01,07

Влияние структурирования аморфных металлических сплавов $Al_{87}Y_{5-x}Gd_xNi_{8-y}$ ($x=0,\ 1,\ 5;\ y=0,\ 4$) на их механические свойства

© Л. Бойчишин 1 , М. Ковбуз 1 , О. Герцик 1 , В. Носенко 2 , Б. Котур 1

Киев, Украина

E-mail: lboichyshyn@yahoo.com

(Поступила в Редакцию 11 мая 2012 г. В окончательной редакции 13 июня 2012 г.)

Исследованы аморфные металлические сплавы (AMC) $Al_{87}Y_5Ni_8$, $Al_{87}Gd_5Ni_8$, $Al_{87}Y_4Gd_1Ni_8$, $Al_{87}Y_4Gd_1Ni_4Fe_4$, полученные методом спинингования расплава на охлажденную подложку. На основе результатов дифференциальной сканирующей калориметрии и рентгеноструктурного анализа рассчитаны энергии активации отдельных стадий кристаллизации, размеры и объемные доли нанокристаллов в аморфной матрице. Показано, что легирование AMC Y или Gd приводит на первой стадии нанокристаллизации к образованию частиц размером 9–15 nm, что обусловливает их высокую микротвердость.

1. Введение

Структура аморфных металлических сплавов (АМС) подобна структуре стекла, где прослеживается только ближний порядок и отсутствуют кристаллические структурные единицы, кристаллическая анизотропия, границы блоков, зерен и другие дефекты структуры, свойственные поликристаллическим сплавам. Следствием этого являются необычные механические, электрические и антикоррозионные свойства. Аморфные сплавы находятся в термодинамически неравновесном состоянии. Нагревание вызывает в сплавах структурную релаксацию, что существенно влияет на изменение их специфических свойств. Длительностью экспозиции сплавов различного элементного состава в определенных температурных пределах можно регулировать их структурные характеристики [1–4].

Нанокристаллические материалы могут быть получены разными способами [5], в частности кристаллизацией металлического стекла. Химический состав и структура нанокристаллов, в результате различных способов их синтеза из аморфных сплавов (термообработка, лазерное облучение, механические напряжения) отличаются. Известно, что механические характеристики сплавов зависят от диаметра зерна (D). Например, при уменьшении размера зерна от $10\,\mu m$ до $10\,nm$ скорость разрушения никелевых покрытий уменьшается от 1330 до $7.9 \, \mu \text{m}^3 / \mu \text{m}$. Износостойкость и твердость наноструктурированных алюминиевых сплавов колеблется в пределах 2.8-3.2 kJ/mm³ и 4.5-5.5 GPa соответственно и являются выше по сравнению с их значениями для аморфных сплавов: 2.4–2.6 kJ/mm³ и 2.5–4.0 GPa соответственно [6].

В поликристаллических материалах, как предел текучести, так и микротвердость, подчиняются закону Пэтча—Холла $\sigma_{\tau} = \sigma_0 + K_y / \sqrt{D}$, где σ_{τ} — предел текучести, σ_0 — напряжение трения, независимое от размера зерна D, K_y — постоянная величина [2].

Ультрадисперсные металлические материалы, синтезированные контролируемой кристаллизацией путем их термообработки, обладают высокой прочностью, что объясняется сродством нанокристаллов с аморфной матрицей. Однако, в случае нанокристаллических сплавов, полученных из аморфных возможны отклонения от закона Пэтча—Холла, что обусловлено деформационным механизмом, отличным от других сплавов. В работе [7] для определения характеристики пластичности с использованием индентора Виккерса получено уравнение $\sigma_H^* = 1 - 14.3(1 - \nu_1 - 2\nu_1^2)\frac{HV}{E_1}$, где HV — микротвердость по Виккерсу, ν_1 — коэффициент Пуассона, E_1 — модуль Юнга одноосного растяжения. Оценен, также, отклик на нагрузку сдвига, т.е. коэффициент Лама: $\lambda = E_1\nu_1/(1-2\nu_1)(1+\nu_1)$.

По этим уравнениям можно достоверно оценивать пластичность металлических материалов со средней микротвердостью. Аморфные и нанокристаллические сплавы на основе АІ являются ценными конструкционными материалами. Наноразмерные структуры таких конструкционных материалов предопределяют их уникальные свойства: высокую прочность, твердость, износостойкость в сочетании с довольно высокой пластичностью и легкостью конструкций. В предыдущих работах [8,9] мы исследовали процессы структурирования аморфных сплавов АІ с редкоземельными и переходными металлами АІ-РЗМ-ПМ и их влияние на магнитные и электрохимические свойства. Цель данной работы — изучение влияния структурирования аморфных сплавов на их механические свойства.

1 209

¹ Львовский национальный университет им. Ивана Франко, Львов, Украина

² Институт металлофизики НАН Украины,

2. Материалы и методика эксперимента

Исследована зависимость микротвердости аморфных и нанокристаллических сплавов на основе алюминия, легированных никелем, железом (ПМ), а также иттрием, гадолинием (P3M): $Al_{87}Y_5Ni_8$ (1), Al₈₇Gd₅Ni₈ (2), Al₈₇Y₄Gd₁Ni₈ (3), Al₈₇Y₄Gd₁Ni₄Fe₄ (4), Al₈₇Gd₅Ni₄Fe₄ (5). Аморфные сплавы в виде ленты шириной $20\,\mu{\rm m}$ и толщиной $30\,\mu{\rm m}$ изготовлены методом спиннингования расплава в Институте металлофизики НАНУ, Киев. Кристаллизация аморфных сплавов исследована методом дифференциальной сканирующей калориметрии (ДСК) с помощью установки Perkin-Elmer Pyris 1. Образцы нагревались в атмосфере аргона со скоростью 20 K/min. Структурный состав АМС изучен на рентгеновском дифрактометре X'-Pert Philips PW 3040 $(CuK_{\alpha}$ -излучение в интервале углов $2\theta = 10-140^{\circ}$). Средний размер зерен определен методом Холла по ширине пиков дифрактограмм. В исходных образцах кристаллическая фаза не обнаружена.

Микротвердость образцов АМС измерена с помощью идентора ПМТ-3 при нагрузке $48.4\,\mathrm{g}$ в течение $15\,\mathrm{s}$. Из семи параллельных измерений определена погрешность $\sim 4\%$. Модуль Юнга для ленточных аморфных сплавов определен с помощью катетометра с оптическим измерительным устройством. Отклонение параллельных измерений составляет 5-7%.

3. Результаты и их обсуждение

Как установлено в предыдущей работе [10], исследованные АМС кристаллизуются в три стадии. На основе данных ДСК рассчитаны энергии активации первой, второй и третьей стадий кристаллизации исследуемых АМС. Как видно из табл. 1, первая стадия кристаллизации происходит с более низким энергетическим барьером в сравнении со второй стадией, т. е. $E_{a1} < E_{a2}$. Первая стадия кристаллизации АМС обусловлена выделением из аморфной матрицы кристаллов основного металлического элемента — Al [10].

Третья стадия полной кристаллизации образцов АМС происходит с низкой энергией активации (табл. 1), что обусловлено диффузионным перераспределением легирующих элементов и увеличением содержания кристаллической фазы без существенного изменения структуры нанокристаллов, что подтверждается результатами рентгеноструктурного анализа [10] и высокоразразрешающей микроскопии [9,10]. Аналогичное явление наблюдалось [11] при нескольких экспозициях термообработки сплава $Al_{90}Ni_4Ce_6$ ($T=150^{\circ}C$). Перегруппировка атомов в нанокристаллах с различным массовым распределением увеличивает их содержание с усредненным диаметром.

В четырехкомпонентных сплавах $Al_{87}Y_4Gd_1Ni_8$ ($T=503~{
m K}$) и $Al_{87}Gd_5Ni_4Fe_4$ ($T=558~{
m K}$) (рис. 1) высо-

Рис. 1. Энергия активации формирования нанокристаллов в первой (E_{a1}) и второй (E_{a2}) стадиях кристаллизации и их объемная доля (g) в сплавах: $I — Al_{87}Y_5Ni_8$, $2 — Al_{87}Gd_5Ni_8$, $3 — Al_{87}Y_4Gd_1Ni_8$, $4 — Al_{87}Y_4Gd_1Ni_4Fe_4$. $5 — Al_{87}Gd_5Ni_4Fe_4$.

Рис. 2. Зависимость температур первой T_1 и второй T_2 стадий кристаллизации и диаметров наночастиц D_1 и D_2 от элементного состава сплавов: $I — Al_{87}Y_5Ni_8$, $2 — Al_{87}Gd_5Ni_8$, $3 — Al_{87}Y_4Gd_1Ni_8$, $4 — Al_{87}Y_4Gd_1Ni_4Fe_4$, $5 — Al_{87}Gd_5Ni_4Fe_4$.

кое содержание нанокристаллических фаз наблюдается после первой стадии кристаллизации. При этом диаметры нанокристаллов, как и температуры $T_{\rm crl}$, в обоих случаях разные. Наличие Fe обусловливает существенное повышение $T_{\rm cr}$ первой и второй стадий кристаллизации, а также увеличение D при $T_{\rm cr2}$ (табл. 2). В пятикомпонентном сплаве 4 после второй стадии кристаллизации количество нанокристаллов занимает половину всего объема материала, а диаметр зерен нанодисперсной фазы D в среднем увеличился от 15 до 25 nm. В случае АМС 1, 2, 3 (отсутствие Fe) доля и диаметр нанокристаллов после второй стадии кристаллизации существенно не изменяются. Таким образом, для кристаллизации этих сплавов характерно увеличение количества наночастиц, практически, без изменения размеров, что очень ценно для технического

_								
	№п/п	AMC	E_{a1} , kJ/mol	E_{a2} , kJ/mol	E_{a3} , kJ/mol			
	1	Al ₈₇ Y ₅ Ni ₈	203 ± 29	261 ± 24	221 ± 12			
	2	$Al_{87}Gd_5Ni_8$	199 ± 5	268 ± 1	213 ± 1			
	3	$Al_{87}Y_4Gd_1Ni_8$	146 ± 5	255 ± 27	204 ± 15			
	4	$Al_{87}Y_4Gd_1Ni_4Fe_4$	241 ± 5	317 ± 5	233 ± 6			
	5	Al ₈₇ Gd ₅ Ni ₄ Fe ₄	256 ± 15	333 ± 21	227 ± 8			

Таблица 1. Энергия активации E_a трех стадий полной кристаллизации исследованных АМС

Таблица 2. Температура отжига (T), объемная доля кристаллической фазы (g) и диаметр (D) нанокристаллов после первой и второй стадий кристаллизации AMC

№ п/п	AMC	$T_1 \pm 1,$ K	<i>g</i> 1	D ₁ , nm	$T_2\pm 1,$ K	82	D ₂ , nm	ΔD , nm
1	$Al_{87}Y_5Ni_8$	532	0.28	20	612	0.39	21	1
2	$Al_{87}Gd_5Ni_8$	510	0.29	15	611	0.29	15	0
3	$Al_{87}Gd_1Ni_8$	503	0.31	9	611	0.31	14	5
4	$Al_{87}Y_4Gd_1Ni_4F_4$	543	0.18	15	647	0.49	25	10
5	$Al_{87}Gd_5Ni_4Fe_4$	558	0.29	22	645	0.59	35	13

Таблица 3. Механические характеристики АМС на основе АІ в исходном состоянии

AMC	HV, GPa	E_1 , GPa	ν_1	HV/E_1	$\sigma_{\!\scriptscriptstyle H}^{*}$	λ, GPa
fcc-aluminum	0.16	71	0.35	0.002	0.988	61.36
$Al_{63}Cu_{25}Fe_{12}^{*}$	7.43	113	0.28	0.066	0.468	63.64
$Al_{70}Pd_{20}Mn_{10}^*$	7.0	200	0.28	0.035	0.716	112.64
$Al_{87}Y_5Ni_8$	1.63	36	0.29	0.045	0.638	20.28
$Al_{87}Gd_5Ni_8$	1.37	20	0.28	0.068	0.448	11.26
$Al_{87}Y_4Gd_1Ni_8$	1.16	41	0.28	0.028	0.772	23.09
$Al_{87}Y_4Gd_1Ni_4Fe_4$	1.15	31	0.30	0.037	0.725	59.62
$Al_{87}Gd_5Ni_4Fe_4$	1.81	18	0.30	0.101	0.249	34.62

^{*}Данные [7].

их использования. Соответствующие характеристики АМС приведены на рис. 2 и в табл. 2.

Полученные зависимости $D = f \ (T_{\rm cr}, \ E_a)$ первой и второй стадий кристаллизации (рис. 2) свидетельствуют о наличии корреляции между этими параметрами. Рост нанокристаллов происходит при более высоких значениях E_a . Если микротвердость является функцией размера наночастиц, формируемых в процессе кристаллизации [6,12], то из анализа вышеприведенных результатов можно сделать вывод об увеличении микротвердости исследуемых нами сплавов уже при температурах первой стадии кристаллизации. Авторы [11,12] пришли к выводу, что микротвердость алюминиевых АМС, независимо от соотношения компонентов $Al_xNi_yFe_2La_3$, на уровне 4 GPa несколько снижается вследствие нагревания, но после нанокристализации возрастает до 5.85 GPa. В нашем случае использование Y или Gd, частичное замещение Ni на Fe, а также совместное наличие легирующих элементов, заметно влияет на микротвердость и производные прочностные характеристики исследуемых АМС уже в исходном состоянии.

Максимальное значение одноосного растяжения (E_1) и пластичности (σ_H^*) характерно для четырехкомпонентного сплава $Al_{87}Y_4Gd_1Ni_8$, энергетический барьер кристаллизации которого самый низкий по сравнению с другими исследуемыми сплавами (табл. 1, рис. 1). Замена 4 ат.% Ni на Fe в этом сплаве, практически, не меняя общей микротвердости, несколько снижает способность материала к одноосному растяжению и величину общей пластичности. Очевидно, в процессе измерения микротвердости методом Виккерса в случае сплавов с низким значением E_a кристаллизации (сплав 3) под давлением индентора может происходить фазовый переход. Наличие Fe в сплаве 4 обусловливает прирост E_a первой стадии кристаллизации $\approx 100\,\mathrm{kJ/mol}.$ Итак, нанокристаллизация сплава 4 менее зависима от давления пирамидки при измерении НV, однако, для него характерен высокий модуль сдвига (коэффициент Лама λ , табл. 3). При более высоких значениях микротвердости и модуля Юнга сплава Al₆₃Cu₂₅Fe₁₂ [7], АМС 4 обладает близким значением отклика на нагрузку сдвига (табл. 3).

Рис. 3. Изменение микротвердости (HV) AMC Al₈₇Y₅Ni₈ (1), Al₈₇Gd₅Ni₈ (2), Al₈₇Y₄Gd₁Ni₈ (3), Al₈₇Y₄Gd₁Ni₄Fe₄ (4), Al₈₇Gd₅Ni₄Fe₄ (5) в зависимости от их элементного состава и температур трех стадий фазовых переходов (при $T_{1,2,3}$ сплавы нагревали в течение 1 h).

Микротвердость исходных исследуемых алюминиевых аморфных сплавов невысокая и колеблется от 1 до 2 GPa, что обусловлено жесткостью алюминия, который является базовым элементом. В результате повышения температуры отжига примерно на 100° , микротвердость AMC $Al_{87}Y_5Ni_8$, $Al_{87}Gd_5Ni_8$, $Al_{87}Gd_5Ni_4Fe_4$ возрастает в 2–3 раза за счет структурного уплотнения. После выдержки AMC при температурах 1, 2 и 3-й стадий кристаллизации наблюдается заметное изменение HV. Значительный прирост микротвердости AMC оказался после первой стадии кристаллизации (рис. 3). Термообработка при $T_{\rm ann} > T_1$ вызывает заметное снижение величины HV.

При изотермическом выдерживании происходит увеличение среднего размера нанокристаллов практически во всех исследуемых АМС, но, особенно, это заметно в случае аморфных сплавов 4 и 5. Максимальный прирост микротвердости наблюдается в трехкомпонентных сплавах $Al_{87}Gd_5Ni_8$, $Al_{87}Y_5Ni_8$. Следовательно, можно утверждать, что для данной группы АМС увеличение размера наночастиц в результате термообработки при температурах второй и третьей стадий нанокристаллизации приводит к снижению их механических характеристик.

4. Заключение

Исследовано влияние процесса наноструктурирования алюминиевых аморфных сплавов $Al_{87}Y_5Ni_8$, $Al_{87}Gd_5Ni_8$, $Al_{87}Y_4Gd_1Ni_8$, $Al_{87}Y_4Gd_1Ni_4Fe_4$, $Al_{87}Gd_5Ni_4Fe_4$ в условиях термообработки при температурах трех стадий кристаллизиции T_1 , T_2 , T_3 . Наивысшей микротвердостью обладают сплавы после термообработки при температуре первой стадии кристаллизации T_1 с энергией активации

 $200-260\,\mathrm{kJ/mol}$, образуются нанокристаллы размером $15-20\,\mathrm{nm}$. Для трехкомпонентных сплавов $Al_{87}Y_5Ni_8$ и $Al_{87}Gd_5Ni_8$ после первой стадии кристаллизации характерна самая высокая дисперсность нанокристаллов $9-15\,\mathrm{nm}$ и микротвердость, достигающая $9-11\,\mathrm{GPa}$.

Список литературы

- [1] Walter Jose Botta. Rev. Adv. Mater. Sci. 18, 469 (2008).
- [2] Z.C. Zhong, X.Y. Jiang, A.L. Greer / Ed. P. Duhaj. Ninth Int. Conf. on Rapidly Quenched and Metastable Materials: Supplement. Proceedings. RQ9, Elsevier, Bratislava (1997). P. 244.
- [3] И.Г. Бродова, Д.В. Башлыков, И.Г. Ширинкина, Т.И. Яблонских, В.В. Столяров. Перспективные материалы. 3, 67 (2003).
- [4] N. Petrescu, M. Petrescu, M. Calin, A.D. Jianu, M. Fecioru. J. Phys. IV (France) 03, C. 7–243 (1993).
- [5] Г.Е. Абросимова, А.С. Аронин, И.И. Зверькова, А.Ф. Гуров, Ю.В. Кирьянов. ФТТ 40, 1, 10 (1998).
- [6] A.L. Greer. In: Nanostr. Mater: Sci. Technol. / Eds G.M. Chow, N.I. Noskova. Kluwer Academic Publ. Netherlands, Dordrecht (1998). P. 143.
- [7] Ю.В. Мильман, С.И. Чугунова, И.В. Гончарова. Электронная микроскопия и прочность материалов **15**, 3 (2008).
- [8] Л. Беднарська, М. Ковбуз, О. Герцик, Б. Котур, В. Носенко. Физико-химическая механика материалов 8, 163 (2010).
- [9] A. Chrobak, B. Kotur, T. Mika, G. Haneczok. J. Magn. Magn. Mater. 321, 2767 (2009).
- [10] T. Mika, M. Karolus, G. Haneczok, L. Bednarska, E. Łagiewka, B. Kotur. J. Non-Cryst. Solids **354**, *27*, 3099 (2008).
- [11] M.A. Munoz-Morris, S. Surinach, M. Gich, M.D. Baro, D.G. Morris. Acta Mater. 51 1067 (2003).
- [12] V.A. Blagojević, D.M. Minić, T. Žak, D.M. Minić. Intermetallics 19, 1780 (2011).
- [13] Ю.К. Ковнеристый, Н.Д. Бахтеева, О.К. Белоусов, Е.В. Попова. Металловедение и термическая обработка металлов 8, 16 (2004).