06;07

Фоточувствительность поверхностно-барьерных и точечных структур на монокристаллах Cd_{1-x}Mn_xTe

© Г.А. Ильчук,¹ Р.Ю. Петрусь,¹ Ю.А. Николаев,² В.Ю. Рудь,³ Ю.В. Рудь,² Е.И. Теруков²

 ¹Национальный университет "Львовская политехника", Львов, Украина
 ²Физико-технический институт им. А.Ф. Иоффе РАН,
 194021 Санкт-Петербург, Россия
 e-mail: yuryrud@mail.ioffe.ru
 ³Санкт-Петербургский государственный политехнический университет,
 195251 Санкт-Петербург, Россия

(Поступило в Редакцию 28 июня 2007 г.)

Предложены и впервые получены два новых типа фоточувствительных структур на монокристаллах твердых растворов алмазоподобных магнитных полупроводников $Cd_{1-x}Mn_x$ Те (x = 0-0.7). Выполнены исследования фотоэлектрических свойств поверхностно-барьерных $In/Cd_{1-x}Mn_x$ Те и сварных структур св/Cd_{1-x}Mn_x Те при T = 300 К. Проведен сопоставительный анализ закономерностей спектров фоточувствительности полученных структур, что позволило определить характер межзонных оптических переходов и значения ширины запрещенной зоны в кристаллах $Cd_{1-x}Mn_x$ Те. Сделан вывод о возможности применения полученных структур в разработках приборов магнитной фотоэлектроники.

PACS: 71.55.Gs, 73.40.Lq, 73.50.Pz, 78.20.-e

Твердые растворы $Cd_{1-x}Mn_x$ Те, образующиеся за счет взаимного замещения в катионной подрешетке атомов Cd и Mn, принадлежат широкому классу алмазоподобных магнитных полупроводников (АМП) [1–3]. Главным качеством АМП является то, что они наряду с сохранением чисто полупроводниковых свойств дополнительно обнаруживают и гигантские магнитооптические эффекты, и магнитные поляроны, что обусловлено большим магнитным моментом входящих в состав АМП атомов с недостроенными 3*d*-оболочками [3-5]. По этой причине в АМП проявляется сильное обменное взаимодействие между входящими в их состав магнитными атомами, с одной стороны, а также между магнитными атомами и электронами — с другой. Однако специфика фотоэлектрических свойств АМП и структур различного типа на их основе все еще остается практически не выясненной.

В настоящей работе сообщается о получении новых фотопреобразовательных структур на основе объемных гомогенных кристаллов $Cd_{1-x}Mn_x$ Те и представлены результаты исследований фотоэлектрических явлений в этих структурах, что открывает возможности изучения их взаимосвязи с внешними магнитными полями.

1. Гомогенные, специально не легированные, монокристаллы твердых растворов $Cd_{1-x}Mn_x$ Те выращивались путем направленной кристаллизации расплавов, состав которых изменялся в пределах x = 0-0.7 mol% [6]. Ряд составов твердого раствора был получен также газофазным методом с использованием в качестве транспортера йода. Исходные бинарные компоненты CdTe и MnTe имели чистоту не ниже 99.9999 w% основного вещества, причем для дополнительной очистки MnTe применялась низкотемпературная кристаллизация из раствора– расплава в графитовом тигле [6]. Выращивание монокристаллов твердых растворов осуществлялось в тиглях из стеклоуглерода. Измерения концентрации компонентов в слитках с помощью микрозондового рентгеноспектрального анализа показали, что их атомный состав практически соответствовал расчетному. Последнее позволяет считать, что развитые условия кристаллизации обеспечивают воспроизводимое получение гомогенных монокристаллов с составом x, который задается концентрацией исходных компонентов и оказывается близким к расчетному. При достижении $x \sim 0.5$ сколотые пластины $Cd_{1-x}Mn_x$ Те при толщине $d \le 0.5 \, cm$ становились прозрачными при их освещении интегральным светом лампы накаливания и однородно окрашенными в темновишневый цвет, который трансформировался в яркокрасный с ростом концентрации марганца в твердых растворах.

Монокристаллы *p*-CdTe выращивались методами зонной плавки и направленной кристаллизации с использованием теллура в качестве растворителя [7]. Удельное сопротивление однородных монокристаллов *p*-CdTe достигало $\rho \cong 10^4 \Omega \cdot m$, тогда как кристаллы твердых растворов p-Cd_{1-x}Mn_xTe обнаружили более высокое сопротивление $\rho \cong 10^8 - 10^9 \Omega \cdot cm$ при T = 300 K, что, по-видимому, связано с возрастанием степени компенсации, сопутствующим растворов Cd_{1-x}Mn_xTe.

2. Создавались фоточувствительные структуры двух различных типов на выращенных монокристаллах твердых растворов $Cd_{1-x}Mn_x$ Те: барьеры Шоттки $In/Cd_{1-x}Mn_x$ Те и сварные точечные структуры $cB/Cd_{1-x}Mn_x$ Те.

Барьеры Шоттки были получены методом вакуумного термического осаждения металлов (In, Cu, Au) на свежесколотую зеркальную поверхность монокристаллов

T	V. m. al. 0/	$V(U \sim 2V)$		U V	$t \sim^m \alpha V$	S aV	Cm V/VV	$E^{d} \rightarrow V$	Find N
тип структуры	A, 11101 70	$\mathbf{\Lambda} \ (\mathbf{U} \equiv \mathbf{Z} \ \mathbf{V})$	$K_0, \ \Sigma_2$	U_0, \mathbf{v}	nω ,ev	0, ev	$S_U, V/W$	E_G, ev	E_G , ev
$In/Cd_{1-x}Mn_xTe$	0	$2\cdot 10^5$	10 ⁵	0.5	1.5 - 2.5	1.55	1.5	1.44	
	0.35	10 ²	10 ⁸	0.7	1.78	0.1	5	1.65	
	0.4	15	10 ⁹	0.4	2.0	1.2	10	1.77	
	0.5	10	10^{10}	0.7	1.0; 2.15	0.7	5	1.90	
	0.7	10	$3\cdot 10^9$	0.3	3-3.5	> 1.2	3	2.5	1.9
$c_B/Cd_{1-x}Mn_xTe$	0	10 ²	$3\cdot 10^4$	0.3	1.5 - 2.4	1.60	200	1.44	
	0.35	50	$5\cdot 10^8$	0.4	1.72	0.09	150	1.63	
	0.4	5	$2\cdot 10^8$	0.5	1.88	0.58	120	1.77	
	0.5	2	$6\cdot 10^8$	0.4	2.03; 2.15	0.25	5	1.94	
	0.7	5	$2\cdot 10^8$	0.6	2.9 - 3.2	> 1.2	3	2.5	1.9

Фотоэлектрические свойства поверхностно-барьерных и сварных структур на кристаллах $Cd_{1-x}Mn_x$ Те при T = 300 К. Освещение осуществлялось со стороны созданных энергетических барьеров

твердых растворов. Достоинство этого метода состоит в том, что при осаждении в вакууме ~ 10^{-4} Ра тонких пленок металлов толщиной $d \approx 0.2 - 0.4 \,\mu$ m, температура кристалла не превышает комнатной. В таких условиях состав твердого раствора практически сохраняется, и свойства барьера Шоттки определяются в основном параметрами контактирующих фаз.

Если контакт металла с поверхностью CdTe хорошо изучен и давно применяется, то второй использованный в данной работе метод получения фоточувствительных структур ни на кристаллах CdTe, ни, тем более, на кристаллах Cd_{1-x}Mn_xTe не применялся. Такие структуры образовывались в результате электрического разряда конденсатора между двумя тонкими $(d = 10 - 15 \,\mu \text{m})$ проводниками, материалом которых обычно служили Рt или Ag. Разряд производился в окрестности выбранной на поверхности пластины Cd_{1-x}Mn_xTe точки, когда вблизи от нее проводники касались друг друга. В результате электрического разряда их концы оплавлялись, и один или оба конца проводников соединялись с поверхностью Cd_{1-x}Mn_xTe в точке касания с расплавленным проводником. Необходимые напряжения разряда и область соединения проводника с полупроводником подбирались экспериментально. Получаемые таким образом сварные контакты с поверхностью пластины твердого раствора оказались механически прочными, и размер области соединения в основном определялся диаметром используемых проводников из Pt и Ag. Обычно применялись проводники диаметром 10-20 µm. По-видимому, при сварке возможны также вторичные процессы изменения состава полупроводника путем испарения легколетучих компонент твердого раствора и приповерхностного окисления при локальном разогреве на воздухе полупроводниковой пластины. Можно полагать, что упомянутые процессы могут обеспечить образование точечной фоточувствительности структуры. В результате оптимизации условий получения контакта металлический проводник-кристалл нам удалось воспроизводимо изготовить выпрямляющие точечные структуры св/Cd_{1-x}Mn_xTe, что демонстрирует справедливость высказанной выше гипотезы.

Разработанный режим электрического разряда между металлическими проводниками (Pt, Ag) обеспечивает их надежное механическое соединение с поверхностью естественного скола $Cd_{1-x}Mn_x$ Те либо создание ряда таких соединений с планируемой топографией их размещения на поверхности кристалла. Следует при этом отметить, что развитая технология формирования точечных сварных структур Ag(Pt)/Cd_{1-x}Mn_xTe открывает также новые возможности изучения однородности распределения фотоэлектрических параметров по площади пластин Cd_{1-x}Mn_xTe.

3. В таблице представлены типичные результаты измерений фотоэлектрических параметров полученных типов структур. Из них следует, что как поверхностнобарьерные, так и сварные структуры обладают четким выпрямлением, которое представлено в таблице значением коэффициента *К*. Пропускное направление в этих структурах реализуется при отрицательной полярности индиевого барьерного и сварного контактов для всех изученных составов твердого раствора.

На рис. 1 приводятся вольт-амперные характеристики (ВАХ) типичных структур: величины коэффициента выпрямления К, определяемые как отношение тока в пропускном направлении к току в запорном направлении при фиксированном напряжении смещения, указаны в таблице. Из таблицы следует, что максимальное выпрямление в обоих типах структур достигается при x = 0. Это, по-видимому, определяется более высоким уровнем технологии [7,8], позволяющей выращивать достаточно совершенные монокристаллы CdTe n- и p-типов, тогда как технология твердых растворов делает только начальные шаги, и представленные в таблице результаты демонстрируют только принципиальную возможность выращивания монокристаллов магнитных полупроводников Cd_{1-x}Mn_xTe. Главный итог первых измерений ВАХ сводится к тому, что поверхностно-барьерные и сварные структуры могут стать объектом поиска взаимосвязи их параметров с внешними магнитными полями.

Из рис. 1 (кривые 1 и 3) видно, что при смещениях $U \le 0.3$ V прямой ток поверхностно-барьерных структур подчиняется известному диодному уравнению с показа-

Рис. 1. Стационарные вольт-амперные характеристики структур In/*p*-CdTe (1, 2, 2') и св/*p*-CdTe (3, 4, 4') при T = 300 K. Кривые 1, 3 — прямое и 2, 2', 4, 4' — обратное смещение.

телем $\beta = 2.3-2.8$, что не противоречит предположению о туннельно-рекомбинационном механизме прямого тока [9]. Для сварных структур св/СdТе (рис. 1, кривые 2 и 4) показатель $\beta = 4-6$, что свидетельствует о возрастании вклада туннелирования в токопереносе. Последнее может свидетельствовать об ухудшении интерфейса относительно-барьерных структур из-за воздействия электрического разряда. Из обратных ВАХ в двойном логарифмическом масштабе (рис. 1, кривые 2' и 4')

следует, что в результате сварки происходит увеличение значений обратного тока, но при этом сохраняется степенная зависимость $I \sim U^m$, причем значение показателя степени *m* практически совпадает для двух различающихся типов структур ($m \approx 0.8$), а близость его к единице может быть обусловлена процессами туннелирования или токами, ограниченными пространственным зарядом в режиме насыщения скорости носителей заряда [10].

При прямых смещениях выше 2–5 V прямой ток для обоих типов структур подчиняется линейному закону

$$I = \frac{U - U_0}{R_0},\tag{1}$$

в котором остаточное сопротивление структур R_0 , как видно из таблицы, возрастает с добавлением Mn при x > 0, как и удельное сопротивление однородных кристаллов твердых растворов. Можно полагать, что в процессе статистического замещения между атомами Cd и Mn резко увеличивается степень компенсации вещества. В то же время необходимо подчеркнуть, что напряжения отсечки U₀ (см. таблицу) в обоих полученных типах структур оказывается намного ниже значения, ожидаемого для барьеров, которые удалось получить на твердых растворах АМП $Cd_{1-x}Mn_x$ Te. Важно также отметить, что первые исследования электрических свойств новых поверхностно-барьерных и точечных сварных структур не обнаружили в них каких-либо проявлений деградационных явлений, что может иметь весьма важное значение в плане воможного практического использования этих структур при создании основ магнитной фотоэлектроники.

4. Освещение структур $In/Cd_{1-x}Mn_x$ Те и св/Cd_{1-x}Mn_x Те вызывает появление фотовольтаического эффекта, в результате чего пластины АМП заряжаются положительно, что отвечает полярности выпрямления в полученных структурах. Максимальная вольтовая фоточувствительность S_U^m , как видно из таблицы, достигнута в обоих типах структур, полученных на монокристаллах с составом x = 1. Величина S_U^m , как правило, была максимальной при освещении структур со стороны индиевого и сварного контактов.

Типичные спектры относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ поверхностнобарьерных и сварных структур на кристаллах твердых растворов Cd_{1-r}Mn_rTe приведены на рис. 2 и 3. В таблице представлены основные фотоэлектрические параметры для обоих типов структур, созданных на гомогенных кристаллах твердых растворов различных составов x = 0 - 0.7 при T = 300 К. Главные закономерности фотоэлектрических свойств впервые полученных структур In/Cd1-rMnrTe состоят в следующем. Оказалось, что спектры $\eta(\hbar\omega)$ полученных структур при близких значениях х оказались сходными и хорошо воспроизводимыми при использовании разработанных технологических режимов. Из рис. 2 и 3 следует, что во всех структурах резкий рост фоточувствительности начинается при энегии фотонов $\hbar \omega \ge 0.9 - 1 \, \text{eV}$. На длинноволновом крыле спектров $\eta(\hbar\omega)$ для структур с различным значением *х* можно выделить широкую полосу, максимум которой центрирован в области $\hbar\omega \cong 1.3$ eV. Эта полоса, как видно из рис. 2 и 3, усиливается и уширяется в коротковолновую спектральную область с ростом концентрации атомов Mn в кристаллах Cd_{1-x}Mn_xTe. Такая полоса ранее наблюдалась в спектрах их фотолюминесценции и была названа *C* [11].

Из рис. 2 и 3 видно, что полоса *C*, найденная в спектрах $\eta(\hbar\omega)$, проявляет тенденцию к расширению в коротковолновую сторону спектра с ростом *x*, что сопровождается также смещением длинноволновой границы фоточувствительности в коротковолновую область. Из рис. 2 и 3 также следует, что при этом широкополосная длинноволновая компонента спектров $\eta(\hbar\omega)$ для обоих типов структур остается ниже их максимума фоточувствительности на 2–3 порядка. Анализ полученных спектров $\eta(\omega)$ структур на кристаллах системы $Cd_{1-x}Mn_x$ Те позволяет также указать, что их длинноволновая компонента спектров лованению со спектром для позиционно упорядоченных кристаллов *p*-CdTe (рис. 2 и 3, кривые *1*), и при достижении $x \approx 0.6$ в них проявляется четкий максимум, который хорошо

Рис. 2. Спектральные зависимости относительной квантовой эффективности фотопреобразования поверхностно-барьерных структур In/Cd_{1-x}Mn_xTe при T = 300 K в неполяризованном излучении. Освещение со стороны барьерного контакта. Состав подложек x, mol%: 1 - 0.2, 2 - 0.35, 3 - 0.40, 4 - 0.5; 5 - 0.7. Спектры $\eta(\hbar\omega)$ нормированы на абсолютный максимум для каждой структуры. Стрелками у кривых обозначено энергетическое положение спектральных особенностей.

Рис. 3. Спектральные зависимости относительной квантовой эффективности фотопреобразования точечных сварных структур св/Cd_{1-x}Mn_xTe при T = 300 K в неполяризованном излучении. Освещение в окрестности точечного контакта. Состав подложек x, mol%: 1 - 0; 2 - 0.35; 3 - 0.4; 4 - 0.5; 5 - 0.7. Спектры $\eta(\hbar\omega)$ нормированы на абсолютный максимум для каждой структуры. Стрелками у кривых обозначено энергическое положение спектральных особенностей.

коррелирует с известным из измерений фотолюминесценции для полосы *C* [11].

С ростом $\hbar \omega \geq 1.4 \text{ eV}$ в спектрах фоточувствительности полученных структур $\ln/\text{Cd}_{1-x}\text{Mn}_x$ Те и св/Cd_{1-x}Mn_xTe происходит длинноволновый рост η до максимального значения вольтовой фоточувствительности S_U^m (см. таблицу, рис. 2 и 3). В случае структур $\ln/\text{Cd}_{1-x}\text{Mn}_x$ Те при x = 0.7 (рис. 2, кривая 5) рост фоточувствительности наблюдается в широком спектральном диапазоне 1–3.5 eV. В таблице также приведены типичные значения полной ширины спектров $\eta(\hbar \omega)$ на их полувысоте δ , которые количественно характеризуют спектральный диапазон высокой фоточувствительности структур созданных типов. Из таблицы видно, что наиболее высокое значение $\delta \approx 1.6 \text{ eV}$ достигнуто в структурах именно на основе кристаллов CdTe.

Полученные спектры $\eta(\hbar\omega)$ позволяют также высказать важное заключение о том, что концентрация ионов Mn в кристаллах твердых растворов $Cd_{1-x}Mn_x$ Те контролирует протяженность спектрального диапазона и фоточувствительность новых структур.

Анализ формы длинноволнового края полученных спектров фотоактивного поглощения $\eta(\hbar\omega)$ структур на твердых растворах Cd_{1-x}Mn_xTe с позиций теории фундаментального поглощения алмазоподобных полупроводников показал, что в области составов x = 0 - 0.5 краевое поглощение формируется прямыми межзонными переходами [9,12]. Значения энергии прямых переходов $E_G^{\rm dir}$, полученные экстраполяцией обнаруженных прямолинейных участков в зависимостях $(\eta \hbar \omega)^2 = f(\hbar \omega)$ к значению $(\eta \hbar \omega)^2 \rightarrow 0$, приведены в таблице. В случае структур на кристаллах твердых растворов с достигнутой максимальной концентрацией атомов Mn (x = 0.7) длинноволновый край спектров $\eta(\hbar\omega)$ спрямляется уже в координатах $(\eta \hbar \omega)^{1/2} = f(\hbar \omega)$. Это позволяет предположить, что край фундаментального поглощения кристаллов при x = 0.7 формируется как прямыми, так и непрямыми межзонными переходами.

Таким образом, созданы новые типы фоточувствительных структур на монокристаллах твердых растворов алмазоподобных магнитных полупроводников $Cd_{1-x}Mn_x$ Те (x = 0-0.7). Выполнены первые исследования фотоэлектрических свойств новых структур двух различных типов: поверхностно-барьерные $In/Cd_{1-x}Mn_x$ Те и сварные структуры св/ $Cd_{1-x}Mn_x$ Те. Определен характер межзонных оптических переходов и значения ширины запрещенной зоны кристаллов $Cd_{1-x}Mn_x$ Те.

Работа поддержана программой Отделения фундаментальных наук РАН "Новые принципы преобразования энергии в полупроводниковых структурах".

Список литературы

- [1] Furduna J.K. // J. Appl. Phys. 1988. Vol. 64. P. R29.
- [2] Goede O., Heimbrodt W. // Phys. Stat. Sol. (b). 1988. Vol. 146.
 P. 11.
- [3] Agekyan V.F. // Phys. Solid State. 2002. Vol. 44. P. 2013.
- [4] Park L.D., Yamamoto S., Watanaba J., Takamura W., Nakahara J. // J. Phys. Soc. Jpn. 1997. Vol. 66. P. 3289.
- [5] Агекян В.Ф., Васильев Н.Н., Серов А.Ю., Философов Н.Г., Kazerewski G. // ФТТ. 2005. Т. 47. С. 2074.
- [6] Аверкиева Г.К., Бойко М.Е., Константинова Н.Н., Попова Т.Б., Прочухан В.Д., Рудь Ю.В. // ФТТ. 1992. Т. 34. С. 2284.
- [7] Матвеев О.А., Рудь Ю.В., Санин К.В. // ЖНМ. 1969. Т. 5. С. 1650.
- [8] Матвеев О.А., Прокофьев С.В., Рудь Ю.В. // ЖНМ. 1969.
 Т. 5. С. 1175.
- [9] *Sze S.M.* Physics of Semiconductors Devices. N.T.: Willey Interscience Publ., 1981. 880 p.
- [10] Ламперт Г., Марк П. Инжекционные токи в твердых телах. М.: Мир, 1973. 416 с.
- [11] Ambrazevicius G., Babonas G., Rud Y.V. // Phys. Stat. Sol. (b). 1984. Vol. 125. P. 759.
- [12] Милнс А., Фойхт Д. Гетеропереходы и переходы металлполупроводник. М.: Мир, 1975. 432 с.