04;10;12 Переходные процессы и высокоэффективная генерация электронных пучков в импульсном широкоапертурном тлеющем разряде

© Е.В. Бельская, П.А. Бохан, Дм.Э. Закревский

Институт физики полупроводников СОРАН, 630090 Новосибирск, Россия e-mail: zakrdm@isp.nsc.ru

(Поступило в Редакцию 8 октября 2007 г.)

Исследован квазинепрерывный широкоапертурный тлеющий разряд в гелии при давлении 1.2-6 Torr. Получено, что в области давлений 1.2-3 Torr при напряжениях 1-2.6 kV эффективность генерации электронного пучка $\eta > 96\%$. Максимальная величина достигнутой мощности составила ~ 10 kW при 6 Torr и напряжении на разрядном промежутке 2.6 kV; эффективность генерации электронного пучка при этих условиях составила $\sim 80\%$. Проанализированы зависимости основных характеристик разряда от давления и напряжения, которые объяснены с позиций его фотоэмиссионной природы.

PACS: 52.80.-s, 79.60-i

Тлеющий разряд часто используется как простой и эффективный источник электронного пучка (ЭП). Поэтому исследование условий, позволяющих получить большую мощность и максимально высокую эффективность генерации ЭП, является важной задачей. В [1] была продемонстрирована зависимость эффективности генерации ЭП η от геометрии разрядного промежутка, иллюстрирующая возможность получения $\eta \sim 100\%$ в широкоапертурном непрерывном разряде в неоне, и показано, что определяющую роль в эмиссии электронов с катода играет фотоэмиссия. В [2] исследовался непрерывный режим широкоапертурного тлеющего разряда в гелии до давления $P_{\rm He} = 1.2$ Torr, где также были продемонстрированы высокоэффективная генерация ЭП и фотоэмиссионая природа широкоапертурного разряда. Эти результаты открывают перспективы создания газовых лазеров большой мощности, в которых ионы гелия и неона являются промежуточным резервуаром энергии, преобразуемой в дальнейшем в лазерное излучение. Пороговые токи для накачки лазеров, как правило, составляют единицы mA/cm² [3], что на порядок выше, чем реализовано в работах [1,2]. Мощность ЭП при принятых в [1,2] размерах разрядного промежутка должна превышать P > 1 kW. Исходя из этого в данной работе исследованы параметры ЭП при $P > 1 \, \text{kW}$ и более высоких, по сравнению с [2], давлении гелия и рабочем напряжении. Для преодоления трудностей, связанных с повышенным энерговыделением, физические исследования были проведены в квазинепрерывном режиме.

Использовалась цилиндрическая камера объемом 7.5 · 10³ сm³. Алюминиевый катод — сферический с радиусом кривизны 60 сm и диаметром $d_C = 19.5$ сm. Роль анода выполняла проволочная сетка с эффективной прозрачностью $\mu = 0.95$ и характерным размером отверстий $\delta = 1$ mm. Расстояние между катодом и анодом составляло $l_{CA} = 3$ сm, что больше длины области катодного падения потенциала l_n в нормальном разряде в

гелии при давлениях, используемых в эксперименте (для нормального разряда $P_{\text{He}}l_n = 1.32$ Torr cm [4]). Электроны пучка регистрировались коллектором электронов на расстоянии 8.3 сm от анода. На катод через разделительные диоды подавались отрицательные импульсное и постоянное напряжения. Величина последнего выбиралась таким образом, чтобы суммарный ток через разрядный промежуток не превышал 200 mA в случае высоких давлений (5–6 Torr). Постоянное напряжение создавало предымпульсную ионизацию газа, что способствовало быстрому развитию разряда, достижению квазистационарной фазы за единицы микросекунд и быстрому установлению высокого η .

В проведенных экспериментах в диапазоне давлений $P_{\rm He} \sim 1.2-6$ Torr при амплитуде импульсного напряжения $U \sim 0.8-2.6$ kV измерялись анодный I_a , коллекторный I_c токи и интегральная и спектральная светимости дрейфового пространства (пространство между анодом и коллектором) $P_{\rm sp}$ на переходе с резонансного 2^1P_1 на метастабильный 2^1S_0 уровень с $\lambda = 2.06\,\mu$ m. Длительность импульса при различных давлениях варьировалась от 13 до $30.5\,\mu$ s при частотах следования импульсов 100 Hz. При малых давлениях длительность импульса накачки определялась параметрами схемы возбуждения. При больших давлениях ($P_{\rm He} > 3$ Torr) длительнось импульса выбиралась максимально возможной при U = 2.6 kV. В этом случае длительность ограничивалась искрообразованием на кромке катода.

На рис. 1 представлены при $P_{\text{He}} = 2$ Torr (рис. 1, *a*) и $P_{\text{He}} = 6$ Torr (рис. 1, *b*) осциллограммы токов и напряжения на разрядном промежутке, а также эффективность генерации ЭП, вычисленная по формуле $\eta = I_c / (\mu I)$, где $I = I_c + I_a$ — суммарный ток. Видно, что анодный ток растет одновременно с напряжением, затем монотонно спадает к концу импульса. Коллекторный ток через 8 μ s после начала импульса напряжения достигает максимальной величины, а в течение остального времени — падает. Эффективность генерации ЭП возрастает

Рис. 1. Осциллограммы напряжения U(1), коллекторного тока $I_c(2)$, эффективность генерации ЭП $\eta(3)$, анодного тока $I_a(4)$ и светимость $P_{sp}(5)$: a — при $P_{He} = 2$; b — при $P_{He} = 6$ Torr.

в течение всего импульса. Примечательным фактом является падающая ВАХ разряда в течение импульса напряжения. Падение происходит в большей степени за счет уменьшения I_a , а также за счет I_c .

На рис. 2, *а* представлены экспериментальные зависимости параметров разряда от давления гелия в конце импульса возбуждения при U = 2 kV: анодный ток $I_a(P_{\text{He}})$ (1), суммарный ток $I(P_{\text{He}})$ (2,3) и эффективность генерации ЭП $\eta(P_{\text{He}})$ (4). Анодный ток увеличивается с ростом давления и составляет 18 mA при 1.2 Torr и 118 mA при 4 Torr. Резкое падение эффективности генерации ЭП при $P_{\text{He}} \approx 6$ Torr обусловлено уменьшением длины пробега электронов.

На рис. 2, *b* показаны ВАХ и зависимость $\eta(U)$ при $P_{\text{He}} = 1.2$ (1, 6), 4 (2, 5) и 6 Тогг (3, 4). При всех давлениях η имеет экстремальную зависимость от напряжения. ВАХ хорошо описывается функцией вида $j = 7.15 \cdot 10^{-6} P_{\text{He}}^{1.44} U^{1.5}$, в которой размерности величин следующие: *j*, A/cm²; P_{He} , Тогг; *U*, V. Теоретические значения суммарного тока, вычисленные из этого уравнения, показаны на рис. 2, *a*, *b*.

На рис. 3 показаны зависимости от времени светимости дрейфового просранства $P_{\rm sp}$ при различных давлениях гелия: 2 (1), 4 (2) и 6 (3) Тогг. Видно, что интенсивность излучения, как во время импульса напряжения, так и после его окончания выше при большем давлении. Релаксация плазмы проходит быстрее при более высоком давлении газа — например, при $P_{\rm He} = 6$ Torr длительность послесвечения составляет 0.6 ms.

Рис. 2. Зависимости установившихся параметров разряда: a — от давления: анодный ток I_a (1), суммарный ток I (2, 3, точки — экспериментальные данные, кривые — расчет) и эффективность генерации ЭП η (4) при напряжении U = 2 (1, 2, 4) и U = 2.6 kV (3); b — от напряжения: суммарный ток I (1, 2, 3, точки — экспериментальные данные, кривые — расчет) и эффективность генерации ЭП η (4, 5, 6) при $P_{\text{He}} = 1.2$ (1, 6), 4 (2, 5) и 6 Torr (3, 4).

Рис. 3. Осциллограммы светимости P_{sp} при давлениях $P_{He} = 2$ (1), 4 (2) и 6 Torr (3).

Выделим особенности реализованного разряда.

1. Большая импульсная мощность и высокая эффективность генерации ЭП. Мощность в конце импульса возбуждения при 2.6 kV составила 1.1 kW для $P_{\rm He} = 1.2$ Torr и 9.7 kW — для $P_{\rm He} = 6$ Torr, при этом эффективность генерации ЭП достигает $\eta = 98.6$ и 79.4% соответственно. При $P_{\rm He} = 1.2$ Torr и U = 2 kV к концу импульса $\eta = 99.5\%$.

2. Зависимость установившегося суммарного тока разряда от давления и напряжения $j = 7.15 \cdot 10^{-6} P_{\text{He}}^{1.44} U^{1.5}$ отличается от зависимости, наблюдаемой в аномальном разряде, где $j = 2.5 \cdot 10^{-12} P_{\text{He}}^2 U^3$ [5] (размерности величин те же), в слабо аномальном и нормальном разрядах, где $j \propto U^n$ при n > 3 [6].

3. Падающая ВАХ в течение импульса.

4. Наличие экстремума в зависимости $\eta(U)$.

Все особенности разряда объясняются с позиций его фотоэмиссионной природы. Отличающаяся от известных функций наблюдаемая зависимость установившегося тока разряда от напряжения служит признаком того, что наблюдаемый разряд не является лишь формой известных разрядов, а имеет иную природу эмиссии электронов из катода, а именно эмиссия электронов вызвана не ионами и нейтральными атомами гелия, а фотонами, как и в [1,2]. Экстремальная зависимость I(t) обусловлена переходом от стадии разряда с преобладанием эмиссии под действием тяжелых частиц и низким η в начале импульса (участок роста суммарного тока, см. рис. 1) к стадии фотоэлектронного разряда с высоким η (участок падения суммарного тока при практически постоянном напряжении, см. рис. 1). Основное перераспределение вкладов фотоэмиссии и эмиссии электронов под действием тяжелых частиц происходит за время ~ 6 µs. К этому времени, с одной стороны, формируется эффективная подсветка из дрейфового пространства за анодом. С другой стороны, уменьшается размножение эмитированных электронов за счет падения коэффициента Таунсенда при высоких $E/P_{\rm He}$ [7] и уменьшения длины области катодного падения потенциала. Эти процессы приводят к росту *η* до 80% для 2 Тогг и 66% — для 6 Torr.

При увеличении напряжения возрастает энергия первичных электронов, что приводит к снижению энергетических потерь на ионизацию и возбуждение атомов гелия и соответственно — к увеличению длины пробега. При любом давлении газа существует падающий участок зависимости $\eta(U)$. Падение вызвано уменьшением сечения столкновения электронов с атомами гелия, и сответственно уменьшением числа генерируемых фотонов в дрейфовом пространстве, а значит, уменьшением фотоэмиссии.

В результате проведенных экспериментов показано, что в квазинепрерывном широкоапертурном тлеющем разряде гелия эффективность генерации ЭП достигает почти 100% в области 1.2-3 Torr при напряжениях U = 1-2.6 kV. Высокоэффективная генерация пучка проведена в кювете с простой геометрией, где выполнялось условие $d_C \gg l_{CA} > l_n$. Величина максимальной реализованной мощности составила ~ 10 kW при напряжении U = 2.6 kV и давлении гелия $P_{\text{He}} = 6$ Torr. Особенности наблюдаемого разряда — высокая эффективность генерации ЭП, падающая ВАХ в течение импульса, экстремум в зависимости $\eta(U)$ — объясняются с позиций его фотоэмиссионной природы. Достигнутый уровень мощности ЭП в квазинепрерывном широкоапертурном тлеющем разряде позволяет применять его для накачки газовых лазеров.

Работа выполнена при поддержке РФФИ, грант № 06-08-00272.

Список литературы

- Бохан А.П., Бохан П.А., Закревский Д.Э. // Письма в ЖТФ. 2003. Т. 29. Вып. 20. С. 81–87.
- [2] Бохан П.А., Закревский Д.Э. // Письма в ЖТФ. 2007. Т. 33. Вып. 19. С. 87–94.
- [3] Иванов И.Г., Латуш Е.Л., Сэм М.Ф. Ионные лазеры на парах металлов. М.: Энергоатомиздат, 1990. 256 с.
- [4] Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 151 с.
- [5] Клименко К.А., Королев Ю.Д. // ЖТФ. 1990. Т. 60. Вып. 9. С. 138–142.
- [6] Грановский В.Л. Электрический ток в газе. М.: Наука, 1971. 543 с.
- [7] Ткачев А.Н., Яковленко С.И. // Письма в ЖТФ. 2003. Т. 29. Вып. 16. С. 54–62.