Теоретическая оценка несплошности адгезионного контакта многослойных элементов жидкометаллического бланкета термоядерного реактора

© И.В. Витковский,¹ А.Н. Конев,¹ В.С. Шоркин,² С.И. Якушина²

 ¹ Научно-исследовательский институт электрофизической аппаратуры им. Д.В. Ефремова, 196641 Санкт-Петербург, Россия
 e-mail: vitkoviv@sintez.niiefa.spb.su
 ² Орловский государственный технический университет, 302020 Орел, Россия

(Поступило в Редакцию 4 сентября 2006 г.)

Разработана методика расчета несплошности адгезионного контакта и энергии адгезии двух тел, позволяющая проводить их учет в конструкции многослойной металлокерамической стенки (электроизоляционного барьера) жидкометаллического бланкета термоядерного реактора. В основе методики используются: модель линейно-упругой среды — когда деформации пропорциональны внешним воздействиям; предположение о том, что любое тело в состоянии равновесия обладает минимумом внутренней потенциальной энергии.

Получены выражения для расчета площади адгезионного контакта двух тел и энергии их адгезии. Приведены расчетные данные, иллюстрирующие зависимость этих параметров от значений модуля Юнга и коэффициента Пуассона для различных пар материалов, включая наиболее вероятные для электроизоляционных барьеров жидкометаллических бланкетов.

PACS: 02.70.-c

Введение

01:04

Одним из направлений разработки электроизоляционных барьеров на границе раздела жидкий металл-конструкционный материал в проточных трактах самоохлаждаемых жидкометаллических бланкетов и систем охлаждения термоядерных реакторов (ТЯР) является создание многослойных металлокерамических барьеров [1,2]. Однако на пути реализации этой идеи возникают технологические трудности, связанные с формированием многослойной структуры. С технологической точки зрения перспективным способом получения металлокерамических барьеров представляется формирование многослойной структуры вакуумно-дуговым напылением. Однако и по такой технологии получить идеальный контакт между некоторыми материалами невозможно, из-за того что атомная решетка одного из материалов стремится продолжить решетку другого [3], что приводит в окрестности точки их контакта к нарастанию сдвиговых напряжений по мере удаления от нее и в конечном счете к отслоению. Несмотря на то что эта проблема может быть частично снята, например формированием промежуточных слоев [1], остается опасность того, что островковый механизм образования и роста напыляемых слоев [4] может быть причиной существования между ними пустот, обусловливающих несплошность контакта.

Результаты оценки величины энергии адгезии по изложенной в [1] методике оценки прочности сплошного адгезионного шва через известные механические характеристики упругих материалов могут существенно отличаться из-за несплошности адгезионного контакта от реального значения энергии, характеризующей качество сцепления смежных слоев.

Расчетная модель

В настоящей работе предложена методика расчета энергии адгезии в случае несплошности адгезионного контакта двух однокомпонентных тел. В ее основе используются: модель линейно-упругой среды — когда деформации пропорциональны внешним воздействиям [5]; общеизвестное предположение о том, что любое тело в состоянии равновесия обладает минимумом внутренней потенциальной энергии, при этом энергия адгезии на единице площади определяется по выражению [6]:

$$F = W^{(1,2)} - W^{(1)} - W^{(2)}.$$

Здесь $W^{(1)}$ и $W^{(2)}$ — поверхностные энергии свободных от адгезионного контакта тел $B^{(1)}$ и $B^{(2)}$ соответственно [(1) и (2) — индексы, обозначающие номера тел]; $W^{(1,2)}$ — поверхностная энергия системы тел $B^{(1)}$ и $B^{(2)}$ на площади их контакта S_0 [(1,2) — индекс соответствующей системы тел]. Это означает, что на части элементарного участка dS_0^{α} поверхности контакта S_0 ($dS_0^{\alpha} = \alpha dS_0$) адгезия существует, а на части $dS_0^{1-\alpha} = (1-\alpha)dS_0$ адгезия отсутствует.

Здесь и далее индекс α означает принадлежность величины к участку α , на котором есть адгезия, тогда

$$dS_0 = dS_0^{\alpha} + dS_0^{1-\alpha} = \alpha dS_0 + (1-\alpha)dS_0.$$

Несплошность адгезионного контакта тел $B^{(1)}$ и $B^{(2)}$ говорит о зависимости величины $W^{(1,2)}$ от относительной площади реального контакта

$$W^{(1,2)} = f(\alpha).$$

При этом условие о минимуме внутренней энергии тела в состоянии равновесия (в нашем случае $B = B^{(1)} \cup B^{(2)}$) сводится к уравнению

$$\frac{\partial f(\alpha)}{\partial \alpha} = 0, \tag{1}$$

которое в дальнейшем используется для вычисления а.

Для определения зависимости $f(\alpha)$ принято следующее.

— Расчетная модель для определения энергии адгезии базируется на предположении о том, что для тел, находящихся в состоянии адгезии, прямолинейное до деформации материальное волокно, пересекающее контактную поверхность, сохраняет свою целостность и гладкость в случае любой деформации объединенного тела.

— Состояние тела $B^{(\gamma)}$ (здесь и далее γ — номер тела, $\gamma = 1, 2$), при котором физические свойства однородны, изотропны и не зависят от его границ, а начальные напряжения описываются тензором, обозначенным верхним индексом "2"

$$P_0^{2(\gamma)} = T_0^{(\gamma)} \mathbf{N}^{(\gamma)},$$

называется отсчетным. Точка между перемножаемыми объектами означает их скалярное произведение ("сверт-ку").

Здесь $\mathbf{N}^{(\gamma)}$ — единичный вектор, нормальный к эквипотенциальным поверхностям поля межчастичного взаимодействия внутри изучаемого тела, совпадающий на поверхности с внешней единичной нормалью **n**; $T_0 = \pi_0 \delta_{ij} \delta_{kl} \mathbf{e}_i \mathbf{e}_j \mathbf{e}_k \mathbf{e}_l$ — тензор четвертого ранга, характеризующий способность изотропной среды развивать напряженное состояние (здесь и далее проводится суммирование по повторяющимся индексам — правило Эйнштейна), где π_0 — материальная константа, δ_{ij} , δ_{kl} символы Кронекера, \mathbf{e}_i , \mathbf{e}_j , \mathbf{e}_k , \mathbf{e}_l — базисные векторы, i, j, k, l = 1, 2, 3.

— Тела $B^{(1)}$ и $B^{(2)}$ являются полубесконечными, занимающими в отсчетном состоянии области $B^{(1)}$: $(0 < x_1 < +\infty, -\infty < x_2, x_3 < +\infty)$ и $B^{(2)}$: $(-\infty < x_1 < 0, -\infty < x_2, x_3 < +\infty)$, контактирующими по плоскости S_0 : $(x_1 = 0, -\infty < x_2, x_3 < +\infty)$. В этом случае $W^{(1,2)}$ определяется по выражению

$$W^{(1,2)} = \int_{-\infty}^{-0} w^{(1)}(x_1) dx_1 + \int_{+0}^{+\infty} w^{(2)}(x_1) dx_1,$$

где $w^{(y)}$ — объемная плотность изменения потенциала внутренних сил тел $B^{(1)}$ и $B^{(2)}$ соответственно.

— Деформационные и энергетические изменения, связанные с адгезией тел $B^{(1)}$ и $B^{(2)}$, распространяются по всему их объему.

— Тело В находится в изотермическом состоянии.

— Напряженное состояние характеризуется тензорами $P^{1(\gamma)}, P^{2(\gamma)}$ с компонентами $P^{1(\gamma)}_{ij} = \frac{\partial w^{(\gamma)}}{\partial g^{(\gamma)}_{ij}}, P^{2(\gamma)}_{ijk} = \frac{\partial w^{(\gamma)}}{\partial Z^{(\gamma)}_{ij}}$, являющимися обобщенными внутренними силами, работающими на обобщенных перемещениях $g_{ij}^{(\gamma)}$ и $Z_{iik}^{(\gamma)}$ соответственно.

— Деформации, вызванные адгезией тел $B^{(1)}$ и $B^{(2)}$, характеризуются компонентами классического тензора деформаций

$$g_{ij}^{(\gamma)} = \frac{1}{2} \left(\frac{\partial u_i^{(\gamma)}}{\partial x_j} + \frac{\partial u_j^{(\gamma)}}{\partial x_i} \right)$$

и компонентами второго градиента вектора перемещений

$$Z_{ijk}^{(\gamma)} = \frac{\partial^2 u_i^{\gamma}}{\partial x_i \partial x_k}.$$

Вектор $\mathbf{u} = u_i \mathbf{e}_i$ и радиус-вектор точек пространства $\mathbf{r} = x_i \mathbf{e}_i$ задаются в ортонормированном базисе \mathbf{e}_i (i = 1, 2, 3). Объемная плотность изменения потенциала внутренних сил определяется равенством

$$w^{(\gamma)} = \mu^{(\gamma)} g^{(\gamma)}_{ij} g^{(\gamma)}_{ij} + \frac{\lambda^{(\gamma)}}{2} g^{(\gamma)}_{kk} g^{(\gamma)}_{ll} + \frac{2\mu^{\gamma} + \lambda^{(\gamma)}}{2} (b^{2(\gamma)}_{1} Z^{(\gamma)}_{ijk} Z^{(\gamma)}_{ijk} + b^{2(\gamma)}_{2} Z^{(\gamma)}_{ijk} Z^{(\gamma)}_{kji}) + \pi^{(\gamma)}_{0i} \delta_{ij} E^{(\gamma)}_{k} Z^{(\gamma)}_{ijk}.$$
(2)

Здесь $\mu^{(\gamma)}, \lambda^{(\gamma)}$ — коэффициенты Ламе, описываемые выражениями

$$egin{aligned} \lambda^{(p)} &= rac{
u^{(p)} E^{(p)}}{(1+
u^{(p)})(1-2
u^{(p)})}, \ \mu^{(p)} &= rac{E^{(p)}}{2(1+
u^{(p)})}, \end{aligned}$$

 $\pi_0^{(\gamma)}, b_1^{(\gamma)}, b_2^{(\gamma)}$ — дополнительные постоянные, определяемые на основании дисперсионного закона [7], коэффициенты которого должны совпадать с соответствующими коэффициентами, полученными экспериментально [8], и могут быть вычислены, например, по формулам [1]:

$$\pi_0^{(\gamma)} = \frac{W_p^{(\gamma)}}{k^{(\gamma)}},$$

где

$$\begin{split} W_p^{(\gamma)} &= 8E^{(\gamma)} \cdot 10^{-12}, \quad [W_p^{(\gamma)}] = \frac{J}{m^2}; \quad k^{(\gamma)} = \frac{\nu^{(\gamma)}}{1 - \nu^{(\gamma)}} \\ b_1^{(\gamma)} &= \frac{3W_p^{(\gamma)}}{4k^{(\gamma)2}A_1^{(\gamma)}}, \qquad b_2^{(\gamma)} = \frac{3W_p^{(\gamma)}}{4k^{(\gamma)2}A_2^{(\gamma)}}, \end{split}$$

где

$$A_1^{(\gamma)} = \frac{E^{(\gamma)}}{2} \frac{1 - \nu^{(\gamma)}}{(1 + \nu^{(\gamma)})(1 - 2\nu^{(\gamma)})}$$
$$A_2^{(\gamma)} = \frac{E^{(\gamma)}\nu^{(\gamma)}}{(1 + \nu^{(\gamma)})(1 - 2\nu^{(\gamma)})},$$

а $E^{(\gamma)}$ и $v^{(\gamma)}$ — модуль упругости Юнга и коэффициент Пуассона материала тела $B^{(\gamma)}$ соответственно.

Системы дифференциальных уравнений равновесия тел $B^{(1)}$ и $B^{(2)}$, находящихся в состоянии адгезии на поверхности S_0 краевых условий на свободных участках границы этих тел и условий сопряжения на границе контакта S_0 имеют вид [9]:

$$\nabla \cdot \left(P^{1(\gamma)} - \nabla \cdot P^{2(\gamma)} \right) = \mathbf{Q}^{(\gamma)}, \quad \mathbf{r} \in B^{(\gamma)}; \qquad (3)$$

$$\mathbf{n}^{(\gamma)} \cdot \left(P^{1(\gamma)} - \nabla \cdot P^{2(\gamma)}\right) - \nabla_{S} \cdot \left(\mathbf{n}^{(\gamma)} \cdot P^{2(\gamma)}\right) = \boldsymbol{\tau}^{(\gamma)}, \ \mathbf{r} \in S^{(\gamma)};$$
$$\mathbf{n}^{(\gamma)} \cdot P^{2(\gamma)} = \mathbf{q}^{(\gamma)}.$$
(4)

Для области $\alpha S_0 = S_0^{\alpha}$:

$$\mathbf{n}^{(1-2)} \cdot \left(P^{1(1)} - \nabla \cdot P^{2(1)}\right) - \nabla_{S} \cdot \left(\mathbf{n}^{(1-2)} \cdot P^{2(1)}\right) + \mathbf{n}^{(2-1)} \cdot \left(P^{1(2)} - \nabla \cdot P^{2(2)}\right) - \nabla_{S} \cdot \left(\mathbf{n}^{(2-1)} \cdot P^{2(2)}\right) = \mathbf{0}, \mathbf{n}^{(1-2)} \cdot P^{2(1)} + \mathbf{n}^{(2-1)} \cdot P^{2(2)} = \mathbf{0},$$
(5)
$$\mathbf{u}^{(1)} = \mathbf{u}^{(2)}, \quad \nabla_{\mathbf{n}} \mathbf{u}^{(1)} = \nabla_{\mathbf{n}} \mathbf{u}; \quad \mathbf{r} \in S_{\mathbf{0}}^{\alpha}.$$

Здесь и далее
$$\nabla$$
, ∇_S , ∇_n — вычисления градиентов по
объему, поверхности тела и нормали к ней соответствен-
но; $\mathbf{Q}^{(y)}$, $\boldsymbol{\tau}^{(y)}$ — объемные и поверхностные плотности
внешних сил, действующих на тело $B^{(y)}$; $\mathbf{q}^{(y)}$ — по-
верхностная плотность обобщенных сил, совершающих
работу на обобщенных перемещениях — градиентах
реальных перемещений **u**; $\mathbf{n}^{(1-2)}$ — вектор нормали,
направленный от тела $B^{(1)}$ к телу $B^{(2)}$, а $\mathbf{n}^{(2-1)}$ — вектор

нормали, направленный от тела $B^{(2)}$ к телу $B^{(1)}$. Для области $(1 - \alpha)S_0 = S_0^{1-\alpha}$, где адгезия отсутствует, вместо условий (5) используются следующие условия:

$$\mathbf{n}^{(1-2)} \cdot \left(P^{1(1)} - \nabla \cdot P^{2(1)}\right) - \nabla_{S} \cdot \left(\mathbf{n}^{(1-2)} \cdot P^{2(1)}\right)$$

= $\mathbf{n}^{(2-1)} \cdot \left(P^{1(2)} - \nabla \cdot P^{2(2)}\right)$
- $\nabla_{S} \cdot \left(\mathbf{n}^{(2-1)} \cdot P^{2(2)}\right) = \boldsymbol{\sigma}_{1-\alpha}^{(1-2)};$ (6)
 $\mathbf{n}^{(1-2)} \cdot P^{2(1)} + \mathbf{n}^{(2-1)} \cdot P^{2(2)} = \mathbf{0}, \quad \mathbf{r} \in S_{0}^{1-\alpha}.$

Здесь и далее σ — поверхностная плотность силы (напряжение).

Для фиксации положения $B = B^{(1)} \cup B^{(2)}$ одна из материальных точек считается неподвижной. Положения остальных точек составного тела определяются при расчете деформаций.

В общем случае, когда объединенное тело B подвержено внешним воздействиям, тело $B^{(1)}$ действует на тело $B^{(2)}$ на площадке dS_0 с силой

$$d\mathbf{F}^{(1-2)} = \boldsymbol{\sigma}^{(1-2)} dS_0;$$

эта сила состоит из двух слагаемых

$$d\mathbf{F}^{(1-2)} = d\mathbf{F}^{(1-2)}_{\alpha} + d\mathbf{F}^{(1-2)}_{1-\alpha},$$
(8)

(7)

где $\mathbf{F}_{\alpha}^{(1-2)}$ возникает и развивается на площадке dS_0^{α} , а $\mathbf{F}_{1-\alpha}^{(1-2)}$ — на площадке $dS_0^{1-\alpha}$. Из этого следует,

что на участке dS_0^{α} развиваются напряжения $\sigma_{\alpha}^{(1-2)}$, порождаемые адгезией, и

$$d\mathbf{F}_{\alpha}^{(1-2)} = \boldsymbol{\sigma}_{\alpha}^{(1-2)} dS_{0}^{\alpha} = \left(\alpha \boldsymbol{\sigma}_{\alpha}^{(1-2)}\right) dS_{0}.$$
 (9)

На участке $dS_0^{(1-\alpha)}$ адгезия между телами $B^{(1)}$ и $B^{(2)}$ отсутствует, следовательно $\sigma_{1-\alpha}^{(1-2)} \neq \sigma_{\alpha}^{(1-2)}$, и

$$d\mathbf{F}_{1-\alpha}^{(1-2)} = \boldsymbol{\sigma}_{1-\alpha}^{(1-2)} dS_0^{1-\alpha} = \left[(1-\alpha) \boldsymbol{\sigma}_{1-\alpha}^{(1-2)} \right] dS_0.$$
(10)

Подставив (10) и (9) в (8) с учетом (7), увидим, что напряжение $\sigma^{(1-2)}$, развивающееся на элементе площади dS_0 , является линейной комбинацией напряжений $\sigma^{(1-2)}_{\alpha}$ и $\sigma^{(1-2)}_{1-\alpha}$ с соответствующими весовыми коэффициентами (1-2) (1-2) (1-2) (1-2)

$$\boldsymbol{\sigma}^{(1-2)} = \alpha \boldsymbol{\sigma}_{\alpha}^{(1-2)} + (1-\alpha) \boldsymbol{\sigma}_{1-\alpha}^{(1-2)}.$$

Из рассуждений для гипернапряжений

$$\mathbf{q}^{(1-2)} = \mathbf{n}^{(1-2)} \cdot P^{2(1)} = \mathbf{n}^{(2-1)} \cdot P^{2(2)}$$

развивающихся на тех же участках dS_0^{α} и $dS_0^{1-\alpha}$ следует, что

$$\mathbf{q}^{(1-2)} = \alpha \mathbf{q}_{\alpha}^{(1-2)} + (1-\alpha) \mathbf{q}_{1-\alpha}^{(1-2)}.$$

Согласно [5], векторы $\sigma^{(1-2)}$ и $\mathbf{q}^{(1-2)}$ связаны с тензорами $P^{1(2)}$ и $P^{2(2)}$ соотношениями

$$\sigma^{(1-2)} = \mathbf{n}^{(1-2)} \cdot (P^{1(2)} - \nabla \cdot P^{2(2)}) - \nabla_{S} \cdot (\mathbf{n}^{(1-2)} \cdot P^{2(2)}),$$
(11)
$$\mathbf{q}^{(1-2)} = \mathbf{n}^{(1-2)} \cdot P^{2(2)}$$
(12)

Из условий непрерывности и дифференцируемости перехода от приграничных областей к внутренним с учетом (11), (12) вытекает, что тензоры $P_{\alpha}^{k(y)}$ и $P_{1-\alpha}^{k(y)}$ ($k = 1, 2; \ \gamma = 1, 2$) удовлетворяют условиям равновесия (3).

Учет влияния неполноты контакта на перемещениях, обусловленных деформациями при адгезии тел, проводится на следующем основании. Выражения для элементарных объема и массы частицы тела, например $B^{(2)}$, имеют соответственно вид

$$dV^{(2)} = dndS_0 = dndS_0^{\alpha} + dndS_0^{1-\alpha} = dV_{\alpha}^{(2)} + dV_{1-\alpha}^{(2)},$$

$$dm^{(2)} = \rho dV^{(2)} = dm_{\alpha}^{(2)} + dm_{1-\alpha}^{(2)}$$

$$= \alpha dm^{(2)} + (1-\alpha)dm^{(2)},$$
(14)

где dn — элементарная высота, отсчитываемая вдоль нормали **n**, ρ — массовая плотность.

В процессе формирования адгезионного контакта тело $B^{(2)}$ движется с некоторой скоростью $U^{(2)}$. При этом его частицы $dm_{\alpha}^{(2)}$ под действием силы $d\mathbf{F}_{\alpha}^{(1-2)}$ получат импульс силы

$$d\mathbf{F}_{\alpha}^{(1-2)}dt = \mathbf{U}_{\alpha}^{(2)}dm_{\alpha}^{(2)}.$$
 (15)

Аналогично частица $dm_{1-\alpha}^{(2)}$ получит импульс

$$d\mathbf{F}_{1-\alpha}^{(1-2)}dt = \mathbf{U}_{1-\alpha}^{(2)}dm_{1-\alpha}^{(2)}.$$
 (16)

Журнал технической физики, 2007, том 77, вып. 6

Сложив (15) и (16), отнеся полный импульс к массе частицы (14), учитывая, что полученное при этом перемещение $\mathbf{u}^{(2)} = \mathbf{U}^{(2)} dt$, получим следующее выражение для перемещений любых тел $B^{(1)}$ и $B^{(2)}$ на границе S_0 :

$$\mathbf{u}^{(\gamma)} = \alpha \mathbf{u}^{(\gamma)} + (1 - \alpha) \mathbf{u}_{1 - \alpha}^{(\gamma)}.$$
 (17)

На основании дифференцируемости перемещений в телах $B^{(\gamma)}$ можно утверждать, что представление (15) сохраняет свой смысл во всей области, занимаемой $B^{(\gamma)}$.

Тензоры напряжений являются линейными комбинациями градиентов перемещений различных порядков. Поэтому на основании (17) для них справедливо соотношение

$$P^{k(\gamma)} = \alpha P^{k(\gamma)}_{\alpha} + (1 - \alpha) P^{k(\gamma)}_{1 - \alpha}; \quad \gamma, k = 1, 2.$$
(18)

Представленные выше рассуждения позволяют решить независимо друг от друга две задачи. Первая — об адгезии тел $B^{(1)}$ и $B^{(2)}$ в предположении об ее абсолютной сплошности на S_0 (уравнения (3)-(5)). Вторая — об их напряженно-деформированном состоянии при условии отсутствия их взаимных воздействий (3), (4), (6). Из решения системы (3)-(5) получается выражение для поля перемещений $\mathbf{u}_{\alpha}^{(\gamma)}$, а из решения системы (3), (4), (6) — для поля перемещений $\mathbf{u}_{1-\alpha}^{(\gamma)}$. После этого на основании (2) получаются выражения для $P_{\alpha}^{k(\gamma)}$ и $P_{1-\alpha}^{k(\gamma)}$.

Объемная плотность внутренней потенциальной энергии w является работой внутренних обобщенных сил, определяемых тензорами $P^{k(\gamma)}$ на обобщенных перемещениях, определяемых градиентами $\nabla^k \mathbf{u}^{\gamma}$, поэтому

$$w^{(1,2)} = \sum_{\gamma=1}^{2} \left[\int_{\Psi^{(\gamma)}} P^{1(\gamma)} \cdot d(\nabla \mathbf{u}^{(\gamma)}) + \int_{\Phi^{(\gamma)}} P^{2(\gamma)} \cdot d(\nabla^2 \mathbf{u}^{(\gamma)}) \right], \quad (19)$$

где $\Psi^{(\gamma)} = \nabla \mathbf{u}^{(\gamma)}, \ \Phi^{(\gamma)} = \nabla^2 \mathbf{u}^{(\gamma)}$ — текущие значения первого и второго градиентов перемещений.

Подставив выражения (17) и (18) в (19), получим

$$w^{(1,2)} = \sum_{\gamma=1}^{2} \left[\alpha^{2} w^{(\gamma)}_{\alpha\alpha} + \alpha (1-\alpha) w^{(\gamma)}_{\alpha(1-\alpha)} + (1-\alpha)^{2} w^{(\gamma)}_{(1-\alpha)(1-\alpha)} \right].$$
(20)

Проинтегрировав (20) по объему, занимаемому объединенным телом $B = B^{(1)} \cup B^{(2)}$, и обозначив

$$\begin{split} W_{\alpha\alpha} &= \sum_{\gamma=1}^{2} W_{\alpha\alpha}^{(\gamma)}; \quad W_{\alpha\alpha}^{(\gamma)} = \int_{B^{(\gamma)}} w_{\alpha\alpha}^{(\gamma)} dV; \\ W_{\alpha(1-\alpha)} &= \sum_{\gamma=1}^{2} W_{\alpha(1-\alpha)}^{(\gamma)}; \quad W_{\alpha(1-\alpha)}^{(\gamma)} = \int_{B^{(\gamma)}} w_{\alpha(1-\alpha)}^{(\gamma)} dV; \end{split}$$

$$\begin{split} W_{(1-\alpha)(1-\alpha)} &= \sum_{\gamma=1}^{2} W_{(1-\alpha)(1-\alpha)}^{(\gamma)}; \\ W_{(1-\alpha)(1-\alpha)}^{(\gamma)} &= \int\limits_{B^{(\gamma)}} w_{(1-\alpha)(1-\alpha)}^{(\gamma)} dV, \end{split}$$

получим квадратичную зависимость поверхностной энергии от *α*:

$$W^{(1,2)} = \alpha^2 W_{\alpha\alpha} + \alpha (1-\alpha) W_{\alpha(1-\alpha)}$$
$$+ (1-\alpha)^2 W_{(1-\alpha)(1-\alpha)} = f(\alpha).$$

В этой записи $W_{\alpha\alpha}$ численно равно работе обобщенных внутренних потенциальных сил на соответствующих им перемещениях в телах $B^{(\gamma)}$, вызванных их адгезионным контактом, а $W_{(1-\alpha)(1-\alpha)}$ — работа обобщенных внутренних потенциальных сил на перемещениях, возникающих в $B^{(\gamma)}$ при отсутствии адгезии. Вследствие этого обе величины $W_{\alpha\alpha}$ и $W_{(1-\alpha)(1-\alpha)}$ положительны. Следовательно, зависимость $f(\alpha)$ имеет минимум, а соответствующее ему значение, определяемое условием (1), вычисляется по следующей формуле:

$$lpha = igg(1+rac{2W_{lpha lpha}-W_{lpha(1-lpha)}}{2W_{(1-lpha)(1-lpha)}-W_{lpha(1-lpha)}}igg)^{-1}.$$

Методика расчета

Значения $W_{\alpha\alpha}$, $W_{(1-\alpha)(1-\alpha)}$, $W_{\alpha(1-\alpha)}$ могут быть рассчитаны по следующим формулам:

$$\begin{split} W_{\alpha\alpha} &= \frac{3(\pi_0^{(2)} - \pi_0^{(1)})}{4(A_1^{(1)}b_1^{(1)} + A_1^{(2)}b_1^{(2)})},\\ W_{\alpha(1-\alpha)} &= -\frac{(\pi_0^{(2)} - \pi_0^{(1)})}{2(A_1^{(1)}b_1^{(1)} + A_1^{(2)}b_1^{(2)})},\\ W_{(1-\alpha)(1-\alpha)} &= \frac{3\pi_0^{(1)2}}{4A_1^{(1)}b_1^{(1)}} + \frac{3\pi_0^{(2)2}}{4A_1^{(2)}b_1^{(2)}}, \end{split}$$

где

$$A_{1}^{(\gamma)} = \frac{E^{(\gamma)}}{2} \frac{1 - v^{(\gamma)}}{(1 + v^{(\gamma)})(1 - 2v^{(\gamma)})},$$
$$A_{2}^{(\gamma)} = \frac{E^{(\gamma)}v^{(\gamma)}}{(1 + v^{(\gamma)})(1 - 2v^{(\gamma)})},$$
$$b_{1}^{(\gamma)} = \frac{3W_{p}^{(\gamma)}}{4k^{(\gamma)2}A_{1}^{(\gamma)}}, \quad b_{2}^{(\gamma)} = \frac{3W_{p}^{(\gamma)}}{4k^{(\gamma)2}A_{2}^{(\gamma)}}.$$

По значению α рассчитывается энергия адгезии тел $B^{(1)}$ и $B^{(2)}$

$$F = \alpha \left(\alpha W_{\alpha \alpha} + (1 - \alpha) W_{\alpha(1 - \alpha)} - (2 - \alpha) W_{(1 - \alpha)(1 - \alpha)} \right).$$

Журнал технической физики, 2007, том 77, вып. 6

Рис. 1. Зависимости относительной площади адгезионного контакта различных пар материалов от соотношений величин их модулей Юнга и коэффициентов Пуассона. a) $1 - \xi = 3$, 2 - 1, 3 - 0.5, 4 - 0.25, 5 - 0.1, 6 - 0; b) $1 - \theta = 2$, 2 - 1, 3 - 0.5, 4 - 0.25, 5 - 0.1, 6 - 0; b) $1 - \theta = 2$,

При этом $F = F(E_1, E_2, \nu_1, \nu_2), \quad \alpha = \alpha(E_1, E_2, \nu_1, \nu_2).$ Введя обозначения $\xi = \frac{E_1}{E_2}$ и $\theta = \frac{\nu_2}{\nu_1} \frac{(1-\nu_1)}{(1-\nu_2)}$, получим удобные для анализа выражения для площади относительного контакта и энергии адгезии в относительных единицах, имеющие следующий вид:

$$\alpha^{*}(\xi,\theta) = \frac{3\xi + 4\theta^{2}\xi^{2} + 4 + 3\theta^{2}\xi - 2\theta\xi}{3\xi + 8\theta^{2}\xi^{2} + 8 + 3\theta^{2}\xi - 10\theta\xi},$$

$$F^{*}(\xi,\theta) = \frac{(3\xi + 4\theta^{2}\xi^{2} + 4 + 3\theta^{2}\xi - 2\theta\xi)^{2}}{6(1 + \theta^{2}\xi)(3\xi + 8\theta^{2}\xi^{2} + 8 + 3\theta^{2}\xi - 10\theta\xi)},$$
(21)
(22)

где

$$\alpha^*(\xi,\theta) = \alpha(E_1, E_2, \nu_1, \nu_2), \ F^*(\xi,\theta) = \frac{F(E_1, E_2, \nu_1, \nu_2)}{F(E_2, E_2, \nu_2, \nu_2)}.$$

Результаты и их обсуждение

Из анализа выражений (21), (22) следует, что максимальные значения поверхности адгезионного контакта $\alpha_{\max}^* = 1$ имеют место при выполнении условия

$$\frac{E_1}{E_2} = \frac{\nu_1}{\nu_2} \frac{(1-\nu_2)}{(1-\nu_1)}.$$
(23)

Что касается зависимости $F^*(\xi, \theta)$, то условие максимума (23) выполняется только для зависимости $F^* = F^*(\theta)$ при фиксированном значении ξ . При фиксированном значении θ $F(\xi)^*_{\xi \to \infty} \to \infty$.

На рис. 1–2 приведены кривые, иллюстрирующие характер зависимостей $\alpha^*(\theta)$, $F^*(\theta)$, $\alpha^*(\xi)$ и $F^*(\xi)$.

Учитывая, что для жидкометаллического бланкета ТЯР в качестве конструкционного материала пред-

Рис. 2. Зависимости относительной энергии адгезии контакта различных пар материалов от соотношений величин их модулей Юнга и коэффициентов Пуассона. a) $I - \xi = 3, 2 - 2, 3 - 1, 4 - 0.5, 5 - 0.33, 6 - 0.25, 7 - 0.1, 8 - 0;$ b) $I - \theta = 2, 2 - 1, 3 - 0.5, 4 - 0.25, 5 - 0.1, 6 - 0.$

Журнал технической физики, 2007, том 77, вып. 6

Относительная площадь контакта и энергия адгезии различных пар материалов

Материал	Величина	
	α	F , J/m ²
AlN-Mo	0.926	5.14
AlN-Cr	0.996	5.09
AlN-Ti	0.765	3.01
AlN-Nb	0.687	2.79
AlN-Al	0.585	2.39
AlN-VCrTi	0.640	2.84
VCrTi-Mo	0.714	2.89
VCrTi-Cr	0.660	2.51
VCrTi-Ti	0.877	1.67
VCrTi-Nb	0.956	1.75
VCrTi-Al	0.938	1.50
VCrTi-VCrTi	1.000	2.02

полагается использовать сплав ванадий—хром—титан (VCrTi), а в качестве одной из компонент электроизоляционного барьера нитрид алюминия (AlN), были проведены расчеты относительной площади контакта и энергии адгезии для представляющих практический интерес пар материалов. Приведенные в таблице результаты расчетов свидетельствуют о том, что с точки зрения качества адгезионного контакта для VCrTi и AlN наиболее предпочтительным материалом промежуточного слоя является молибден, что согласуется с выводами [1].

Заключение

1. Полученные зависимости могут использоваться для практических оценок качества адгезионных контактов.

2. При создании многослойных электроизоляционных барьеров в жидкометаллическом бланкете ТЯР для улучшения адгезионного контакта между VCrTi и AlN требуется нанесение промежуточного слоя, например из молибдена.

Список литературы

- Vitkovsky I.V. et al. // Plasma Devices and Operations. 2003. Vol. 11(2). P. 81–87.
- [2] Kirillov I.R. et al. // Proc. of the First International Workshop on Liquid Metal Blanket Experimental Activities, CEA Headquaters, Paris, France, 1997.
- [3] Зимон А.Д. Адгезия пленок и покрытий. М.: Химия, 1977. 352 с.
- [4] Дистлер Г.И. // Поверхностные силы в тонких пленках и дисперсных системах. М.: Наука, 1972. С. 245–261.
- [5] Шоркин В.С. // Упругость и неупругость. Мат. Междунар. науч. симп. по проблемам механики деформируемых тел. М.: МГУ, 2001. С. 453–454.
- [6] Физический энциклопедический словарь. Т. 1. М.: Советская энциклопедия, 1960. 664 с.
- 3 Журнал технической физики, 2007, том 77, вып. 6

- [7] Шоркин В.С., Гордон В.А., Батранина М.А. // Изв. ТулГУ. Сер. Математика, механика, информатика. 2005. Т. 11. Вып. 2. С. 160–173.
- [8] Киттель Ч. Введение в физику твердого тела. М.: Наука, 1978. 792 с.
- [9] Шоркин В.С. // Technomat & Infotel 2004 Materials, methods and technology. 6th Int. Symp. 6–10 September, 2004. Bulgaria. P. 71–86.