08

Кинетические особенности кристаллизации алмаза в K–Na–Mg–Ca–карбонат-углеродном расплаве-растворе

© Н.А. Солопова, А.В. Спивак, Ю.А. Литвин, А.А. Ширяев, В.А. Цельмович, А.Н. Некрасов

Институт экспериментальной минералогии РАН,

Черноголовка, Московская обл., Россия

E-mail: solopenok@iem.ac.ru

(Поступила в Редакцию в окончательном виде 1 августа 2012 г.)

Кинетические особенности кристаллизации алмаза в многокомпонентной системе K–Na–Mg–Ca-карбонат-углерод были изучены в условиях стабильности алмаза при $1500-1800^{\circ}$ C и 7.5-8.5 GPa. Было установлено, что плотность нуклеации алмазной фазы при фиксированной температуре 1600° C понижается от $1.3 \cdot 10^{5}$ nuclei/mm³ при 8.5 GPa до $3.7 \cdot 10^{3}$ nuclei/mm³ при 7.5 GPa. Спектры фотолюминесценции полученных кристаллов алмаза содержат пики 504 nm (H3-дефект), 575 nm (NV-центр) и 638 nm (NV-дефект), обусловленные присутствием примесного азота. В спектрах катодолюминесценции присутствует A-полоса с максимумом при 470 nm. Полученные данные позволяют отнести синтезированные алмазы в карбонатуглеродной системе к смешанному типу Ia + Ib.

Работа выполнена при финансовой поддержке грантов президента Российской Федерации МК-913.2011.5, РФФИ 10-05-00654 и 11-05-00401.

1. Введение

Эксперименты по синтезу алмаза в многокомпонентных карбонат-углеродных расплавах [1,2] устанавливают высокую эффективность природных материнских сред с составами первичных флюидсодержащих многофазовых включений в алмазах [3] в отношении спонтанного алмазообразования. Экспериментальное исследование процессов массовой кристаллизации алмаза в многокомпонентном K–Na–Mg–Fe–Ca–C–карбонатном расплаверастворе углерода показало зависимость от температуры при постоянном давлении (8.5 GPa) таких важных кинетических характеристик как плотность нуклеации алмазной фазы и скорость роста кристаллов алмаза [4]. Установленная связь кинетических параметров кристаллизации алмаза с PT условиями эксперимента не противоречит предварительным оценкам [2,5].

Изучение процессов кристаллизации алмаза в преимущественно карбонатных расплавах, которые химически близки к ростовым средам природных алмазов [6], имеет существенное влияние на развитие синтетической химии алмаза. Это связано с тем, что по эффективности массовой кристаллизации процессы образования "карбонатсинтетического" (КС) алмаза сопоставимы с процессами синтеза алмаза в расплавах переходных металлов. Ростовые особенности "карбонат-синтетического" и "металлсинтетического" (МС) алмазов и их физические свойства, обусловленные их реальной примесной структурой, имеют определенные различия. На эти различия оказывает определяющее влияние химический состав ростового расплава. В свою очередь, различия особенностей роста определяют составы и концентрации ростовых включений и структурных примесей кристаллов алмаза.

Целями настоящей работы являются:

1) Изучение связи кинетических параметров кристаллизации алмаза в карбонат-углеродных расплавах с давлением при его понижении в направлении кривой равновесия графит-алмаз при постоянной температуре. Ожидается, что в этом направлении в условиях массовой кристаллизации могут последовательно формироваться алмазные фракции с относительно более крупными монокристаллами КС-алмаза. Синтез крупных монокристаллов необходим для проведения ряда физических исследований.

Вместе с тем, выявление закономерностей кристаллизации алмаза в карбонат-углеродных расплавах может представлять интерес не только для синтетической химии алмаза как сверхтвердого материала, но и может быть использовано для раскрытия кинетических особенностей формирования природного алмаза в мантийных карбонатитовых ростовых средах.

2) Получение данных о содержании примесного азота и способах его вхождения в структуру КС-алмазов во время их кристаллизации методами фото- и катодолюминесценции. Сравнение полученной информации с данными по металл-синтетичеким и природным алмазам. Есть основания предполагать, что процессы кристаллизации некоторых природных алмазов достаточно адекватно моделируются настоящими экспериментами, что позволяет распространить результаты спектроскопического исследования полученных нами кристаллов на природные алмазы.

2. Методика эксперимента

В качестве стартовых материалов использовалась гомогенизированная смесь карбонатов с данным составом

Рис. 1. Изображение кристаллов алмаза в закаленном карбонатном расплаве (СЭМ): (*a*) опыт при 8.0 GPa, 1650°C, 10 min; (*b*) опыт при 8.0 GPa, 1650°C, 5 min; (*c*) опыт при 8.0 GPa, 1670°C, 5 min.

(wt.%): K₂CO₃ — 35.0, Na₂CO₃ — 10.0, MgCO₃ — 25.0, СаСО3 — 30.0. Этот состав — безжелезистый вариант карбонатного состава, изученного ранее [4]. В большей степени оба карбонатных состава химически воспроизводят многокомпонентную карбонатную составляющую вещества карбонатитовых включений в алмазах Ботсваны [3]. В качестве источника углерода использовался порошок графита марки МГ-ОСЧ зернистостью 0.5-0.1 mm. Опыты проводились на аппарате высокого давления типа "наковальня с лункой" с тороидальным уплотнением и ячейкой из литографского камня и трубчатым графитовым нагревателем при температурах 1300-1750°С, давлениях 7.0-8.5 GPa и выдержках в 5-30 min. Точность измерения давления +0.1 GPa, температуры ±20°С. Количество спонтанных кристаллов в объеме образца после закалки и затвердевания ростовой среды использовалось как относительный показатель плотности нуклеации алмазной фазы ("выжившие зародыши"). Экспериментальные образцы исследовались в ИЭМ РАН на электронном сканирующем микроскопе Tescan Vega II XMU с энергодисперсионным спектрометром INCA Energy 450 (полупроводниковый Si(Li) детектор INCA x-sight) и волнодисперсионным спектрометром INCA Wave 700. Спектры фотолюминесценции КС-алмазов были получены на спектрометре LabRam при комнатной температуре. Люминесценция возбуждалась лазером с длиной волны 448 nm, мощность лазера 20 mW. Спектры катодолюминесценции (КЛ) в диапазоне 250-900 nm и полихроматические КЛ-изображения образцов были получены на электронном сканирующем микроскопе Tescan Vega II LMU с энергодисперсионным спектрометром INCA Energy 450 (полупроводниковый Si(Li) детектор INCA Dry Cool), волнодисперсионным спектрометром INCA Wave 700 и приставкой Gatan MonoCL3. Исследования производились при ускоряющем напряжении 20 kV, токе поглощенных электронов

на образце 1 mA. Перед исследованием на образцы напылялось золото.

3. Экспериментальные результаты и обсуждение

Условия проведенных экспериментов представлены в таблице. По *PT*-параметрам все экспериментальные точки находятся в поле термодинамической устойчивости алмаза в области лабильно пересыщенных углеродом к алмазу растворов. Примеры полученных образцов (темные фазы — алмаз, светлые — расплав после закалки) изображены на рис. 1. В результате проведенных экспериментов были получены кристаллы алмаза размерами от 10 до 120 μ m, в редких случаях до 150 μ m и более. Форма полученных кристаллов октаэдрическая, часты случаи двойникования по шпинелевому закону.

Условия и результаты выборочных экспериментов по спонтанной нуклеации алмаза в многокомпонентном карбонатуглеродном расплаве-растворе

№ expe- riment	P, GPa	<i>Т</i> , °С	t, min	Liner size of crystal, μm	Diamond nucleation density, nuclei/mm ³
1870	8.5	1600	30	18	$1.3 \cdot 10^5$
1869	8.5	1600	10	25	$5.5\cdot 10^4$
2110	8.5	1500	10	20	$3\cdot 10^4$
1867	8.5	1800	5	38	$4.5 \cdot 10^3$
2106	8	1650	30	25	$2\cdot 10^4$
2124	8	1650	10	55	$7.8 \cdot 10^3$
2132	8	1650	5	55	$7.8 \cdot 10^3$
2107	8	1700	45	34	$1.2\cdot 10^4$
2108	8	1700	60	38	$2.8 \cdot 10^3$
2051	7.75	1600	10	44	$7.4 \cdot 10^3$
2065	7.5	1600	30	78	$3.7\cdot10^3$

Рис. 2. Зависимость плотности нуклеации алмаза от давления при $T = 1600^{\circ}$ С, выдержка 30 min.

В ходе работы в условиях спонтанной нуклеации и массовой кристаллизации алмаза при давлениях от 7.5 до 8.5 GPa и температуре 1600°C и выдержках в 5–30 min обнаруживается зависимость размеров монокристаллических индивидов алмаза и плотности нуклеации алмазной фазы от давления.

Установлено, что при постоянной температуре 1600°С и выдержке 30 min плотность нуклеации алмазной фазы понижается от $1.3 \cdot 10^5$ nuclei/mm³ при 8.5 GPa до $3.7 \cdot 10^3$ nuclei/mm³ при 7.5 GPa (рис. 2), что свидетельствует об уменьшении степени пересыщения раствора углерода по отношению к алмазу с понижением давления. При достижении кинетической границы между областями лабильных растворов (ОЛР) и метастабильных пересыщений (ОМП) спонтанная нуклеация алмаза прекращается, а в пределах ОМП возможен рост слоев алмаза на затравочных кристаллах (что сопровождается нуклеацией и массовой кристаллизацией графита, представляющего собой при этом термодинамически нестабильную фазу).

Это свидетельствует об эффекте "потери объема". Данный эффект является следствием перехода графита в более плотный алмаз при высоких *PT*-параметрах. Такой переход ведет к локальному снижению давления в камере с образцом при постоянном усилии пресса, что приводит к снижению пересыщения. Можно ожидать, что в замкнутой системе при заданных *PT*параметрах существует оптимальная продолжительность синтеза, при которой достигается максимальный размер синтезируемых кристаллов. Дальнейшее увеличение времени синтеза приведет к исчезновению пересыщения, необходимого для роста алмаза.

4. Фото- и катодолюминесценция

В качестве объектов исследования была использована выборка КС-алмазов размером $30-60\,\mu$ m. Кристаллы алмаза были получены в экспериментах при P = 7.75-8.5 GPa, $T = 1600-1800^{\circ}$ C, с выдержкой экспериментов в 5–10 min.

В спектре фотолюминесценции (рис. 3), характерном для полученных КС-алмазов, присутствует пик 504 nm, ассоциированный с дефектом *H*3, и фононные повторения. Этот дефект образован двумя замещающими атомами азота, разделенными вакансией. Дефект *H*3 является дополнительным дефектом к основному дефекту *A*, который характерен для природных алмазов, и может возникать при росте, деформации и облучении алмаза частицами с высокими энергиями.

Образование центров *H*3 в кристаллах КС-алмаза может быть объяснено эффектами пластической деформации вследствие достаточно высоких скоростей кристаллизации при повышенном давлении, а также может быть результатом процесса агрегации азота.

В спектрах фотолюминесценции присутствует пик 575 nm, относящийся к стандартному центру NV (нейтральный дефект атом азота — вакансия). Как правило, на спектрах пик 575 nm имеет низкую интенсивность (рис. 4). Для спектров КС-алмазов характерен пик 638 nm (отрицательно заряженный дефект NV⁻ атом

Рис. 3. Спектр фотолюминесценции полученных кристаллов алмаза.

Рис. 4. Интенсивности основных пиков в спектре фотолюминесценции КС-алмаза.

Рис. 5. Спектр катодолюминесценции полученных кристаллов алмаза.

азота — вакансия), а также его фононные повторения. Малый размер кристаллов не позволил провести количественные измерения концентрации азота с помощью инфракрасной спектроскопии поглощения, однако из отношения интенсивностей люминесцентных пиков следует, что концентрация одиночных атомов азота достигает первых сотен at.ppm.

Очевидная корреляция между спектрами люминесценции и условиями синтеза отсутствует.

Для спектров катодолюминесценции КС-алмазов характерна широкая безструктурная полоса в видимой области 350-600 nm с $\lambda_{max} \approx 460-470$ nm (рис. 5), известная как *А*-свечение [7]. При возбуждении алмазов потоком ускоренных электронов (КЛ) изменяются положение полосы и ее полуширина в зависимости от типа алмаза. Свечение связано с оптическими процессами, включающими собственные дефекты решетки, общие для алмазов разных типов [7]. В кристаллах типа Ia максимум близок к 470 nm. В спектрах некоторых кристаллов также наблюдается полоса с максимумом около 520 nm.

Полученные в этой работе спектроскопические результаты согласуются с опубликованными ранее данными исследования алмазов, выращенных в карбонатных средах [8,9]. Алмазы, выращенные в карбонатных средах, содержат до нескольких сотен at.ppm азота. Как и для синтетических алмазов из металл-углеродных систем наблюдается эволюция азотных дефектов в процессе отжига кристаллов. По всей видимости, при росте алмаза в карбонатных средах азот встраивается в виде одиночных замещающих атомов, а высокие температуры ростовых экспериментов приводят к частичной агрегации азота. Этот факт интересен в свете вопроса о форме присутствия азота в ростовой среде. В расплаве металла азот, вероятнее всего, растворен в виде одиночных атомов или в виде нестабильных нитридов, что логично объясняет захват именно одиночных атомов азота растущим алмазом. Сходство карбонат-синтетических и металлсинтетических алмазов по составу азотных дефектов указывает на то, что и в карбонатных расплавах при подобных *PT*-условиях наших экспериментов доля молекулярного азота мала.

5. Заключение

В данной работе изучено изменение пересыщения ростового раствора углеродом к алмазу как главной движущей силы процесса кристаллизации алмаза в области его стабильности. Этот результат важен для дальнейших исследований массовой кристаллизации и роста алмаза на затравке в условиях высоких давлений и температур.

Спектроскопические исследования реальной примесной структуры карбонат-синтетического алмаза содержат свидетельства его принадлежности к алмазу смешанного типа Ia + Ib.

Список литературы

- [1] Ю.А. Литвин, А.В. Спивак. Материаловедение 3 (84), 27 (2004).
- [2] A.V. Spivak, Yu.A. Litvin. Diamond and related materials 13, 482 (2004).
- [3] M. Schrauder, O. Navon. Geochim. Cosmochim. Acta 58, 2, 761 (1994).
- [4] N.A. Solopova, A.V. Spivak, Yu.A. Litvin, V.S. Urusov. Herald of the Earth sciences division (2008) URL: http://www.scgis.ru/russian/cp1251/h_dgggms/1-2008/informbul-1_2008/term-11e.pdf.
- [5] А.В. Спивак, С.Н. Шилобреева, П. Картини, Ю.А. Литвин, В.С. Урусов. Поверхность 8, 26 (2006).
- [6] Yu.A. Litvin. Advances in High-Pressure Mineralogy: Geological Soc. Am. Spec. Paper 421 (2007). P. 83.
- [7] Г.Б. Бокий, Г.Н. Безруков, Ю.А. Клюев, А.М. Налетов, В.И. Непша. Природные и синтетические алмазы. Наука, М. (1986). С. 22.
- [8] А.А. Ширяев, А.В. Спивак, Ю.А. Литвин, В.С. Урусов. Докл. АН 403, 4, 526 (2005).
- [9] Y.N. Pal'yanov, A.G. Sokol, Y.M. Borzdov, A.F. Khokhryakov, N.V. Sobolev. Am. Mineralogist 87, 1009 (2002).