04;07 О формировании барьерного разряда в эксилампах

© М.И. Ломаев, В.Ф. Тарасенко, Д.В. Шитц

Институт сильноточной электроники СО РАН, 634055 Томск, Россия e-mail: VFT@loi.hcei.tsc.ru

(Поступило в Редакцию 13 декабря 2006 г.)

Исследована динамика формирования разряда в XeBr двухбарьерной эксилампе. Зарегистрировано немонотонное изменение максимальных значений падения напряжения на лампе и пробивного напряжения газоразрядного промежутка в зависимости от времени после включения, что указывает на наличие нескольких стадий развития разряда, предшествующих установившейся. Увеличение электрической емкости лампы перед вторичным пробоем в режиме контрагирования разряда свидетельствует о формировании в газоразрядном объеме после первичного пробоя области с высокой остаточной проводимостью. Показано, что использование "дежурного" разряда позволяет избежать искровой стадии при включении эксилампы.

PACS: 42.72.Bj, 52.80.Mg, 52.70.Ds

Введение

В настоящее время отпаянные эксилампы с возбуждением барьерным разрядом на основе неравновесного излучения эксимерных/эксиплексных молекул являются одним из наиболее перспективных типов источников УФ- и ВУФ-излучения. Исследованиям и применениям таких эксиламп посвящено большое количество работ (см. обзоры [1–3] и ссылки в них). Основное внимание в работах уделялось характеристикам излучения и разряда при работе эксиламп в установившихся режимах, когда параметры импульсов возбуждения и излучения от импульса к импульсу перестают изменяться. Характерной чертой эксиламп относительно широко распространенных источников излучения на основе парогазовых смесей, в частности ртутных и металлогалогенных ламп [4], являются отсутствие зависимости зажигания разряда от температуры колбы лампы, а также короткое время (доли-единицы секунд) разжигания разряда. В то же время в ряде практических применений возникает потребность получения излучения синхронно с включением эксилампы. Это предопределяет не только научную, но и практическую значимость исследования динамики зажигания разряда, а следовательно, временной зависимости излучательных характеристик эксилампы при зажигании разряда. Однако динамика формирования установившегося режима (установившейся стадии разряда) эксиламп весьма сложна и до настоящего времени изучалась лишь в нескольких работах. Так, в [3,5] было показано, что при изменении частоты следования импульсов возбуждения внешний вид свечения барьерного разряда коаксиальных KrCl и XeCl эксиламп изменяется. При малых частотах повторения импульсов (единицы-десятки герц) разряд был объемным. С увеличением частоты повторения формируются диффузные каналы малого диаметра, а при частотах следования импульсов ~ 1 kHz и более разряд принимает форму диффузных микроразрядов в виде двух конусов с соединенными вершинами. Количество таких микроразрядов с увеличением мощности возбуждения, например за счет увеличения частоты повторения импульсов, увеличивается, и они занимают весь объем эксилампы (основания конусов покрывают всю поверхность кварцевых трубок). При этом максимальные средние мощности излучения достигаются при разряде в виде диффузных микроразрядов, а максимальные эффективности излучения — в переходной области частот следования импульсов ($\sim 1 \, \text{kHz}$), когда наряду с диффузными цилиндрическими микроразрядами начинают формироваться первые микроразряды в виде диффузных конусов. В [6] было высказано предположение, что при формировании диффузных конусов важную роль играют быстрые электроны, которые формируются за счет усиления электрического поля. В [7] дополнительно приведены оценки усиления электрического поля, возникающего на концах цилиндрического плазменного образования, подтверждающие возможность набора электронами энергии, достаточной для предыонизации на длине пути ~ 4 mm, что согласуется с характерными размерами конусов микроразрядов, наблюдаемых в эксперименте. Следует также отметить, что изучению временной динамики развития после включения барьерного разряда начинает уделяться все большее внимание [8–10 и др.].

Цель данной работы — исследовать динамику формирования установившейся стадии барьерного разряда в XeBr-эксилампе, при которой достигается максимальная средняя мощность излучения на эксиплексных молекулах.

Экспериментальная установка и методики

Для проведения экспериментов использовалась коаксиальная эксилампа (подобные описаны в [1,3]), изготовленная из двух кварцевых трубок. Внешний диаметр наружной трубки с толщиной стенки 1.5 mm равнялся 43 mm, внешний диаметр внутренней трубки с толщиной стенки 1.5 mm равнялся 24 mm, соответственно разрядный промежуток был равен 8 mm. Длина эксиламп — 38 cm. Внешний электрод был изготовлен из сетки и имел длину 32 cm. Внутренний электрод был изготовлен из алюминиевой фольги. Возбуждение осуществлялось импульсами с амплитудой до 5 kV, длительностью $\sim 1.5 \mu$ s и частотой следования ν от 40 до 75 kHz.

Во время экспериментов регистрировались импульсы напряжения на эксилампе, ток во внешней цепи и импульсы излучения эксиплексных молекул. Внешний вид разряда фиксировался фотографированием с помощью цифрового фотоаппарата Olimpus Camedia C-2020Z. Кроме того, средняя мощность излучения в зависимости от времени после включения эксилампы регистрировалась фотоприемником ФЭК-22 СПУ с входным фильтром УФС-1. При этом на входе осциллографа устанавливалась интегрирующая RC-цепочка, обеспечивавшая усреднение электрических сигналов фотоприемника при их следовании с $\nu \sim 40$ kHz и продолжительностью фазы непрерывного включения эксилампы до нескольких секунд. Перед проведением экспериментов были оптимизированы давления и состав рабочей смеси.

Расчет падения напряжения на газоразрядном промежутке, временного хода мощности и энергии возбуждения на основе осциллограмм импульсов тока и напряжения на электродах эксилампы, регистрируемых соответственно токовым шунтом и емкостным делителем напряжения, проводился согласно [11]. Величины емкостей диэлектрических барьеров — кварцевых трубок и газового зазора между ними — определялись двумя способами. Во-первых, по известным соотношениям для емкости цилиндрического конденсатора и геометрическим размерам колбы лампы определялись максимально возможные величины емкости кварцевых трубок С_в и газового промежутка C_G . Во-вторых, значения C_B и C_G рассчитывались по наклону соответствующих участков вольт-кулоновской фигуры [12]. По площади, заключенной внутри данных фигур, рассчитывалась энергия, вложенная в газоразрядную плазму за один импульс возбуждения.

Экспериментальные результаты

При проведении экспериментов основное внимание уделялось регистрации излучательных и разрядных характеристик, а также внешнему виду эксилампы в зависимости от времени после начала работы устройства. Время перехода эксилампы в стационарный режим оказалось очень малым по сравнению с тем, которое требуется в случае парогазовых ламп [4]. Так, спустя ~ 1 s после включения эксилампа начинала работать в установившемся режиме с практически неизменным внеш-

Рис. 1. Внешний вид эксилампы при непрерывном (установившемся) режиме работы.

ним видом разряда и значением мощности излучения. Внешний вид разряда в эксилампе в установившемся режиме приведен на рис. 1. В газоразрядном промежутке присутствуют хаотично распределенные микроразряды, имеющие форму двух конусов, обращенных друг к другу вершинами и опирающихся на поверхность диэлектрика основаниями. Внешний вид отдельного микроразряда приведен на рис. 2. Размеры (диаметр основания), поверхностная плотность и интенсивность свечения микроразрядов зависят от ряда параметров, прежде всего

Рис. 2. Внешний вид отдельного микроразряда сбоку (a) и со стороны основания (b).

от удельной мощности возбуждения, давления и состава рабочей среды, величины газоразрядного промежутка. В течение данного интервала времени ($\sim 1 \, s$) регистрировались четыре характерные стадии разряда. В первой стадии в пространстве между электродами формируется объемный разряд, который обычно состоит из множества цилиндрических диффузных каналов. Во второй стадии на фоне объемного свечения регистрируются нитевидные каналы. Далее в течение третьей стадии нитевидные каналы преобразуются в сравнительно малое количество ярких ветвистых каналов, излучение которых в УФобласти спектра имеет малую эффективность. В четвертой, установившейся, стадии (рис. 1), которая обычно формируется за ~ 1 s, наблюдаются только конусные микроразряды, при этом интенсивность излучения эксилампы возрастает в несколько раз по сравнению с третьей стадией.

Результаты, приведенные в [6,7], были получены при возбуждении эксилампы импульсами напряжения, следующими с неизменной частотой v в пачках различной длительности. При данном способе возбуждения динамика развития разряда может, в общем случае, отличаться от того, как развивается разряд при непрерывном следовании импульсов напряжения с той же частотой v (т.е. без временного интервала между последовательными пачками импульсов). В связи с этим была осуществлена регистрация средней мощности излучения XeBr-эксилампы с помощью ФЭК-22 СПУ с фильтром УФС-1 и интегрирующей цепочки на входе осциллографа при следовании импульсов возбуждения с $\nu \sim 40\,\mathrm{kHz}$ в течение нескольких секунд после включения. При этом временной ход величины средней мощности излучения в общих чертах повторял наблюдаемое в случае возбуждения пачками импульсов: стационарный уровень мощности излучения достигался в течение $\sim 1\,\mathrm{s}$. Однако особенностью являлся начальный участок данной кривой длительностью до 200-800 ms, характеризующий временную динамику развития разряда после включения. Особенность заключалась в том, что средняя мощность излучения на данном временном интервале была сугубо немонотонной — наблюдались несколько пиков с относительно крутым передним и более пологим задним фронтами. Кроме того, приблизительно равновероятно наблюдались или уменьшение мощности излучения длительностью до $\sim 100-150 \,\mathrm{ms}$ (рис. 3, *a*), или непрерывно следующие друг за другом пики (рис. 3, b). Провалу мощности УФ-излучения соответствует стадия контрагирования разряда.

Из рис. 3, *а* видно, что сразу после включения за время $\ll 1$ ms мощность излучения достигает значений, близких к максимальным. Спустя ~ 60 ms (этому интервалу времени после включения соответствуют последовательно первая и вторая стадии развития разряда) интенсивность излучения уменьшается в ~ 6 раз, что является следствием контрагирования разряда и соответствует началу третьей стадии развития разряда.

Рис. 3. Временной ход средней мощности излучения в Уфобласти спектра в XeBr-эксилампе P_{A1} при наличии стадии контрагирования (*a*) и при ее отсутствии (*b*). Частота следования импульсов напряжения 44 kHz.

Ее продолжительность составляет ~ 100 ms. Далее интенсивность излучения начинает увеличиваться за счет изменения характера горения разряда. В газоразрядном объеме формируются конусообразные микроразряды, характерные для четвертой, установившейся, стадии разряда. Из рисунка видно, что становление данной стадии происходит немонотонно за время ~ 0.6-0.8 s. При этом на части осциллограммы, соответствующей интервалу времени ~ 160-460 ms от момента включения, наблюдается несколько пиков и спадов, что свидетельствует, по-видимому, о многократных повторениях процессов контрагирования, аналогичных наблюдающемуся при переходе от 2-й к 3-й стадии, и "разконтрагирования" разряда. Подобная последовательность сменяющихся пиков мощности излучения может наблюдаться сразу после включения (рис. 3, b). В газоразрядной плазме в этот интервал времени наблюдаются последовательно уменьшающиеся по интенсивности и размерам токовые каналы — искры, которые постепенно сменяются большим количеством конусообразных филаментов (рис. 4).

Рис. 4. Свечение разряда в ХеВг-эксилампе при длительности пачек импульсов 500 ms и частоте повторения импульсов 44 kHz.

Наличие стадии контрагирования и соответствующее ей уменьшение мощности излучения нежелательны не только для ряда применений, в которых требуется высокий уровень мощности излучения сразу после включения эксилампы, но и в связи с уменьшением ресурса рабочей среды эксилампы при формировании в разрядном промежутке каналов контракции. Поэтому нами был проведен поиск режимов, обеспечивающих включение эксилампы без перехода ее в третью стадию с соответствующим уменьшением средней мощности излучения в первые 100-200 ms. Положительный результат был получен при наличии "дежурного" разряда, при котором в эксилампе постоянно формировались несколько микроразрядов конусообразной формы. Это достигалось за счет уменьшения мощности возбуждения. Микроразряды в части газоразрядного промежутка оказывали влияние на формирование микроразрядов в соседних областях, что обеспечивало отсутствие стадии контрагирования при увеличении мощности возбуждения. Временной ход мощности УФ-излучения в данном режиме из областей без "дежурного" разряда был подобен тому, что приведен на рис. 3, b: на осциллограмме после резкого нарастания мощности возбуждения в течение $\sim 300 \, {\rm ms}$ наблюдаются несколько пиков, а затем устанавливается стационарное значение мощности излучения.

Особенности функционирования эксилампы в различные интервалы времени после включения проявляются не только во внешнем виде разряда, но и в различии разрядных и излучательных характеристик. При проведении эксперимента осциллограммы импульсов тока во внешней цепи напряжения на электродах эксилампы и мощности УФ-излучения были зарегистрированы спустя определенное время τ после включения разряда. Временны́е выборки $\tau = 1, 100, 500$ и 800 ms соответствуют, согласно рис. 3, *a*, следующим стадиям развития разряда: 1 и 2 ($\tau = 1$ ms), 3 ($\tau = 100$ ms) и установившейся стадии ($\tau = 500-800$ ms). Анализ осциллограмм и полученных на их основе расчетных данных показал следующее. Во-первых, наблюдается немонотонность измерения максимальных величин напряжения на электродах эксилампы V_L^{max} и газоразрядном промежутке V_G^{max} при увеличении τ . Как видно из рис. 5, *a*, наибольшие и наименьшие величины напряжений наблюдаются для $\tau = 1$ и 100 ms соответственно. В последующие интервалы времени — для $\tau = 500$ и 800 ms величины V_L^{max} и V_G^{max} увеличиваются на ~ 5–10%. Во-вторых, энерговклад в газоразрядную плазму в течение одного импульса E_{in} возбуждения монотонно увеличивается ~ с 2 до 2.6 mJ соответственно для $\tau = 1$ и 800 ms (рис. 5, *b*).

На рис. 6 приведены осциллограммы импульсов напряжения, тока и мощности УФ-излучения, а также расчетные кривые падения напряжения на промежутке, временно́го хода мощности и энергии возбуждения и излучения, а на рис. 7 — вольт-кулоновские фигуры, соответствующие $\tau = 1$ и 100 ms.

Наблюдаются также различия во временном ходе импульсов излучения. На рис. 8 приведены осциллограм-

Рис. 5. Максимальные величины напряжения на электродах $V_L^{\max}(1)$ эксилампы и газоразрядном промежутке $V_G^{\max}(2)(a)$; энерговклад в газоразрядную плазму за один импульс возбуждения $E_{in}(b)$. $\tau = 1, 100, 500, 800 \text{ ms.}$

Рис. 6. Осциллограммы импульсов напряжения на электродах лампы $V_L(1)$, тока в контуре $I_L(2)$, импульсов излучения $P_{Em}(3)$, расчетные кривые падения напряжения $V_{gap}(4)$ и активной составляющей тока $I_{OHM}(5)$ на газорязрядном промежутке, мощности $P_{in}(6)$ и энергии возбуждения $E_{in}(7)$, а также энергии излучения $E_{Em}(8)$ для временных выборок $\tau = 1$ (*a*) и 100 ms (*b*).

Рис. 7. Зависимость перенесенного электрического заряда Q за один период от напряжения на электродах эксилампы V_L (вольт-кулоновские фигуры) для временны́х выборок $\tau = 1$ (I) и 100 ms (2).

мы импульсов излучения в УФ-диапазоне, зарегистрированные для $\tau = 1, 100, 500$ и 800 ms. В соответствии с тем, что возбуждение лампы имеет место как на переднем, так и на заднем фронте импульса напряжения, импульс излучения также состоит из двух (первичного и вторичного) разделенных по времени импульсов (рис. 8). Наименьшие длительности импульсов излучения (как первичного, так и вторичного) регистрируются, как видно из рисунка, для $\tau = 1$ ms.

Рис. 8. Осциллограммы импульсов излучения для временны́х выборок $\tau = 1$ (1), 100 (2), 500 (3), 800 ms (4).

Журнал технической физики, 2007, том 77, вып. 8

Анализ полученных результатов

Импульсно-периодический характер возбуждения эксилампы предопределяет ряд особенностей зажигания и поддержания разряда относительно того, что наблюдается при однократном импульсном пробое газа. К их числу следует, во-вервых, отнести уменьшение величины напряжения пробоя при импульсно-периодическом воздействии на газоразрядный промежуток по сравнению со случаем однократного пробоя газа. Вовторых, при частоте следования импульсов возбуждения $\nu = 10-100$ kHz даже при относительно невысоком удельном энерговкладе от одного импульса возбуждения на уровне нескольких μ J/cm³, что характерно для эксиламп барьерного разряда [3], средняя мощность возбуждения может достигать долей–единиц W/cm³.

Пробой и протекание тока и соответственно свечение плазмы в течение первой стадии разряда происходят во всем газоразрядном объеме. Зарождение и развитие каналов контракции (стадии 2 и 3) имеет место, вероятно, вследствие ионизационно-перегревной (тепловой) неустойчивости разряда [13]. Медленное (\sim десятки ms, рис. 3, b) развитие неустойчивости в условиях проводившихся экспериментов может объясняться относительно низким уровнем (\sim доли W/cm³) удельного энерговыделения в плазме разряда. Дополнительным стабилизирующим фактором является наличие диэлектрических барьеров, что вызывает ограничение заряда, переносимого через отдельный канал, перемыкающий разрядный промежуток. Соответственно уменьшается плотность тока и энерговыделение в канале.

Наличие каналов контракции в течение третьей стадии проявляется не только в уменьшении значений V_I^{max} и V_{gap}^{max} (рис. 5, *a*), но и в изменении характера протекания тока при пробое промежутка на заднем фронте импульса напряжения (при вторичном разряде). Из рис. 6, b видно, что ток проводимости в этот интервал времени нарастает практически синхронно с напряжением на промежутке. Кроме того, величина $V_{\rm gap}^{\rm max}$ при вторичном разряде составляет $\sim 1.7 \,\mathrm{kV}$ для $\tau = 100 \,\mathrm{ms}$, что значительно ниже как для более ранних, так и для установившейся стадий разряда. Все это указывает на значительную проводимость газоразрядного промежутка перед вторичным разрядом для $\tau = 100 \, {\rm ms.}$ Причиной этого, вероятно, является высокая остаточная проводимость канала (каналов) контракции, формируемых в течение 3-й стадии при первичном разряде. Это предположение подтверждается также формой вольткулоновских фигур для $\tau = 1$ и 100 ms (рис. 7). Участок А-В на обеих фигурах соответствует переднему фронту импульса напряжения, а участки С-D и E-F заднему фронту соответственно для $\tau = 1$ и 100 ms. Как известно [12,14], величина емкости в текущий момент времени может быть определена по углу наклона соответствующего участка вольт-кулоновской фигуры. Оценки на основе данных из рис. 7 величин емкостей

Рис. 9. Отношение δ эффективности излучения первичного и вторичного разрядов для временны́х выборок $\tau = 1, 100, 500, 800 \,\mathrm{ms.}$

лампы для участков A-B, C-D и E-F дают соответственно ~ 34, 34 и 53 pF. Таким образом, данный результат также подтверждает наличие заметной проводимости промежутка к началу роста напряжения на нем при вторичном разряде для $\tau = 100$ ms, поскольку увеличение емкости лампы имеет место при протекании тока в газоразрядном промежутке, в то время как на участках A-B и C-D происходит зарядка "холодного" газоразрядного промежутка. Отметим, что оценки емкости газоразрядного промежутка по вольт-кулоновской фигуре, приведенной на рис. 7, хорошо совпадают с результатом расчета на основе известных соотношений для цилиндрического конденсатора и геометрических размеров использовавшейся колбы лампы.

Модуляция интенсивности и длительность импульса излучения (рис. 8) определяются временны́м ходом мощности возбуждения (рис. 6). При этом оказывается, что отношение δ эффективности излучения первичного η_1 и вторичного η_2 импульсов возбуждения, оцениваемое как отношение энергии излучения E_{Em} к энергии возбуждения E_{in} , соответствующее первичному и вторичному импульсам

$$\eta = E_{Em}/E_{\rm in},\tag{1}$$

$$\delta = \eta_1 / \eta_2, \tag{2}$$

монотонно возрастает по мере увеличения τ (рис. 9). Величина $\delta \sim 1$ лишь для $\tau = 1$ ms. Снижение эффективности излучения вторичного разряда, вероятно, имеет место вследствие омического нагрева рабочей среды в зонах токопрохождения в течение первичного разряда. Ток вторичного разряда, появляющегося вследствие разряда. Ток вторичного разряда, появляющегося вследствие разряда. В течение первичного разряда, протекает в том же месте, что и первичный разряд [15]. Известно, что эффективность излучения эксиламп уменьшается по мере возрастания мощности возбуждения и соответственно увеличения температуры рабочей среды [3,16 и др.].

Интересным экспериментальным фактом, наблюдавшимся как ранее в [6], так и в настоящей работе (рис. 3, a), является переход контрагированного (стадия 3) разряда в разновидность диффузного (рис. 1). Характерными чертами данного процесса являются постепенное увеличение числа каналов контракции и снижение интенсивности их свечения вследствие уменьшения тока, протекающего через отдельный канал (рис. 3, 4). В качестве наиболее вероятной причины перехода от стадии 3 к установившейся стадии разряда указывалось [6,7] появление быстрых электронов, обеспечивающих эффективную предыонизацию рабочей среды эксилампы и формирование многочисленных конусообразных микроразрядов в газоразрядном объеме. В дополнение к этому следует также отметить возможность увеличения количества каналов контракции с одновременным уменьшением тока, протекающего через отдельный канал, вследствие дополнительных электрических пробоев в периферийных относительно начального канала пространственных зонах. Дополнительные пробои могут возникать из-за уменьшения электрической прочности газоразрядного промежутка за счет предыонизации УФ-излучением, а также остаточного на поверхности диэлектрика электрического заряда. Спустя ~ 1 s после включения в газоразрядном объеме наблюдается большое число конусообразных микроразрядов, хаотично распределенных по поверхности диэлектрических кварцевых трубок.

Заключение

Таким образом, в данной работе исследована динамика формирования разряда в ХеВг-эксилампе, возбуждаемой барьерным разрядом. Немонотонное изменение максимальных значений падения напряжения на лампе и пробивного напряжения газоразрядного промежутка в зависимости от времени после включения указывает на наличие нескольких стадий развития разряда, предшествующих установившейся. Увеличение электрической емкости лампы перед вторичным пробоем в режиме контрагирования разряда свидетельствует о формировании в газоразрядном объеме после первичного пробоя области с высокой остаточной проводимостью. Показано, что использование "дежурного" разряда позволяет избежать искровой стадии при включении эксилампы и соответственно уменьшения мощности излучения эксилампы в этот временной интервал.

Данная работа поддержана МНТЦ (проект № 2706) и РФФИ (проект № 05-08-33621-а).

Список литературы

- Kogelschatz U. // Plasma Chemistry and Plasma Processing. 2003. Vol. 23. N 1. P. 1–46.
- [2] Kogelschatz U., Esrom H., Zhang J.-Y., Boyd I.W. // App. Surf. Sci. 2000. Vol. 168. P. 29–36.

- [3] Ломаев М.И., Скакун В.С., Соснин Э.А. и др. // УФН. 2003. Т. 173. № 2. С. 201–217.
- [4] Рохлин Г.Н. Разрядные источники света. М.: Энергоатомиздат, 1991. 720 с.
- [5] Tarasenko V.F., Lomaev M.I., Schitz D.V. et al. // Proc. SPIE. 2002. Vol. 4760. P. 714–722.
- [6] Тарасенко В.Ф., Шитц Д.В., Ломаев М.И. // Изв. вузов. Физика. 2003. № 7. С. 94–96.
- [7] Ломаев М.И., Тарасенко В.Ф., Ткачев А.Н. и др. // ЖТФ. 2004. Т. 74. Вып. 65. С. 129–133.
- [8] Буранов С.Н., Горохов В.В., Карелин В.И. и др. // / ЖТФ. 2004. Т. 74. Вып. 10. С. 40–44.
- [9] Sublet A., Ding C., Dorier J.-L. et al. // Plasma Sources Sci. Technol. 2006. Vol. 15. P. 627–634.
- [10] Zhang P. and Kortshagen U. // J. Phys. D: Appl. Phys. 2006. Vol. 39. P. 153–163.
- [11] Ломаев М.И. // Оптика атмосферы и океана. 2001. Т. 14. № 11. С. 1091–1095.
- [12] Manley T.C. // Trans. Electrochem. Soc. 1943. Vol. 84. P. 83– 96.
- [13] Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 592 с.
- [14] Falkenstein Z., Coogan J.J. // J. Phys. D: Appl. Phys. 1997. Vol. 30. P. 817–825.
- [15] Liu S. and Neiger M. // J. Phys. D: Appl. Phys. 2001. Vol. 34. P. 1632–1638.
- [16] Zhang J.-Y., Boyd I.W. // J. Appl. Phys. 1996. Vol. 80. P. 633– 638.