05

## Структурная и магнитная неоднородность, фазовые переходы, ЯМР <sup>55</sup>Mn и магниторезистивные свойства $La_{0.6}Sr_{0.3-x}Bi_xMn_{1.1}O_3$

© А.В. Пащенко<sup>1</sup>, В.П. Пащенко<sup>1</sup>, Ю.Ф. Ревенко<sup>1</sup>, В.К. Прокопенко<sup>1</sup>, А.С. Мазур<sup>1</sup>, В.А. Турченко<sup>1</sup>, В.В. Бурховецкий<sup>1</sup>, А.Г. Сильчева<sup>2</sup>, П.П. Константинов<sup>2</sup>, Ю.М. Гуфан<sup>3</sup>

<sup>1</sup> Донецкий физико-технический институт им. А.А. Галкина НАН Украины,

Донецк, Украина

<sup>2</sup> Луганский национальный университет им. Т. Шевченко,

Луганск, Украина

<sup>3</sup> Научно-исследовательский институт физики Южного федерального университета,

Ростов-на-Дону, Россия

E-mail: alpash@mail.ru

(Поступила в Редакцию 8 июня 2012 г.

В окончательной редакции 7 августа 2012 г.)

Исследованы структурные, резистивные, магнитные и магниторезистивные свойства керамики La<sub>0.6</sub>Sr<sub>0.3-x</sub>Bi<sub>x</sub>Mn<sub>1.1</sub>O<sub>3</sub>. Замещение ионов Sr ионами Bi приводит к увеличению параметра ромбоздрической перовскитовой структуры, понижению температур фазовых переходов металл–полупроводник, ферро–парамагнетик, пика магниторезистивного эффекта и росту удельного сопротивления, приближая систему к сегнетоэлектрическому состоянию. Результаты исследования с помощью ЯМР <sup>55</sup>Mn свидетельствуют о высокочастотном сверхобмене Mn<sup>3+</sup>  $\leftrightarrow$  Mn<sup>4+</sup> и неоднородности валентных и магнитных состояний марганца, вызванных неравномерностью распределения всех ионов и дефектов. Построена фазовая диаграмма, показывающая сильную корреляционную связь между структурными, магнитными и магниторезистивными свойствами.

Одним из актуальных направлений физики и техники твердого тела является исследование многофункциональных материалов с дискуссионной природой магниторезистивных (МР) и сегнетомагнитных (СМ) свойств. К таким металлооксидным материалам относятся редкоземельные (РЗ) манганиты [1–3], кобальтиты [4,5] и висмутовые ферриты, манганиты, кобальтиты [6–8].

Представляет интерес получение и комплексное исследование допированных висмутом и сверхстехиометрическим марганцем манганитов с возможным переходом (или сосуществованием) МР и СМ свойств.

В работе были получены и исследованы керамические образцы La<sub>0.6</sub>Sr<sub>0.3-x</sub>Bi<sub>x</sub>Mn<sub>1.1</sub>O<sub>3</sub> (x = 0 - 0.2), синтезированные при 800°C (20 h), 900°C (20 h) и спеченные при 1000°C (20 h) в режиме медленного нагрева и охлаждения.

Исследования выполнены рентгеноструктурным методом в Си  $K_{\alpha}$ -излучении на установке ДРОН-2, четырехконтактным резистивным при постоянном токе 1 mA, сканирующей электронной микроскопией (SEM), методом дифференциальной магнитной восприимчивости  $\chi_{ac}$  с пересчетом на абсолютную дифференциальную магнитную восприимчивость  $4\pi N\chi_{ac}$ , ЯМР <sup>55</sup>Мп (метод "спин-эхо") [9,10] и магниторезистивным методом в поле H = 0 и 5 kOe в интервале 77–400 K.

Согласно рентгеноструктурным данным, однофазные керамические образцы  $La_{0.6}Sr_{0.3-x}Bi_xMn_{1.1}O_3$ (x=0-0.2) содержали ромбоэдрическую ( $R\bar{3}c$ ) перовскитовую структуру с увеличивающимся параметром элементарной ячейки a от 7.774 Å (x = 0) до 7.777 Å (x = 0.1), 7.780 Å (x = 0.15) и 7.784 Å (x = 0.2) и слабо изменяющейся степенью ромбоэдрического искажения  $(\alpha = 90.31 - 90.27^{\circ}).$ Согласование относительного увеличения параметра  $\Delta a/a_0$  (где  $a_0$  — параметр решетки для x = 0) с относительным изменением усредненного ионного радиуса  $\Delta \bar{r}/\bar{r}_0$  (где  $\bar{r}_0$ усредненный ионный радиус перовскитовой структуры для x = 0) получено для состава, в котором висмут одновременно замещает стронций в А-позициях и марганец в В-позициях. При этом следует отметить, что уменьшение  $\Delta r = -0.27$  Å, происходящее при замещении ионов Sr<sup>2+</sup>, имеющих больший ионный радиус (r = 1.58 Å) [11], меньшими ионами Bi<sup>3+</sup> (r = 1.31 Å), компенсируется не только переходом  $Mn_B^{4+}~(r=0.67\,{
m \AA}) 
ightarrow Mn_B^{3+}~(r=0.785\,{
m \AA}),$  при котором  $\Delta r = +0.125$  Å, но и частичным замещением в *B*-позициях ионов  $Mn^{4+}$  ионами  $Bi^{5+}$  (r = 0.9 Å). Дефектность реальной перовскитовой структуры определяли согласно механизму дефектообразования [12], учитывая цикличность изменений содержания кислорода и валентности марганца. Согласно фазовой диаграмме Мп-О при нагреве и отжиге в процессе понижения марганцем валентности  $Mn^{4+} \rightarrow Mn^{3+} \rightarrow Mn^{2+}$  происходит образование анионных вакансий V<sup>(a)</sup>. Образование катионных вакансий  $V^{(c)}$  связано с окислительным процессом  $Mn^{2+} \rightarrow Mn^{3+} \rightarrow Mn^{4+}$ , происходящим при охлаждении образцов. При этом учитывали также возможность изменения валентностей ионов  $Bi^{3+} \leftrightarrow Bi^{5+}$ , энергия связи которых Ві-О значительно ниже. Это облегчает реакционную диффузию образования вначале  $V^{(a)}$ , а при охлаждении — и V<sup>(c)</sup>. Вследствие таких циклических изменений содержания кислорода и валентности ионов



Рис. 1. Температурные зависимости удельного сопротивления (a) и абсолютной дифференциальной магнитной восприимчивости (b) керамики La<sub>0.6</sub>Sr<sub>0.3-x</sub>Bi<sub>x</sub>Mn<sub>1.1</sub>O<sub>3</sub>.

марганца и висмута, приводящих к накачке дефектности, реальная перовскитовая структура содержит разновалентные ионы марганца ( $\operatorname{Mn}_B^{3+}$ ,  $\operatorname{Mn}_B^{4+}$ ) и висмута ( $\operatorname{Bi}_A^{3+}$ ,  $\operatorname{Bi}_B^{5+}$ ), анионные  $V^{(a)}$ , катионные  $V_A^{(C)}$  вакансии и наноструктурные кластеры с  $\operatorname{Mn}_A^{2+}$  в деформированных *А*-позициях за счет сверхстехиометрического марганца.

Температурные зависимости удельного сопротивления  $\rho$  и абсолютной дифференциальной магнитной восприимчивости  $4\pi N \chi_{ac}$  (рис. 1) свидетельствуют о наличии



**Рис. 2.** Удельные по массе спектры ЯМР  $^{55}$ Мп керамики La<sub>0.6</sub>Sr<sub>0.3-x</sub>Bi<sub>x</sub>Mn<sub>1.1</sub>O<sub>3</sub> при 77 K.



**Рис. 3.** Полевые зависимости абсолютной дифференциальной магнитной восприимчивости в слабых магнитных полях при 77 К.



**Рис. 4.** Микроструктура керамики  $La_{0.6}Sr_{0.3-x}Bi_xMn_{1.1}O_3$ .

фазовых переходов металл-полупроводник и ферропарамагнетик, температуры которых  $T_{ms}$  и  $T_c$  понижаются с x от 360 K и 365 K (x = 0) до 250 K и 330 K (x = 0.1), 180 K и 285 K (x = 0.2) соответственно.

Температурная зависимость удельного сопротивления  $\rho(T)$  для полупроводниковой области  $T > T_c$  хорошо описывается уравнением диффузионного типа

$$\rho(T) = (k_B T) / (n e^2 D) \exp(E_a / k_B T),$$

где  $E_a$  — энергия активации, D — коэффициент диффузии, n — концентрация заряда e, который "дрейфует"

Температуры фазовых переходов металл–полупроводник ( $T_{ms}$ ), ферро–парамагнетик ( $T_c$ ), удельное сопротивление ( $\rho$ ), энергия активации ( $E_a$ ), коэрцитивная сила ( $H_c$ ), ширина спектров ЯМР <sup>55</sup>Мп ( $\Delta F$ ) и МR эффект

| x    | T <sub>ms</sub> ,<br>K | <i>Т</i> <sub>с</sub> ,<br>К | $ ho, \ m\Omega \cdot cm$ | Ea,<br>meV | $H_c$ ,<br>Oe | $\Delta F$ ,<br>MHz | MR, % |                    |
|------|------------------------|------------------------------|---------------------------|------------|---------------|---------------------|-------|--------------------|
|      |                        |                              |                           |            |               |                     | 77 K  | при Т <sub>р</sub> |
| 0    | 360                    | 365                          | 30                        | 82         | 25            | 18.1                | 19.1  | 2.5                |
| 0.05 | 285                    | 350                          | 50                        | 107        | 17            | 22.3                | 19.6  | 3.5                |
| 0.1  | 250                    | 330                          | 150                       | 146        | 0             | 25.3                | 17.4  | 4.1                |
| 0.15 | 210                    | 310                          | 600                       | 172        | +10           | 26.2                | 15.2  | 9.3                |
| 0.2  | 180                    | 285                          | 5000                      | 193        | +20           | 29.7                | 14.8  | 11.6               |

по квазилокализованным поляронным состояниям [13]. Как видно из рис. 1 и таблицы, удельное сопротивление при  $T_{ms}$  и энергия активации  $E_a$  существенно повышаются вследствие ослабления висмутом и дефектами высокочастотного электронного обмена (через кислород) между ионами  $\mathrm{Mn}^{3+} \leftrightarrow \mathrm{Mn}^{4+}$ , приближая систему к сегнетомагнитному состоянию.

Тенденцию роста количества более проводящей FM фазы в интервале x = 0 - 0.2 в сопоставлении с ростом  $\rho$  можно объяснить различным влиянием дефектности на магнитные и электрические свойства. Это подтверждает и повышение с ростом x расхождений температур фазовых переходов  $T_{ms}$  и  $T_c$  (табл.) от 15 К (x = 0) до 80 К (x = 0.1), 100 К (x = 0.2).

С ростом *х* изменяется ширина фазового перехода  $\Delta T_c$ , что свидетельствует об изменении магнитной неоднородности. Количество ферромагнитной фазы (FM) при этом остается достаточно высоким как при  $T_c$  (FM = 77–92%), так и при 77 К (FM = 60–75%). Широкие асимметричные спектры ЯМР <sup>55</sup>Мп с основной резонансной частотой  $F_0 \approx 370$  МНz и их компьютерное разложение (рис. 2) свидетельствуют о высокочастотном сверхобмене Mn<sup>3+</sup>  $\leftrightarrow$  Mn<sup>4+</sup> и неоднородности валентных и магнитных состояний, вызванных неравномерностью распределения всех ионов и дефектов. Так, из принципа локальной электронейтральности вблизи



**Рис. 5.** Фазовая диаграмма La<sub>0.6</sub>Sr<sub>0.3-x</sub>Bi<sub>x</sub>Mn<sub>1.1</sub>O<sub>3</sub>. PM и FM — парамагнитное и ферромагнитное состояния. I — температура появления ферромагнитных корреляций  $T_C^{\text{onset}}$ , 2 — температура Кюри  $T_C$ , 3 — температура пика MP эффекта  $T_P$ , 4 — температура перегиба на зависимостях  $4\pi N\chi_{\text{ac}}(T)$ , соответствующая условию  $|\partial \chi/\partial T| = \max$  и совпадающая с  $T_P$ , 5 — температура фазового перехода  $T_{\text{ms}}$ .

Мп<sup>4+</sup> в низкочастотной области (360 MHz) должна быть повышенная концентрация Sr<sup>2+</sup> и V<sup>(c)</sup>, а вблизи Mn<sup>3+</sup> в высокочастотной области (390 MHz) — Bi<sup>5+</sup> и V<sup>(a)</sup>. Основной, самый интенсивный сателлитный спектр получен от ионов Mn<sup>~3.6+</sup> ( $F_0 \approx 370$  MHz) в окружении которых преобладают ионы La<sup>3+</sup>.

С ростом *x* наблюдаются снижения  $F_0$  от 370.6 MHz (x = 0.05) до 370.2 MHz (x = 0.1), 369.5 MHz (x = 0.15) и 368.1 MHz (x = 0.2). Ширина спектров на их полувысоте увеличивается от  $\Delta F = 22.3$  MHz (x = 0.05) до 26.2 MHz (x = 0.15) и 29.7 MHz (x = 0.2) вследствие повышения магнитной неоднородности.

Из полевых зависимостей  $4\pi N\chi_{ac}(H)$  (рис. 3, табл.) видно, что для образцов с x = 0 - 0.1 характерен нормальный гистерезис и уменьшение коэрцитивной силы от  $H_c = +25$  Ое (x = 0) до +17 Ое (x = 0.05) и 0 (x = 0.1). Для образцов с x = 0.15 и 0.2 обнаружен аномальный гистерезис, обусловленный однонаправленной обменной анизотропией взаимодействия между ферромагнитной матрицей и антиферромагнитным плоскостным кластером, образованным находящимися в *A*-позициях ионами Mn<sup>2+</sup> [13–16].

Из анализа зависимостей MP(T) керамики La<sub>0.6</sub>Sr<sub>0.3-x</sub>Bi<sub>x</sub>Mn<sub>1.1</sub>O<sub>3</sub> установлено два вида магниторезистивного эффекта. Первый вблизи  $T_{ms}$  и  $T_c$  при  $T_p$ , меньший по величине и увеличивающийся с x от 2.5% (x = 0) до 4.1% (x = 0.1), 9.3% (x = 0.15) и 11.6% (x = 0.2) — обусловлен рассеянием носителей заряда на наноструктурных внутрикристаллитных неоднородностях. Второй, в низкотемпературной области (~ 77 K) и больший по величине, — обусловлен туннелированием на мезоструктурных межкристаллитных границах. Уменьшение этого МР эффекта от 19.6% (x = 0.05) до 17.4% (x = 0.1) и 14.8% (x = 0.2) коррелирует с увеличением размера кристаллов, определенных методом SEM (рис. 4).

Обобщающим результатом является фазовая диаграмма (рис. 5), которая характеризует сильную корреляционную взаимосвязь состав-дефектность структуры-магнитные, электрические и магниторезистивные свойства допированных Ві редкоземельных манганитов. Сочетание резкого увеличения  $\rho$ , характерного для СМ, и количества FM фазы, т.е. магнитных свойств, свидетельствует о возможности и перспективности создания сегнетомагнетиков на основе таких дефектных твердых растворов.

## Список литературы

- [1] M.B. Salamon, M. Jaime. Rev. Mod. Phys. 73, 583 (2001).
- [2] E.L. Nagaev. Phys. Rep. 846, 387 (2001).
- [3] E. Dagotto, J. Hotta, A. Moreo. Phys. Rep. 344, 1 (2001).
- [4] I.C. Nlebedim, N. Ranvah, P.I. Williams, Y. Melikhov, J.E. Snyder, A.J. Moses, D.C. Jiles. J. Magn. Magn. Mater. 322, 1929 (2010).
- [5] Y.Q. Lin, X.M. Chen. J. Am. Ceram. Soc. 94, 782 (2011).
- [6] N.E. Rajeevan, Ravi Kumar, D.K. Shukla, R.J. Choudhary, P. Thakur, A.K. Singh, S. Patnaik, S.K. Arora, I.V. Shvets, P.P. Pradyumnan. J. Magn. Magn. Mater. **323**, 1760 (2011).
- [7] A. Lahmar, S. Habouti, C-H. Solterbeck, M. Dietze, M. Es-Souni. J. Appl. Phys. 107, 024 104 (2010).
- [8] M.M. Costa, G.F.M. Pires, A.J. Terezo, M.P.F. Graça, A.S.B. Sombra. J. Appl. Phys. **110**, 034 107 (2011).
- [9] M.M. Savosta, P. Novak. Phys. Rev. Lett. 87, 137 204 (2001).
- [10] C.J. Oates, Cz. Kapusta, M. Sikora, P.C. Riedi, C. Martin, C. Yaicle, A. Maignan, M.R. Ibarra. Phys. Rev. B. 71, 014430 (2005).
- [11] R.D. Shannon. Acta Cryst. A 32, 751 (1976).
- [12] А.В. Пащенко, В.П. Пащенко, Ю.Ф. Ревенко, В.К. Прокопенко, А.А. Шемяков, В.А. Турченко, В.Я. Сычева, Б.М. Эфрос, В.П. Комаров, Л.Г. Гусакова. Металлофиз. новейш. технологии **32**, 487 (2010).
- [13] К.П. Белов. УФН 169, 797 (1999).
- [14] Э.Е. Зубов, В.П. Дьяконов, Г. Шимчак. ЖЭТФ 122, 1212 (2002).
- [15] В.Т. Довгий, А.И. Линник, В.П. Пащенко, В.Н. Деркаченко, В.К. Прокопенко, В.А. Турченко, Н.В. Давыдейко. Письма в ЖТФ 29, 14, 81 (2003).
- [16] А.В. Пащенко, В.П. Пащенко, В.К. Прокопенко, А.Г. Сильчева, Ю.Ф. Ревенко, А.А. Шемяков, Н.Г. Кисель, В.П. Комаров, В.Я. Сычева, С.В. Горбань, В.Г. Погребняк. ФТТ 54, 720 (2012).