7], использующей линейное приближение. В дальнейшем линейная теория DIAW была развита в работах [3,8–14].

Но ионно-звуковые волны в чистой плазме являются, как известно, сильно нелинейными. Их нелинейность проявляется, прежде всего, в асимметрии периодических волн и в возможности существования уединенных волн — солитонов [15,16]. Поэтому в последнее время появилась серия работ, в которой развивается нелинейная теория DIAW, тем более что DIAW-солитоны наблюдались и в лабораторных условиях [17,18]. Для наглядного представления о современном состоянии нелинейной теории в таблице представлены основные характеристики известных нам нелинейных моделей DIAW. В ней же в двух последних строках представлены характеристики моделей, разработанных и исследованных в настоящей работе.

Поясним обозначения в таблице. В работах [19–28] электронная компонента — безынерционна (т.е. масса электрона $m_- \rightarrow 0$) и распределена или по Больцману (РБ), или по Больцману с учетом адиабатического захвата электронов в потенциальную яму волны (РБАЗ) [21,22], в соответствии с теорией [29]. В [28] к электронам применен газодинамический (адиабатический) подход для разных показателей адиабаты электронов у_ (АдП). Ионная компонента описывается обычными гидродинамическими уравнениями без учета (в большинстве случаев) или с учетом ионных столкновений с частотой v_i [22,27] или силы вязкого трения с коэффициентом вязкости η [23]. Пылевая компонента чаще всего рассматривается как неподвижная вследствие большой массы микрочастиц по сравнению с массой иона, или для нее используются обычные гидродинамические уравнения с температурой микрочастиц $T_d = 0$ и частотой межчастичных столкновений $v_d = 0$ [21,24,25]. Модель можно трактовать двояко: как DIAW либо как пылевой звук (dust-acoustic waves — DAW) с учетом инерции ионов. Во всех работах используется уравнение зарядки микрочастицы в орбитальном приближении (orbital motion limit — OML), описанном в работах [30,31]; в этом случае решение представляется в виде численных результатов (Ч). Укажем, что в работе [32] получена точная формула для равновесного заряда микрочастицы в плазме в рамках OML.

Модели работ [19–25] можно расположить в возрастающем порядке их сложности, которая зависит от набора

Модель электронной компоненты	Модель ионной компоненты	Модель пылевой компоненты	Метод анализа	Работа
Безынерционность, изотермичность, РБ, $T_{-} \neq 0$	Гидродинамика, изотермичность, $T_+ = 0, v_+ = 0$	Неподвижность, постоянство заряда	ПС	[19]
Безынерционность, изотермичность, РБ, $T_{-} \neq 0$	Гидродинамика, изотермичность, $T_+ eq 0, u_+ = 0$	Неподвижность, вариация заряда OML	КдВ	[20]
Безынерционность, изотермичность, РБАЗ, <i>T</i> _ ≠ 0	Гидродинамика, изотермичность, $T_+ \neq 0, v_+ = 0$	Гидродинамика, $T_d = 0, v_d = 0,$ вариация заряда OML	ПС	[21]
Безынерционность, изотермичность, РБАЗ, $T_{-} \neq 0$	Гидродинамика, изотермичность, $T_+ eq 0, u_+ eq 0$	Неподвижность, вариация заряда OML	ПС	[22]
Безынерционность, изотермичность, РБ, $T_{-} \neq 0$	Гидродинамика, $T_+ eq 0, \eta eq 0$	Неподвижность, постоянство заряда	ПС	[23]
Безынерционность изотермичность, РБ $T \neq 0$	Гидродинамика, изотермичность, $T_+ e 0, u_+ = 0$	Гидродинамика, $T_d = 0, v_d = 0,$ постоянство заряда	ПС	[24]
		Гидродинамика, $T_d = 0, v_d = 0,$ вариация заряда OML	Ч	
Безынерционность, изотермичность, РБ, $T_{-} \neq 0$	Гидродинамика, АдП, $\gamma_+=3, T_+ eq 0, \ u_+=0$	Гидродинамика, $T_d = 0, v_d = 0,$ вариация заряда OML	ПС	[25]
Безынерционность, изотермичность, РБ, $T_{-} \neq 0$	Гидродинамика, изотермичность, $T_+ eq 0, u_+ = 0$	Неподвижность, постоянство заряда	ЛО	[26]
Безынерционность, изотермичность, РБ, $T_{-} \neq 0$	Гидродинамика, изотермичность, $T_+ eq 0, v_+ eq 0$	Неподвижность, постоянство заряда	КдВ	[27]
Безынерционность, АдП, $\gamma_{-} = 3/2$ $\gamma_{-} = 1, T_{-} \neq 0$	Гидродинамика, АдП, γ_+ — любое, $T_+ eq 0, \nu_+ = 0$	Неподвижность, постоянство заряда	ПС	[28]
Безынерционность, АдП, γ_{-} — любое, $T_{-} \neq 0$	Гидродинамика, АдП, γ_+ — любое $T_+ eq 0, u_+ = 0$	Неподвижность, постоянство заряда	ПБ	Данная работа
Безынерционность, АдП, γ_{-} — любое, $T_{-} \neq 0$	Гидродинамика, АдП, γ_+ — любое $T_+ eq 0, u_+ = 0$	Неподвижность, вариация заряда OML	Ч	Данная работа

Основные характеристики всех известных нелинейных моделей DIAW

учитываемых факторов и используемого метода. В работе [19] — самый малочисленный набор учитываемых факторов, а в [20,27] используется наиболее простой метод анализа нелинейных волн, когда амплитуда нелинейной волны считается слабой и возможно разложение по малому параметру. Система уравнений сводится тогда к эволюционному уравнению типа Кортевега-де Вриза (КдВ), имеющему солитонные решения. Но в рамках

этого подхода число Маха уединенной волны не ограничено сверху. В работах [19,21–26,28] используется метод псевдопотенциала Сагдеева (ПС). Этот метод применим для волн большой амплитуды, с помощью него можно доказать существование и найти верхний предел числа Маха, выше которого волна опрокидывается, и метод ПС перестает работать. В обзоре [33] рассмотрена модель DIAW-солитонов, учитывающая очень много факторов

(динамическое уравнение состояния ионов с ненулевой температурой), для нее получено точное выражение для ПС, но анализ проведен для простейшего частного случая. Для полноты картины укажем работу [26], в которой используется метод, основанный на уравнениях в лагранжевых переменных (лагранжево описание — ЛО).

Отметим, что отличительной особенностью большинства перечисленных работ и еще большего числа не указанных работ является использование изотермического описания теплой компоненты плазмы, когда формирование и динамика нелинейных волн происходит как изотермический процесс. Такое предположение служит упрощающим фактором, но оставляет открытым вопрос о внешнем источнике или стоке тепловой энергии, поскольку изотермический процесс обязательно проходит с поступлением энергии при сжатии и с отдачей энергии — при разрежении. Таким образом, для описания нелинейных волн в плазме более адекватным к реальным ситуациям могут быть модели, использующие газодинамический (адиабатический) подход, рассматривающий процесс, который идет без обмена энергией. Этот подход позволяет учесть изменение температуры в различных фазах волны и влияние этого изменения на формирование и свойства самой волны.

В последнее время появился ряд работ, в которых адиабатический подход был применен к ионно-звуковым волнам в чистой плазме [34,35], причем было найдено, что верхнее предельное число Маха уединенной волны (2.54) здесь заметно превышает значение (1.58) для плазмы с холодными ионами и изотермическими электронами из работ [15,16,32]. Кроме того, в работах [36,37] адиабатический подход был применен к DAW, в работе [38] — к волнам пространственного заряда в нейтрализованном электронном пучке, а в [39] к нелинейным электростатическим волнам в электронпозитронной плазме. Таким образом, применение этого подхода для ионного звука в пылевой плазме можно считать важной и своевременной задачей.

Для ее решения в данной работе были развиты нелинейные адиабатические модели DIAW. В рамках первой из развитых моделей в предположении о постоянстве заряда пылинок аналитически точно решается задача о структуре дозвуковой периодической и сверхзвуковой уединенной ионно-звуковой волны и находятся критические числа Маха для уединенной волны (разд. 1). В рамках другой модели, когда заряд пылинок считается непостоянным, задача о структуре волны в случае решена численно (разд. 2).

Нелинейная модель DIAW 1. с постоянным зарядом пылинок

1.1. Исходные уравнения и обозначения

Рассмотрим квазинейтральную бесстолкновительную однородную плазму, которая содержит электроны, однозарядные ионы и взвешенные пылинки. Будем считать, что электроны безынерционны, а пылинки —

Журнал технической физики, 2008, том 78, вып. 9

бесконечно тяжелы. В такой ситуации пылинки носят, как правило, отрицательный заряд, который в данном разделе будем считать постоянным во времени.

Предположим далее, что расстояние между пылинками меньше дебаевского радиуса. Тогда можно считать, что в целом плазма обеднена электронами.

Обозначим параметры невозмущенной плазмы следующим образом: масса электронов — m_{-} ; масса ионов *m*₊; начальные температуры для электронной и ионной компоненты соответственно — T_{0-} и T_{0+} ; показатели адиабат электронной и ионной компонент — γ_- и γ_+ ; заряд электронов — e < 0; заряд ионов — (-e) > 0; равновесная концентрация электронов — n_{0-} ; равновесная концентрация ионов — $n_{0+} = n_0$; заряд пылинки — q; концентрация пылинок — *n*_d.

Возмущенные в волне параметры будем записывать без индкса "О". В силу условия квазинейтральности имеем $en_0 = en_{0-} + qn_d$. Введем параметр α , обозначающий часть электронов, осевшую на пылинках: $\alpha = qn_d/en_0$. Тогда $n_{0-} = (1 - \alpha)n_0$. Отметим, что параметр α однозначно связан с так называемым числом Хавнеса (Ha = qn_d/en_{0-} [22]), а именно $\alpha^{-1} = 1 + \text{Ha}^{-1}$. Кроме того, частный случай $\alpha = 0$ соответствует ионному звуку в чистой плазме, и решение поставленной задачи при $\alpha \to 1$ должно переходить в решение, полученное в [35]; частный случай *α* = 1 эквивалентен задаче об электронных волнах на неподвижном нейтрализующем фоне, и решение при lpha
ightarrow 0 должно переходить в решение задачи о нелинейных электронных волнах, полученное в [38].

Запишем одномерные уравнения, определяющие динамику ионной компоненты плазмы:

уравнение непрерывности

$$\frac{\partial n_+}{\partial t} + \frac{\partial (n_+ V_+)}{\partial x} = 0; \tag{1}$$

—- уравнение движения

$$m_{+}\left(\frac{\partial V_{+}}{\partial t} + V_{+}\frac{\partial V_{+}}{\partial x}\right) = e \frac{\partial \varphi}{\partial x} - \frac{1}{n_{+}} \frac{\partial P_{+}}{\partial x}; \qquad (2)$$

уравнение Пуассона

$$\frac{\partial^2 \varphi}{\partial x^2} = 4\pi e (n_+ - n_- - \alpha n_0). \tag{3}$$

Систему необходимо дополнить адиабатическим уравнением состояния ионного газа

$$P_{+} = kT_{0+}n_0 \left(\frac{n_+}{n_0}\right)^{\gamma_+},\tag{4}$$

где k — постоянная Больцмана. В уравнении Пуассона (3) необходимо также учесть вклад электронной компоненты, которую будем описываеть в рамках адиабатического процесса аналогично (4). Тогда, если записать уравнение динамики электронного газа в виде (2), устремить массу электронов к нулю по причине их безынерционности, то легко можно вывести уравнение,

связывающее концентрацию электронов с электростатическим потенциалом. Этот несложный вывод опускаем и даем готовый вид

$$n_{-} = (1 - \alpha)n_0 \left(1 - \frac{\gamma_{-} - 1}{\gamma_{-}} \frac{e\varphi}{kT_{0-}}\right)^{1/(\gamma_{-} - 1)}.$$
 (5)

Если устремить $\gamma_{-} \rightarrow 0$, то, очевидно, в пределе получим экспоненциальное распределение Больцмана.

Прежде чем решать нелинейную задачу, найдем некоторые линейные характеристики ионного звука в пылевой плазме.

1.2. Линейная скорость ионного звука

Найдем линейную скорость ионного звука, для чего придадим системе (1)-(3) малое гармоническое возмущение в виде

$$\begin{cases} n_{+} = n_{0+} + \tilde{n}_{+} \exp[i(\kappa x - \omega t)], \\ V_{+} = \tilde{V}_{+} \exp[i(\kappa x - \omega t)], \\ \varphi = \tilde{\varphi} \exp[i(\kappa x - \omega t)], \end{cases}$$
(6)

где κ — волновое число, а \tilde{n}_+ , \tilde{V}_+ и $\tilde{\varphi}$ — амплитуды возмущения.

Подставив (6) в уравнения непрерывности и движения, получим

$$\tilde{n}_{+} = \frac{-\frac{e}{m_{+}} \left(\frac{\kappa}{\omega}\right) \tilde{\varphi} n_{0}}{1 - V_{T+}^{2} \left(\frac{\kappa}{\omega}\right)^{2}},\tag{7}$$

где $V_{T+}^2 = kT_{0+}\gamma_+/m_+$ — квадрат тепловой скорости ионов.

При малых возмущениях $e\phi/kT_{0-} \ll 1$, что позволяет записать (5) после линеаризации как

$$n_{-} = (1 - \alpha) n_0 \left(1 - \frac{1}{\gamma_{-}} \frac{e\varphi}{kT_{0-}} \right).$$
 (8)

Подставив (7) и (8) в уравнение Пуассона (3), после несложных выкладок приходим к дисперсионному уравнению ионно-звуковых волн в пылевой плазме следующего вида:

$$\frac{1}{\omega^2 - V_{T+}^2 \kappa^2} = \frac{m_+(1-\alpha)}{\gamma_- k T_{0-}} \frac{1}{\kappa^2} + \frac{1}{\omega_{p+}^2}.$$
 (9)

Из первого слагаемого правой части получаем линейную скорость ионного звука в пылевой плазме

$$V_S = \sqrt{\gamma_- k T_{0-}/(1-\alpha)m_+},$$

когда заряд считается постоянным. В (9)

$$\omega_{p+} = \sqrt{4\pi n_0 e^2/m_+}$$

— ионная плазменная частота.

Выражение для дебаевского радиуса может быть записано в виде

$$\lambda_D = V_S/\omega_{p+} = \sqrt{\gamma_- kT_{0-}/(1-\alpha)4\pi e^2 n_0}.$$

1.3. Нормировка уравнений

Введем следующие нормировки: $n_{\pm} = n_0 n'_{\pm}$; $T_{\pm} = T_{0-} T'_{\pm}$; $V_{\pm} = V_S V'_{\pm}$; $x = \lambda_D x'$; $t = \omega_+^{-1} t'$; $\varphi = [y_-kT_{0-}/(1-\alpha)e]\varphi'$. Обратим внимание на то, что электростатический потенциал φ и его безразмерный аналог φ' имеют разные знаки, так как e < 0. В дальнейшем штрихи у безразмерных величин опускаем.

Зависимость концентрации электронов от потенциала (5) перепишется как

$$n_{-} = (1 - \alpha) \left(1 - \frac{\gamma_{-} - 1}{1 - \alpha} \varphi \right)^{1/(\gamma_{-} - 1)}.$$
 (10)

Представим исходные уравнения (1)-(3) в нормированном виде с учетом подстановки в (2) уравнения состояния ионного газа (4):

уравнение непрерывности

$$\frac{\partial n_+}{\partial t} + \frac{\partial (n_+ V_+)}{\partial x} = 0; \tag{11}$$

— уравнение движения

$$\frac{\partial V_{+}}{\partial t} + V_{+} \frac{\partial V_{+}}{\partial x} = \frac{\partial \varphi}{\partial x} - \frac{(1-\alpha)\tau}{\gamma_{+}-1} \frac{\partial}{\partial x} \left(n_{+}^{\gamma_{+}-1} \right); \quad (12)$$

— уравнение Пуассона

$$\frac{\partial^2 \varphi}{\partial x^2} = n_+ - (1 - \alpha) \left(1 - \frac{\gamma_- - 1}{1 - \alpha} \varphi \right)^{1/(\gamma_- - 1)} - \alpha, \quad (13)$$

где параметр au определен как $au = \gamma_+ T_{0+}/\gamma_- T_{0-}.$

1.4. Решение уравнений в виде стационарной волны

Пусть ионно-звуковая волна бежит в положительном направлении оси *x* с безразмерной скоростью М (фактически М — число Маха).

Введем автомодельную переменную

$$\xi = x - Mt, \quad \frac{\partial}{\partial t} = -M \frac{d}{d\xi}, \quad \frac{\partial}{\partial x} = \frac{d}{d\xi}$$

Это означает, что мы переходим в новую систему координат из лабораторной системы отсчета.

Тогда система уравнений (11)–(13) сведется к следующей системе обыкновенных дифференциальных уравнений:

$$-M\frac{dn_{+}}{d\xi} + \frac{d(n_{+}V_{+})}{d\xi} = 0,$$
(14)

$$-\mathbf{M}\,\frac{dV_{+}}{d\xi} + V_{+}\,\frac{dV_{+}}{d\xi} = \frac{d\varphi}{d\xi} - \frac{(1-\alpha)\tau}{\gamma_{+}-1}\,\frac{d}{d\xi}\left(n_{+}^{\gamma_{+}-1}\right), \quad (15)$$

$$\frac{\partial^2 \varphi}{\partial \xi^2} = n_+ - (1 - \alpha) \left(1 - \frac{\gamma_- - 1}{1 - \alpha} \varphi \right)^{1/(\gamma_- - 1)} - \alpha.$$
 (16)

Журнал технической физики, 2008, том 78, вып. 9

Рис. 1. Графики зависимости $\varphi(n_+)$ при $\tau = 0.1$, $\gamma_+ = 3$, $\alpha = 0.5$: a - M = 0.2, b - 1.2.

Проинтегрируем уравнение непрерывности и уравнение движения при $\lim_{V_+\to 0} n_+ = 1$, $\lim_{V_+\to 0} \varphi = 0$ и получим зависимость $\varphi(n_+)$:

$$\varphi = \frac{(1-\alpha)\tau}{\gamma_+ - 1} \left(n_+^{\gamma_+ - 1} - 1 \right) + \frac{M^2}{2} \left(\frac{1}{n_+^2} - 1 \right).$$
(17)

Типичные графики этой зависимости $\varphi(n_+)$ представлены на рис. 1. Установлено, что они всегда имеют вид кривой с минимумом. Кроме того, функция $\varphi(n_+)$ (17) при любых параметрах обязательно должна иметь корень $n_+ = 1$, который обеспечивает выполнение условия квазинейтральности невозмущенной плазмы в уравнении Пуассона (13). При этом в одном случае (рис. 1, *a*) правая ветвь проходит через корень квазинейтральности, а в другом (рис. 1, *b*) — левая ветвь. Ветви, которые пересекают ось абсцисс в другом месте, нефизичны и их необходимо отбросить. Отбрасываемые ветви показаны на рис. 1 пунктиром.

Найдем минимум функции $\varphi(n_+)$ (17), для чего найдем первую производную и приравняем ее нулю

$$\frac{d\varphi}{dn_{+}} = -\frac{M^2 - (1 - \alpha)\tau n_{+}^{\gamma_{+} + 1}}{n_{+}^3} = 0.$$
(18)

Отсюда находим

$$n_{+\max} = \left[\frac{M^2}{(1-\alpha)\tau}\right]^{1/(\nu_{+}+1)}$$
(19)

3 Журнал технической физики, 2008, том 78, вып. 9

И

$$\rho_{\min} = \frac{(1-\alpha)\tau}{\gamma_{+}-1} \left\{ \left[\frac{M^{2}}{(1-\alpha)\tau} \right]^{(\gamma_{+}-1)/(\gamma_{+}+1)} - 1 \right\} + \frac{M^{2}}{2} \left\{ \left[\frac{M^{2}}{(1-\alpha)\tau} \right]^{-2/(\gamma_{+}+1)} - 1 \right\}.$$
(20)

Концентрация ионов в (19) обозначена индексом max, поскольку там, где безразмерный электростатический потенциал имеет минимум, плотность ионов максимальна. В этом еще раз убедимся ниже при рассмотрении численного примера.

Аналитически разрешить (17) относительно концентрации ионов n_+ при произвольном показателе адиабаты γ_+ не представляется возможным. Следовательно, для решения этой задачи использование известного метода псевдопотенциала Сагдеева [15,16] затруднительно. Поэтому для решения подобных задач, рассматривающих, например, волну как адиабатический процесс с произвольным показателем адиабаты, нами был разработан другой метод псевдопотенциала [35,38], названный методом Бернулли, и обобщающий метод Сагдеева. Здесь также воспользуемся этим новым методом.

Для применения метода псевдопотенциала Бернулли необходима еще и вторая производная (17):

$$\frac{d^2\varphi}{dn_+^2} = \frac{3M^2 + (1-\alpha)(\gamma_+ - 2)\tau n_+^{\gamma_+ + 1}}{n_+^4}.$$
 (21)

Рассмотрим теперь уравнение Пуассона (16). Воспользовавшись правилом дифференцирования сложной функции

$$\frac{d^2\varphi}{d\xi^2} = \frac{d\varphi}{dn_+} \frac{d^2n_+}{d\xi^2} + \frac{d^2\varphi}{dn_+^2} \left(\frac{dn_+}{d\xi}\right)^2, \qquad (22)$$

а также (17), (18) и (21), сведем уравнение (16) к автономному дифференциальному уравнению 2-го порядка относительно $n_+(\xi)$:

$$-\frac{M^{2}(1-\alpha)\tau n_{+}^{\gamma_{+}+1}}{n_{+}^{3}}\frac{d^{2}n_{+}}{d\xi^{2}}$$

$$+\frac{3M^{2}+(1-\alpha)(\gamma_{+}-2)\tau n_{+}^{\gamma_{+}+1}}{n_{+}^{4}}\left(\frac{dn_{+}}{d\xi}\right)^{2}$$

$$=n_{+}-(1-\alpha)\left\{1-\frac{\gamma_{-}-1}{1-\alpha}\left[\frac{(1-\alpha)\tau}{\gamma_{+}-1}\left(n_{+}^{\gamma_{-}-1}-1\right)\right]\right\}^{1/(\gamma_{-}-1)}-\alpha.$$
(23)

Порядок уравнения можно понизить, применив замену $p(n_+) = dn_+/d\xi$. В итоге получим дифференциальное уравнение Бернулли

$$\frac{dp}{dn_{+}} = f_1(n_{+})p + f_N(n_{+})p^N$$
(24)

с компонентами

$$N = -1, \ f_1(n_+) = \frac{1}{n_+} \frac{3M^2 + (1-\alpha)(\gamma_+ - 2)\tau n_+^{\gamma_+ + 1}}{M^2 - (1-\alpha)\tau n_+^{\gamma_+ + 1}}$$

И

$$f_{-1}(n_{+}) = \frac{n_{+}^{4} - (1-\alpha)n_{+}^{3}\left\{1 - \frac{\gamma_{-} - 1}{1-\alpha}\left[\frac{(1-\alpha)\tau}{\gamma_{+} - 1}(n_{+}^{\gamma_{+} - 1} - 1) + \frac{M^{2}}{2}\left(\frac{1}{n_{+}^{2}} - 1\right)\right]\right\}^{1/(\gamma_{-} - 1)} - \alpha}{M^{2} - (1-\alpha)\tau n_{+}^{\gamma_{+} + 1}}.$$
(25)

Воспользовавшись известным решением уравнения Бернулли [40], запишем общее решение с постоянной интегрирования C_1 :

$$p^{2} = \frac{n_{+}^{6}}{\left[M^{2} - (1 - \alpha)\tau \, n_{+}^{\gamma_{+} + 1}\right]^{2}} \times \left[C_{1} - 2\int \frac{M^{2} - (1 - \alpha)\tau \, n_{+}^{\gamma_{+} + 1}}{n_{+}^{3}} R(n_{+}, \gamma_{+}, \alpha, \mathbf{M}) dn_{+}\right],$$
(26)

где

$$R(n_{+},\gamma_{+},\alpha,\mathbf{M}) = n_{+} - \alpha + \left[\alpha - 1 + \frac{\gamma_{-} - 1}{\gamma_{+} - 1}\tau(1 - \alpha) \times \left(n_{+}^{\gamma_{+} - 1} - 1\right) + \frac{\mathbf{M}^{2}}{2}(\gamma_{-} - 1)\left(\frac{1}{n_{+}^{2}} - 1\right)\right]^{1/(\gamma_{-} - 1)}.$$

Из интеграла уравнения Бернулли (26) можно получить точное выражение для $n_+(\xi)$ в неявном виде с постоянной интегрирования C_2 :

$$\xi + C_2 = \int p(n_+)dn_+,$$
 (27)

которое совместно с (26) является точным общим решением задачи о профиле нелинейной ионно-звуковой волны.

1.5. Исследование псевдопотенциала

Заметим, что (26) имеет вид закона сохранения энергии некого псевдоосциллятора, находящегося в потенциальном поле вида

$$U_{B}(n_{+}) = \frac{n_{+}^{6}}{\left[M^{2} - (1 - \alpha)\tau n_{+}^{\gamma_{+}+1}\right]^{2}} \times \int_{1}^{n_{+}} \frac{M^{2} - (1 - \alpha)\tau n_{+}^{\gamma_{+}+1}}{n_{+}^{3}} R(n_{+}, \gamma_{+}, \alpha, M) dn_{+},$$
(28)

для которого n_+ играет роль псевдокоординаты, а ξ — роль псевдовремени. Чтобы подчеркнуть, что псевдопотенциал (28) получен как решение уравнения (24), данный метод его получения и анализа был назван методом псевдопотенциала Бернулли. Отметим, что для удобства константа C_1 в (28) выбрана так, чтобы выполнялось $U_B(1) = 0.$

Построим графики псевдопотенциала (28) при различных M (остальные параметры в графиках одинаковы) (рис. 2). Их анализ позволяет сделать следующие выводы: графики псевдопотенциала имеют форму кривой, имеющей яму с локальным минимумом, один из склонов которой заканчивается локальным максимумом. Одни из экстремумов всегда находится в точке $n_+ = 1$, соответствующей квазинейтральной невозмущенной плазме. При этом при M < 1 в точку $n_+ = 1$ попадает локальный минимум, а при M > 1 — локальный максимум. Перио-

Рис. 2. Графики псевдопотенциала $U_B(n_+)$ при $\gamma_{\pm} = 1$, $\tau = 0.1, \alpha = 0.3$: a - M = 0.5; b - 0.7; c - 1.2; d - 1.5.

Журнал технической физики, 2008, том 78, вып. 9

Рис. 3. График зависимости критического числа Маха от τ при различных γ_{\pm} и α : $a - \alpha = 0$; b - 0.1; c - 0.4; d - 0.7. 2.54 и 1.58 (a) — значения М при $\gamma_{\pm} = 0$.

дическое движение псевдоосциллятора в потенциальной яме вблизи минимума описывает периодические DIAW, а движение по сепаратрисе, проходящей через седловую точку на фазовом портрете (при нулевой скорости через максимум $U_B(n_+)$), — уединенную DIAW. Легко понять, что в дозвуковом случае M < 1 (рис. 2, a, b) решение может удовлетворять условию $\int n_+(\xi) d\xi = \Lambda$ для периодической волны с периодом Л, но не может удовлетворять граничному условию $\lim_{\xi \to \pm \infty} n_+ = 1$, необходимому для реализации уединенной волны. И наоборот, в сверхзвуковом случае M > 1 решение может не удовлетворять условию $\int n_+(\xi) d\xi = \Lambda$ для периодической волны с периодом Л, но может удовлетворять граничному условию lim $n_{+} = 1$, необходимому для $\xi \rightarrow \pm \infty$ реализации уединенной волны (рис. 2, *c*). Таким образом, как и в чистой плазме, периодическая DIAW всегда дозвуковая, а уединенная DIAW (DIAW-солитон) всегда сверхзвуковая.

Однако для существования солитона указанного условия недостаточно. Необходимо еще, чтобы правый конец кривой псевдопотенциала был достаточной высоты — выше локального максимума (при нашем выборе C_1 — положительный). В противном случае солитон неустойчив и опрокидывается. Таким образом, то значение числа Маха, при котором правый конец кривой псевдопотенци-

ала лежит на уровне максимума, является максимально возможным для данных параметров плазмы и подлежит определению.

Были рассчитаны зависимости критического числа Маха M_{cr} от параметра τ при различных значениях α и γ_{\pm} . Графики этих зависимостей, имеющие вид кривых с минимумом, показаны на рис. 3. Эти графики качественно подобны тем, что получены для нелинейного ионного звука в чистой плазме в [35]. Кроме того, для двух частных случаев были получены значения M_{cr} , совпадающие с теми, точные значения которых даны в других работах: $\gamma_{\pm} = 1$, $\tau = 0$, $\alpha = 0$ (электроны изотермичны, ионы холодные) [15,16,32]

$$M_{cr} = \sqrt{-1 - 2W_{-1}[(-1/2)\exp(-1/2)]} \approx 1.58;$$

при $\gamma_{\pm}=3, \tau \rightarrow 0, \alpha=0$ (электроны адиабатичны, ионы холодные) [34,35]

$$M_{cr}=\sqrt{3\big(\sqrt{4/3}+1\big)}\approx 2.54.$$

Здесь W_{-1} — отрицательная ветвь функции Ламберта. Заметна общая тенденция графиков рис. 3: чем больше α , т.е. чем большая доля заряда осела на пылинках, тем сильнее зависимость критического числа Маха M_{cr} от показателей адиабаты γ_{\pm} .

1.6. Численный пример

Полученное точное решение задачи о профиле нелинейной ионно-звуковой волны (26), (27) является очень

Puc. 4. Партитура стационарной DIAW при постоянном заряде пылинок (профили: потенциала $\varphi(\xi)$; концентрации ионов $n_+(\xi)$; концентрации электронов $n_-(\xi)$; пространственного заряда $n_+(\xi) - n_-(\xi) - \alpha$; температуры ионов $T_+(\xi)$; температуры электронов $T_-(\xi)$): a — дозвуковая периодическая волна при M = 0.7, $\gamma_+ = 5/3$, $\gamma_- = 3$, $\tau = 0.1$, $\alpha = 0.3$; b — сверхзвуковая уединенная волна при M = 1.3, $\gamma_+ = 5/3$, $\gamma_- = 3$, $\tau = 0.1$, $\alpha = 0.3$.

громоздким и ненаглядным. Поэтому данное решение необходимо дополнить численным примером, позволяющим понять особенности волны при учете адиабатического изменения температуры в волне. На рис. 4 показан пример вычисленных профилей физических параметров (волновой партитуры) DIAW для частного случая параметров плазмы в двух режимах: периодической и уединенной волн. Профили вычисля-

Рис. 5. Изменение вида колебаний пространственного заряда при увеличении α (сверху вниз: $\alpha = 0.1$, $\alpha = 0.5$, $\alpha = 0.8$): a — дозвуковая периодическая волна при M = 0.7, $\gamma_+ = 5/3$, $\gamma_- = 3$, $\tau = 0.1$; b — сверхзвуковая уединенная волна при M = 1.3, $\gamma_+ = 5/3$, $\gamma_- = 3$, $\tau = 0.1$.

лись следующим образом: сначала вычислялся профиль ионной концентрации $n_+(\xi)$ как решение исходного уравнения (23), затем $\varphi(\xi)$ — профиль электростатического потенциала по формуле (17), далее $n_-(\xi)$ профиль электронной концентрации по формуле (10), затем профиль разности $n_+(\xi) - n_-(\xi) - \alpha$, пропорциональной величине пространственного заряда в волне, и наконец, $T_{\pm}(\xi)$ — профили температур по безразмерным формулам $T_+ = (\gamma_+/\gamma_-)\tau n_{\gamma+}^{\gamma_+-1}$ и $T_- = n_{\gamma-}^{\gamma_--1}$.

Колебания в периодической волне имеют асимметричный вид вследствие асимметрии псевдопотенциала относительно точки равновесия $n_+ = 1$. В режиме сверхзвуковой волны пространственный заряд имеет две точки смены знака.

На рис. 5 показаны графики профилей пространственного заряда при различных значениях параметра α . Как видно, амплитуда колебаний уменьшается при увеличении α , и в пределе, при $\alpha \rightarrow 1$, солитоны должны исчезнуть (как известно, в эквивалентной задаче электронных колебаний на неподвижном нейтрализующем фоне уединенных волн нет — см., например [41]).

2. Нелинейная модель DIAW с переменным зарядом пылинок

В предыдущем разделе была развита аналитическая модель стационарных DIAW при постоянном заряде пылинок. Теперь усложним задачу и будем предполагать,

что заряд не постоянен. Тогда к системе уравнений (11)-(13) необходимо добавить еще уравнение зарядки пылинок. Во всех работах по исследованию DIAW с учетом перезарядки пылинок [20–22,24,25] используется уравнение зарядки микрочастицы в OML-приближении, разработанном в работах [30,31]. Это приближение основано на том, что независимо от степени нелинейности потенциала вблизи пылинки для вывода тока частиц на нее достаточно использовать закон сохранения энергии и момента импульса налетающих электронов и ионов.

Уравнения для токов в случае сферической пылинки имеют вид [31]

$$I_{i} = 4\pi r_{d}^{2} n_{+} e \left(\frac{kT_{+}}{2\pi m_{+}}\right)^{1/2} \left(1 + \frac{e\varphi_{d}}{kT_{+}}\right), \qquad (29)$$

$$I_e = 4\pi r_d^2 n_- e \left(\frac{kT_-}{2\pi m_-}\right)^{1/2} \exp\left(-\frac{e\varphi_d}{kT_-}\right),\qquad(30)$$

где r_d — радиус пылинки, φ_d — ее потенциал.

Закон изменения заряда пылинки находится из уравнения

$$\frac{dq}{dt} = I_i - I_e, \tag{31}$$

а равновесный заряд находится из уравнения

$$I_i - I_e = 0.$$
 (32)

Рис. 6. Партитура стационарной DIAW при переменном заряде пылинок (профили: потенциала $\varphi(\xi)$; концентрации ионов $n_+(\xi)$; концентрации электронов $n_-(\xi)$; заряда пылинки $q(\xi)$; пространственного заряда $n_+(\xi) - n_-(\xi) + q(\xi)$; температуры ионов $T_+(\xi)$; температуры электронов $T_-(\xi)$): a — дозвуковая периодическая волна при M = 0.7, $\gamma_+ = 5/3$, $\gamma_- = 3$, $\tau = 0.1$, $n_d = 10^{-2}$, $\beta = 1/2$; b — сверхзвуковая уединенная волна при M = 1.3, $\gamma_+ = 5/3$, $\gamma_- = 3$, $\tau = 0.1$, $n_d = 10^{-2}$, $\beta = 1/2$.

Введем обозначения и нормируем уравнение (32):

$$eta = rac{e^2}{4\piarepsilon_0 r_d k T_-}, \hspace{0.2cm} arphi_d = eta q, \hspace{0.2cm} T_\pm = T_{0-}T'_\pm, \ n_\pm = n_0 n'_\pm, \hspace{0.2cm} m_+ = m_- m'_+, \hspace{0.2cm} q = (-e)q'.$$

В дальнейшем штрихи у безразмерных величин опускаем. Тогда уравнение (32) перепишется в виде

$$n_{+}\left(\frac{T_{+}}{m_{+}}\right)^{1/2}\left(1-\beta q\,\frac{T_{-}}{T_{+}}\right) = n_{-}\left(T_{-}\right)^{1/2}\exp(\beta q).$$
 (33)

Равновесный заряд микрочастицы в плазме до появления волны как решение трансцендентного уравнения (33) равен (см. [32]):

$$q_d = -\frac{1}{\beta} W_0 \left[\frac{n_0}{n_{0-}} \sqrt{\frac{\gamma_- m_+}{\gamma_+ \tau}} \exp\left(\frac{\gamma_-}{\gamma_+ \tau}\right) \right] + \frac{1}{\beta} \frac{\gamma_-}{\gamma_+ \tau}, \quad (34)$$

где *W*₀ — основная ветвь функции Ламберта.

Таким образом, используя результаты предыдущего раздела, можно записать систему уравнений, описывающих структуру волны, в пылевой плазме, где заряд пылинок непостоянен:

выражение потенциала через концентрацию ионов

$$\varphi(\xi) = \frac{[1+q(\xi)n_d]\tau}{\gamma_+ - 1} [n_+(\xi)^{\gamma_+ - 1} - 1] + \frac{M^2}{2} \left[\frac{1}{n_+(\xi)^2} - 1\right];$$
(35)

— зависимость концентрации электронов от потенциала

$$n_{-}(\xi) = \left[1 + q(\xi)n_{d}\right] \left[1 - \frac{\gamma_{-} - 1}{1 + q(\xi)n_{d}} \varphi\right]^{1/(\gamma_{1} - 1)}; \quad (36)$$

— уравнение заряда пылинок

$$n_{+}(\xi) \left[\frac{T_{+}(\xi)}{m_{+}} \right]^{1/2} \left[1 - \beta q(\xi) \frac{T_{-}(\xi)}{T_{+}(\xi)} \right]$$
$$= n_{-}(\xi) \left[T_{-}(\xi) \right]^{1/2} \exp[\beta q(\xi)]; \quad (37)$$

 выражение для температуры ионов, полученное из уравнения состояния

$$T_{+}(\xi) = \frac{\gamma_{+}}{\gamma_{-}} \tau n_{+}(\xi)^{\gamma_{+}-1}; \qquad (38)$$

— выражение для температуры электронов, полученное из уравнения состояния

$$T_{-}(\xi) = n_{-}(\xi)^{\gamma_{-}-1};$$
(39)

— уравнение Пуассона

$$\begin{aligned} \frac{\partial^2 \varphi(\xi)}{\partial \xi^2} &= n_+(\xi) - \left[1 + q(\xi) n_d \right] \\ &\times \left[1 - \frac{\gamma_- - 1}{1 + q(\xi) n_d} \,\varphi(\xi) \right]^{1/(\gamma_- - 1)} + q(\xi) n_d. \end{aligned}$$
(40)

Решить систему уравнений (35)-(40) аналитически не представляется возможным. На рис. 6 приведен пример численного расчета партитуры DIAW.

Заключение

Развита аналитическая нелинейная модель структуры стационарной DIAW при постоянном заряде пылинок. Для решения задачи использовался сравнительно новый метод псевдопотенциала Бернулли. Определены условия, накладываемые на параметры τ и М, когда возможно существование DIAW-солитона. Результаты расчетов критического числа Маха представлены на графиках. Построены партитуры DIAW: сверхзвукового (DIAW-солитон) и дозвукового режима распространения волны. Для частных значений параметров получены значения, согласующиеся с результатами других работ.

Развита численная нелинейная модель структуры стационарной DIAW с учетом вариации заряда пылинки. В качестве уравнений зарядки использовалось OMLприближение. Построена партитура, дополненная профилем электрического заряда пылинки в волне также для случай сверхзвуковой (DIAW-столитон) и дозвуковой скоростей волны.

Авторы выражают благодарность Дж. Аллену, А. Мамуну, Р. Мерлино, которые прислали нам копии своих работ по данной теме.

Работа А.Е.Д. поддерживалась грантом Правительства Нижегородской области, а работа М.А.С. — грантом фонда "Династия".

Список литературы

- [1] Цытович В.Н. // УФН. 1997. Т. 167. № 1. С. 57.
- [2] Verheest F. // Space Sci. Rev. 1997. Vol. 77. P. 267.
- [3] Verheest F. // Plasma Phys. Control. Fusion. 1999. Vol. 41. P. A445.
- [4] Merlino R.L., Goree J.A. // Physic Today. 2004. N 7. P. 32.
- [5] Фортов В.Е., Нефедов А.П., Ваулина О.С. и др. // ЖЭТФ. 1998. Т. 114. № 6(12). Р. 2004.
- [6] Фортов В.Е., Ваулина О.С., Петров О.Ф. и др. // ЖЭТФ. 2003. Т. 123. № 4. Р. 798.
- [7] Shukla P.K., Silin V.P. // Phys. Scripta. 1992. Vol. 45. N 5.
 P. 508.
- [8] Rosenberg M. // Planet. Space. Sci. 1993. Vol. 41. N 3. P. 229.
- [9] D'Angelo N. // Planet. Space. Sci. 1994. Vol. 42. N 6. P. 507.
- [10] Ma J.-X., Yu M.Y. // Phys. Plasmas. 1994. Vol. 1. N 11. P. 3520.
- [11] Wang X., Bhattacharjee A. // Phys. Plasmas. 1997. Vol. 4. N 11. P. 3759.
- [12] Merlino R.L. // IEEE Trans. Plasma Sci. 1997. Vol. 25. N 1. P. 60.
- [13] Shukla P.K., Rosenberg M. // Phys. Plasmas. 1999. Vol. 6. N 3. P. 1038.
- [14] Vranješ J, Pandey B.P., Poedts S. // Phys. Plasmas. 2002. Vol. 9. N 4. P. 1464.
- [15] Веденов А.А., Велихов Е.П., Сагдеев Р.З. // Ядерный синтез. 1961. Т. 1. С. 82.
- [16] Сагдеев Р.З. // Вопросы теории плазмы. М.: Атомиздат, 1964. Вып. 4. С. 20.
- [17] Luo Q.-Z., D'Angelo N., Merlino R.L. // Phys. Plasmas. 1999.
 Vol. 6. N 9. P. 3455.
- [18] Nakamura Y, Sarma A. // Phys. Plasmas. 2001. Vol. 8. N 9. P. 3921.

- [19] Bharuthram R., Shukla P.K. // Planet. Space. Sci. 1992. Vol. 40. N 7. P. 973.
- [20] Mamun A.A., Shukla P.K. // IEEE Trans. Plasma Sci. 2002. Vol. 30. N 2. P. 720.
- [21] Nejoh Y. N. // Phys. Plasmas. 1997. Vol. 4. N 8. P. 2813.
- [22] Popel S.I., Golub' A.P., Losseva T.V. et al. // Phys. Rev. E. 2003. Vol. 67. N 5. P. 056 402.
- [23] Maitra S., Roychoudhury R. // Phys. Plasmas. 2005. Vol. 12.
 N 5. P. 054 502.
- [24] Moolla S., Bharuthram R., Baboolal S. // Phys. Plasmas. 2005.
 Vol. 12. N 4. P. 042 310.
- [25] Nejoh Y. N. // Australian J. Phys. 1998. Vol. 51. P. 95.
- [26] Kourakis I., Shukla P.K. // Eur. Phys. J. D. 2004. Vol. 30. N 1. P. 57.
- [27] Ghosh S. // J. Plasma Phys. 2005. Vol. 71. N 4. P. 519.
- [28] Choi C.R., Cyang Mo R., Nam C.L. // Phys. Plasmas. 2005. Vol. 12. N 7. P. 072 301.
- [29] Гуревич А.В. // ЖЭТФ. 1967. Т. 53. № 3(9). С. 953.
- [30] Allen J.E., Annaretone B.M., de Angelis U. // J. Plasma Phys. 2000. Vol. 63. N 4. P. 299.
- [31] Allen J.E. // Phys. Scripta. 1992. Vol. 45. N 5. P. 497.
- [32] Dubinov A.E., Dubinova I.D. // J. Plasma Phys. 2005. Vol. 71. N 5. C. 715.
- [33] Shukla P.K., Mamun A.A. // New J. Phys. 2003. Vol. 5. P. 17.1.
- [34] McKenzie J.F. // Phys. Plasmas. 2002. Vol. 9. N 3. P. 800.
- [35] Дубинов А.Е. // ПМТФ. 2007. Т. 48. № 5. С. 3.
- [36] McKenzie J.F. // J. Plasma Phys. 2002. Vol. 67. N 5. P. 353.
- [37] Verheest F., Cattaert T., Lakhina G.S., Singh S.V. // J. Plasma Phys. 2004. Vol. 70. N 2. P. 237.
- [38] Дубинов А.Е. // Физика плазмы. 2007. Т. 33. № 3. С. 239.
- [39] Гордиенко В.А., Дубинов А.Е. // ТВТ. 2007. Т. 45. № 6. С. 814.
- [40] Зайцев В.Ф., Полянин А.Д. Справочник по обыкновенным дифференциальным уравнениям. М.: Наука, Физматлит, 2001. 567 с.
- [41] Дубинов А.Е., Дубинова И.Д. // ВАНТ: теор. и прикл. физика. 2006. № 1. С. 3.