18

Релаксация монослоя эпитаксиального графена, вызванная электрон-фононным взаимодействием с подложкой

© С.Ю. Давыдов

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Sergei Davydov@mail.ru

(Поступила в Редакцию 4 июня 2012 г.)

В рамках простых моделей эпитаксиального графена и электрон-фононного взаимодействия рассмотрены нормальные (по отношению к подложке) колебания однослойного графена как целого. Рассмотрение проводилось как для металлического, так и для полупроводникового субстрата. Приведенные оценки показывают, что возможность появления двух конкурирующих электронных состояний адатомов графена реализуется только для больших значений константы электрон-фононного взаимодействия. Показано также, что графеновый лист может релаксировать как "внутрь", так и "наружу".

Работа выполнена в рамках программ Президиума РАН "Квантовая физика конденсированных сред" и "Основы фундаментальных исследований нанотехнологий и наноматериалов" и поддержана грантом РФФИ (проект № 12-02-00165 а).

1. Введение

Электронные и фононные свойства однослойного графена в настоящее время исследуются достаточно интенсивно [1-4]. Этого, однако, нельзя сказать об электрон-фононном взаимодействии, число публикаций для которого невелико (см. работы [5-8] и ссылки, приведенные в них; отметим, что здесь мы не рассматриваем эффекты, связанные с изменением электронного спектра графена под действием статической деформации). Что же касается эпитаксиального графена [9], то роль электрон-фононного взаимодействия в формировании его электронных характеристик, насколько известно автору, вообще не изучалась.¹ Здесь мы рассмотрим задачу о колебаниях монослоя эпитаксиального графена как целого, совершающихся по направлению нормали к подложке. В отличие от подавляющего большинства теоретических работ по графену, выполненных в формализме функционала плотности, здесь воспользуемся модельным подходом к описанию эпитаксиального графена, предложенным в работах [10-12].

Общая задача о влиянии бозонного поля на изолированную примесь в металле была рассмотрена в работе [13]. В [14] для описания электрон-фононного взаимодействия в случае адсорбции была предложена упрощенная модель, которая в дальнейшем была обобщена в работе [15]. В рамках этой модели удалось показать, что при достаточно сильном электрон-фононном взаимодействии колеблющемуся адатому могут соответствовать два состояния, различающиеся числами заполнения и длинами адсорбционной связи, между которыми возможны переходы, вызванные каким-либо внешним воздействием [16,17]. В настоящей работе мы обобщим результаты, полученные в [14,15], на монослой адатомов графена. При этом переход между двумя электронными состояниями можно трактовать как релаксацию листа графена относительно подложки.

2. Общие соотношения

Начальная постановка задачи выглядит следующим образом. Рассматривается система, состоящая из одиночного атома с уровнем энергии E и подложки, спектр электронных состояний которой есть ε_k . Взаимодействие между атомом и подложкой описывается матричным элементом V. Электронной подсистеме такой структуры можно сопоставить гамильтониан вида

$$H_{\rm el} = \sum_k \varepsilon_k c_k^+ c_k + Ea^+ a + V \sum_k \left(c_k^+ a + a^+ c_k \right), \quad (1)$$

где $c_k^+(c_k)$ — оператор рождения (уничтожения) электрона в состоянии $|\mathbf{k}\rangle$, $a^+(a)$ — операторы рождения (уничтожения) электрона в состоянии $|a\rangle$ на уровне энергии *E*. Пусть теперь адатом, обладая массой *M*, колеблется с частотой ω_0 в направлении *z*, перпендикулярном поверхности подложки. При этом фононную подсистему можно описать классическим гамильтонианом

$$H_{\rm ph} = \frac{1}{2}M\dot{z}^2 + \frac{1}{2}M(z - z_0)^3, \qquad (2)$$

где z_0 — положение равновесия адатома с числом заполнения n_0 относительно поверхности подложки z = 0. Теперь учтем электрон-фононное взаимодействие

$$H_{\rm el-ph} = w(z - z_0)a^+a,$$
 (3)

где *w* — константа электрон-фононного взаимодействия [14]. Применяя к полному гамильтониану

¹ Нужно подчеркнуть, что ввиду интенсивного изучения графена делать подобного рода замечания становится все более рискованным.

системы $H = H_{\rm el} + H_{\rm ph} + H_{\rm el-ph}$ теорему $\partial \langle H \rangle / \partial z = \langle \partial H / \partial z \rangle$ [18], получим

$$\bar{z} - z_0 = -(w/M\omega_0^2)(\bar{n} - n_0),$$
 (4)

где $\bar{n} = \langle a^+ a \rangle$ — число заполнения изолированного адатома, скобки означают усреднение по основному состоянию, \bar{z} — положение равновесия адатома, отвечающее числу заполнения \bar{n} [14]. Из (1) и (3) следует, что энергия квазиуровня ε с учетом электрон-фононного взаимодействия есть

$$\bar{\varepsilon} \equiv \varepsilon(\bar{n}) = E - \left(w^2 / M \omega_0^2 \right) \left(\bar{n} - n_0 \right).$$
(5)

Функцию Грина одиночного адатома $g_a(\omega)$, где ω — энергетическая переменная, можно представить в виде

$$g = \left(\omega - \bar{\varepsilon} - \Lambda(\omega) + i\Gamma(\omega)\right)^{-1}.$$
 (6)

Здесь функция полуширины квазиуровня адатома

$$\Gamma(\omega) = \pi V^2 \rho_{\rm sub}(\omega), \tag{7}$$

где $\rho_{\rm sub}(\omega)$ — плотность состояний (ПС) подложки; $\Lambda(\omega)$ — функция сдвига квазиуровня адатома (гибридизационный сдвиг), связанная с функцией $\Gamma(\omega)$ соотношением причинности вида

$$\Lambda(\omega) = \frac{1}{\pi} P \int_{-\infty}^{\infty} \frac{\Gamma(\omega')}{\omega - \omega'} d\omega', \qquad (8)$$

где *Р* — символ главного значения. ПС изолированного адатома, соответствующая функции Грина (6), равна

$$\bar{\rho}(\omega) = \frac{1}{\pi} \frac{\Gamma(\omega)}{\bar{\Omega}^2 + \Gamma^2(\omega)},\tag{9}$$

где $\bar{\Omega} = \omega - \bar{\varepsilon} - \Lambda(\omega)$. При нулевой температуре число заполнения \bar{n} определяется как

$$\bar{n} = \int_{-\infty}^{E_{\rm F}} \bar{\rho}(\omega) \, d\omega, \qquad (10)$$

где $E_{\rm F}$ — уровень Ферми субстрата. Отметим, что выражение (10) является самосогласованным уравнением, так как $\bar{\rho}(\omega)$ содержит \bar{n} .

Представим теперь набор адатомов, выстроенных в гексагональную решетку графена.² Взаимодействие адатомов будем рассматривать как прямой обмен электронами между ближайшими соседями *i* и *j*, для чего введем оператор

$$T_{ij} = t \left(a_i^+ a_j + a_j^+ a_i \right) \quad (i \neq j), \tag{11}$$

где *t* — интеграл (амплитуда) перехода. Для нахождения соответствующих функций Грина *G_{ij}* воспользуемся

уравнением Дайсона

$$G_{ij} = g_{ij} + g_{ip}T_{pq}G_{qj}, \qquad (12)$$

где подразумевается суммирование по повторяющимся индексам и $g_{ij}(\omega) = \delta_{ij} g(\omega), \ \delta_{ij}$ — символ Кронекера. Тогда, как показано в [10–12], легко найти функции Грина эпитаксиального графена $G_g(\omega, \mathbf{k}) \equiv G_{ii}$

$$G_{g}(k_{x}, k_{y}, \omega)_{\pm}^{-1} = \tilde{\Omega} + i\Gamma(\omega) \mp tf(k_{x}, k_{y}),$$

$$f^{2}(k_{x}, k_{y}) = 3 + 2\cos(k_{x}a_{0}\sqrt{3})$$

$$+ 4\cos(k_{x}a_{0}\sqrt{3}/2)\cos(3k_{y}a_{0}/2), \quad (13)$$

где a_0 — расстояние между ближайшими соседями, $\mathbf{k} = (k_x, k_y)$. Отметим, что функция fописывает закон дисперсии для графена $\varepsilon_{\pm}(k_x, k_y) =$ $= \tilde{\varepsilon} \pm t f(k_x, k_y)$, где знак плюс относится к верхней зоне π^* ($\tilde{\Omega} = \omega - \tilde{\varepsilon} - \Lambda(\omega) > 0$, $\tilde{\varepsilon} \equiv \varepsilon(\tilde{n}) =$ $= E - (w^2/M\omega_0^2)(\tilde{n} - n_0)$), а минус — к нижней зоне π ($\tilde{\Omega} < 0$) [1] (здесь и далее тильдами помечаются величины, относящиеся к решетке взаимодействующих адатомов). В соответствии с общим правилом ПС эпитаксиального графена $\rho_g(\omega, \mathbf{k}) = -\pi^{-1} \operatorname{Im} G_g(\omega, \mathbf{k})$, т.е.

$$\rho_{g\pm}(\omega, \mathbf{k}) = \frac{1}{\pi} \frac{\Gamma(\omega)}{\pi [\tilde{\Omega} \mp t f(\mathbf{k})]^2 + \Gamma^2(\omega)}.$$
 (14)

Для упрощения дальнейших расчетов воспользуемся, как и в [10–12], низкоэнергетической аппроксимацией спектра графена [1], положив

$$\varepsilon_{\pm}(\mathbf{q}) = \tilde{\varepsilon} \pm \frac{3}{2} t a_0 |\mathbf{q}|.$$
 (15)

Здесь $\mathbf{q} = \mathbf{K} - \mathbf{k}$, где $\mathbf{K} = a_0^{-1}(2\pi/3\sqrt{3}, 2\pi/3)$ — волновой вектор точки Дирака. Выражение (13) справедливо для малых значений $|\mathbf{q}|$. Мы, однако, воспользуемся им для интегрирования ПС (12) по зоне Бриллюэна, введя вектор обрезания $q_B \ge |\mathbf{q}|$. Получим [10–12]

$$\rho_{g\pm} = \frac{1}{\pi\xi^2} \Biggl[\Gamma(\omega) \ln \frac{(\tilde{\Omega} \mp \xi)^2 + \Gamma^2(\omega)}{\tilde{\Omega}^2 + \Gamma^2(\omega)} + 2\tilde{\Omega} \left(\operatorname{arctg} \frac{\tilde{\Omega}}{\Gamma(\omega)} - \operatorname{arctg} \frac{\tilde{\Omega} \mp \xi}{\Gamma(\omega)} \right) \Biggr], \quad (16)$$

где $\xi = 3ta_0q_B/2$. Для дальнейшего анализа необходимо конкретизировать природу подложки.

3. Металлический субстрат

Воспользуемся для описания металлического субстрата простейшей моделью ПС, положив $\rho_{sub}(\omega) = \rho_m(\omega) = \text{const.}$ Это так называемое приближение бесконечно широкой зоны Андерсона [19]. При этом $\Lambda(\omega) \to 0$, а $\Gamma(\omega)$ обращается в константу Γ .

² Здесь мы рассматриваем "гладкую" подложку, на которой все адатомы углерода, образующие графен, находятся в одном и том же электронном состоянии.

Введем следующие безразмерные величины: $\rho_{g\pm}^* = \rho_{g\pm}\Gamma$, $y = \omega/\Gamma$, $\eta = \varepsilon/\Gamma$, $\tilde{\Omega}^* = \tilde{\Omega}/\Gamma = y - \eta$, $\eta = E^* - \xi \tilde{n}$, $E^* = E/\Gamma + \xi n_0$, $\xi = w^2/M\omega_0^2\Gamma$, $\xi^* = \xi/\Gamma$. Тогда для металлической подложки вместо (14) получим

$$\rho_{g\pm}^{*}(\tilde{\Omega}^{*}) = \frac{1}{\pi(\xi^{*})^{2}} \left[\ln \frac{(\tilde{\Omega}^{*} \mp \xi^{*})^{2} + 1}{(\tilde{\Omega}^{*})^{2} + 1} + 2\tilde{\Omega}^{*} \times \left(\operatorname{arctg}(\tilde{\Omega}^{*}) - \operatorname{arctg}(\tilde{\Omega}^{*} \mp \xi^{*}) \right) \right]. \quad (17)$$

Для нахождения числа заполнения p_z -орбитали адатома углерода \tilde{n} при нулевой температуре необходимо проинтегрировать соответствующую ПС по энергии от $-\infty$ до уровня Ферми $E_{\rm F}$. Тогда для случая $\tilde{\Omega}^* = E_{\rm F}^* - E^* + \xi \tilde{n} < 0$ ($E_{\rm F}^* = E_{\rm F}/\Gamma$) получим

$$\tilde{n} = \int_{-\infty}^{\Omega_{\rm F}^*} \rho_{g-}^*(\tilde{\Omega}^*) d\tilde{\Omega}^*.$$
(18)

Если $\tilde{\Omega}_{\rm F}^* > 0$, то вместо (18) имеем

$$\tilde{n} = \int_{-\infty}^{0} \rho_{g-}^*(\tilde{\Omega}^*) d\tilde{\Omega}^* + \int_{0}^{\tilde{\Omega}_F^*} \rho_{g+}^*(\tilde{\Omega}^*) d\tilde{\Omega}^*.$$
(19)

Выражения (18) и (19) являются самосогласованными уравнениями, так как их правые части содержат \tilde{n} . Еще раз отметим, что мы рассматриваем нормальные (по отношению к подложке) колебания эпитаксиального графена как целого. Поэтому числа заполнения \tilde{n} одинаковы для всех адатомов, составляющих эпитаксиальный графен. Несмотря на то что интегралы (18) и (19) в случае ПС (17) берутся точно, будем рассматривать упрощенные оценки, выделив предельный случай сильной (по сравнению с взаимодействием соседних атомов углерода в графене) связи адатома с подложкой, соответствующий неравенствам $\xi \ll \Gamma$, $\xi^* \ll 1$ [12].

Найдем первую поправку к числу заполнения \bar{n} , вызванную взаимодействием адатомов. Как показано в работе [12], изменение ПС при переходе от одиночного адатома углерода к графену есть

$$\delta \rho_g^* \equiv \rho_{g\pm}^* - \bar{\rho}^* \approx \frac{4}{3} \, \xi^* \frac{|\bar{\Omega}^*|}{(\bar{\Omega}^*)^2 + 1} \, \bar{\rho}^*, \qquad (20)$$

где ПС изолированного адатома (9) в безразмерном виде равна

$$\bar{\rho}^* = \frac{1}{\pi} \frac{1}{(\bar{\Omega}^*)^2 + 1}.$$
(21)

Интегрируя (20), при $\bar{\Omega}_{\rm F}^* < 0$ получим в соответствии с (18) выражение

$$\delta n \equiv \tilde{n} - \bar{n} = \frac{2}{3\pi} \xi^* \frac{1}{(\bar{\Omega}_F^*)^2 + 1}.$$
 (22)

При $\bar{\Omega}_{\rm F}^* > 0$, воспользовавшись (19), найдем

$$\delta n \equiv \tilde{n} - \bar{n} = \frac{2}{3\pi} \xi^* \frac{2(\bar{\Omega}_{\rm F}^*)^2 + 1}{(\bar{\Omega}_{\rm F}^*)^2 + 1}.$$
 (23)

Как следует из выражений (22) и (23), $\delta n > 0$. Это означает, что заряд адатомов $\tilde{Z} = 1 - \tilde{n}$ убывает по сравнению с зарядом изолированного адатома. Другими словами, прямой обмен ведет к деполяризации адатомов. Отметим, что этот вывод справедлив для любого вида взаимодействия адатомов [20], в том числе и с учетом корреляции [21].

Обсудим подробнее возможные значения числа заполнения *n*. В соответствии с (5) и (21) получаем уравнение

$$\operatorname{ctg}(\pi \bar{n}) = (E^* - E^*_{\mathrm{F}}) - \xi \bar{n}.$$
 (24)

Легко видеть, что при $\xi < \pi$ имеется только одно решение (24), при $\xi > \pi$ таких решений три, однако только два из них (с максимальным и минимальным значениями \bar{n}) отвечают устойчивым положениям равновесия адатома (см. [14]). Условием устойчивости является выполнение неравенства $\partial \bar{n}/\partial E < 0$ (или $\partial \bar{n}/\partial E^* < 0$). Игнорируя силы изображения [15], можно показать, что при $\xi > \pi$ и $|E^* - E_F^* - \xi/2| > B(\xi)$ ($B(\xi) = (\xi/\pi) \arccos(\pi/\xi)^{1/2} - [(\xi - \pi) - 1]^{1/2}$) имеется одно устойчивое положение равновесия адатома [14]. При $|E^* - E_F^* - \xi/2| < B(\xi)$ таких устойчивых положений два: если $(E^* - E_F^*) > \xi/2$, то минимуму энергии

Рис. 1. Зависимость чисел заполнения адсорбированных на металлической подложке изолированного атома \tilde{n} (I, 2) и атома, встроенного в решетку графена \tilde{n} (3, 4), от относительной энергии $(E - E_F)/\Gamma$ для значений константы электронфононного взаимодействия $\xi = 2$ (I, 3) и 4 (2, 4) в режиме сильной связи адатома с подложкой $(\xi^* = \xi/\Gamma = 0.1)$.

Рис. 2. Зависимость чисел заполнения изолированного атома \bar{n} (светлые символы) и атома, встроенного в решетку графена \tilde{n} (темные символы), от относительной энергии $(E - E_F)/\Gamma$ для случая адсорбции на металлической подложке в режиме сильной связи. 1 — максимальные значения чисел заполнения, 2 — промежуточные значения чисел заполнения, 3 — минимальные значения чисел заполнения; $\xi = 4, \xi^* = 0.1$. Вертикальной линией обозначен переход от максимального заполнения к минимальному с ростом $(E - E_F)/\Gamma$.

системы соответствует минимальное значение \bar{n} , при $(E^* - E_F^*) < \xi/2$ — максимальное значение \bar{n} [14]. Отметим, что все эти условия не связаны с величиной числа заполнения.

Результаты численных расчетов представлены на рис. 1. Уменьшение значений чисел заполнения л и \tilde{n} с ростом $(E^* - E_{\rm F}^*)/\Gamma$ объясняется смещением квазиуровня адатома вверх относительно уровня Ферми системы, ведущим к его опустошению. Отметим, что при $\xi = 4$ и $(E^* - E_{\rm F}^*)/\Gamma = 2$ выполняется условие $(E^* - E_{\rm F}^*)/\Gamma = \xi/2$. При этом получаем два значения п, равные 0.25 и 0.75, отвечающие одинаковой энергии. При $\xi = 4$ имеем $B(4) \approx 0.09$, так что область существования двух устойчивых решений узка: $1.91 < (E^* - E_F^*)/\Gamma < 2.09$. Соответствующая зависимость чисел заполнения, полученных из решения уравнения (24), от энергии $(E^* - E_F^*)/\Gamma$ приведена на рис. 2. Вертикальная черта отмечает скачкообразный переход чисел заполнения одиночного адатома и адатома решетки от максимального значения к минимальному с ростом $(E^* - E_F^*)/\Gamma$. Отметим, что такое изменение чисел заполнения будет сопровождаться скачкообразным изменением длины адсорбционной связи. Действительно, из выражения (4) следует, что при переходе чисел заполнения от 0.75 к 0.25 графеновый лист подтягивается к поверхности металлической подложки, т. е. имеет место релаксация "внутрь".

4. Полупроводниковый субстрат

Для описания полупроводника воспользуемся простейшей моделью ПС, предложенной Халдейном и Андерсоном [22], согласно которой $\rho_{sub}(\omega) = \rho_{sc}(\omega)$ равно $\rho = \text{const}$ при $|\omega| \ge E_g/2$ и нулю при $|\omega| < E_g/2$, где E_g — ширина запрещенной зоны (начало отсчета энергии совпадает с серединой запрещенной зоны). При этом $\Gamma(\omega) \equiv \Gamma = \text{const}$ при $|\omega| \ge E_g/2$ и $\Gamma(\omega) \equiv 0$ при $|\omega| < E_g/2$. Тогда функция сдвига квазиуровня принимает вид $\Lambda(\omega) = (\Gamma/\pi) \ln |(\omega - E_g/2)/(\omega + E_g/2)|$. Для дальнейшего анализа удобно ввести безразмерные величины: $x = 2\omega/E_g$, $\eta = \eta^* - \xi \bar{n}$, $\eta^* = 2E/E_g + \xi n_0$, $\xi = 2w^2/M\omega_0^2 E_g$, $\xi^* = 2\xi/E_g$, $e_g = E_g/2\Gamma$, $\lambda(x) = \pi^{-1} \ln |(x-1)/(x+1)|$.

Как показано в работе [12], в режиме сильной связи графена с подложкой, когда $\xi \ll \Gamma$ или $e_g \xi^* \ll 1$, изменение плотности состояний при переходе от одиночного адатома углерода к графену дается выражением (20), где, однако, $\bar{\Omega}^* = 2\bar{\Omega}/E_g = e_g(x - \eta) - \lambda(x)$. Рассматривая невырожденный полупроводник, получим для зонного вклада в изменение числа заполнения (см. подробнее [23])

$$\delta n \equiv \tilde{n} - \bar{n} = -\frac{4}{3\pi} \xi^* \int_{-\infty}^{-1} D(x) dx, \qquad (25)$$
$$D(x) = \frac{|\bar{\Omega}^*|}{[(\bar{\Omega}^*)^2 + 1]^2},$$

где

$$\bar{n} = \frac{1}{\pi} \int_{-\infty}^{-1} \frac{dx}{(\bar{\Omega}^*)^2 + 1}.$$
 (26)

Рассмотрим для простоты случай $|\eta| < 1$, т.е. случай, характерный именно для полупроводниковой подложки, так как при $|\eta| \gg 1$ мы возвращаемся к случаю металлического субстрата. Полагая $e_g \gg 1$, но по-прежнему оставаясь в режиме сильной связи $e_g \xi^* \ll 1(\xi^* \ll e_g^{-1})$, в области x < -1 можно положить $\bar{\Omega}^* \approx e_g(x - \eta)$. Строго говоря, отбрасывание слагаемого $\lambda(x)$ в выражении для $\bar{\Omega}^*$ некорректно, так как при $x \to -1$ функция $\lambda(x) \to \infty$. При этом, однако, данная область чрезвычайно узка. Поэтому принятая здесь аппроксимация вносит лишь малую ошибку при вычислении интегралов (25) и (26). Окончательно получаем

$$\delta n \approx -\frac{2}{3\pi} \frac{\xi^*}{e_g^3 (1+\eta)^2}.$$
 (27)

$$\bar{n} \approx \frac{1}{\pi e_g^2} \frac{1}{1+\eta}.$$
(28)

Из уравнения (28) получаем

$$\bar{n}_{1,2} \approx \frac{1+\eta^*}{2\xi} \left(1 \pm \sqrt{1 - \frac{4\xi}{\pi e_g^2 (1+\eta^*)^2}} \right).$$
(29)

Необходимым условием справедливости выражения (29) является выполнение неравенства $\xi > (1 + \eta^*)/2$. Таким образом, как и в случае металлической подложки, константа электрон-фононного взаимодействия должна быть достаточно велика (тот же вывод делается и в работах [14,15]). Также необходимо, чтобы второй член в подкоренном выражении был меньше единицы. Отметим, что $\delta n < 0$, так что при переходе от \bar{n}_1 к \bar{n}_2 графеновый монослой будет релаксировать "наружу".

До сих пор в этом разделе мы обсуждали вклады в числа заполнения, связанные с валентной зоной полупроводниковой подложки. Теперь рассмотрим вклад локального состояния $-1 < x_l < 1$, определяемого по уравнению $\bar{\Omega}^* = 0$ [23]. Раскладывая $\lambda(x)$ в ряд с учетом $|\eta| < 1$, получим

$$x_l \approx \eta / [1 + (2/\pi e_g)].$$
 (30)

Число заполнения локального состояния есть $\bar{n}_l = |1 - d\Lambda/d\omega|_{\omega_l}^{-1}$ [23] или в безразмерных величинах $\bar{n}_l = |1 - e_g^{-1}d\lambda/dx|_{x_l}^{-1}$ при условии, что локальный уровень $\omega_l(x_l)$ лежит ниже уровня Ферми. В противном случае $\bar{n}_l = 0$. Полагая, что полупроводник является собственным и $\eta < 0$, получим

$$\bar{n}_l = \left(1 + \frac{2}{\pi e_g} \frac{1}{1 - x_l^2}\right)^{-1}.$$
 (31)

Отсюда при $e_g \gg 1$ и $\xi^* \ll e_g^{-1}$ находим $\bar{n}_l \sim 1$. Таким образом, в рассмотренном случае локальные уровни не участвуют в создании двух электронных состояний, которые могут привести к скачкообразной перестройке слоя эпитаксиального графена.

5. Заключение

Итак, в настоящей работе для частных случаев показано, что в принципе электрон-фононное взаимодействие может приводить к электронным и структурным перестройкам эпитаксиального графена. Более того, установлено, что лист графена может релаксировать как "внутрь", так и "наружу". При этом только на основании сделанных оценок нельзя утверждать, что первый случай всегда реализуется только для металлической подложки, а второй — только для полупроводниковой. Таким образом, в настоящей работе проблема лишь поставлена. Поскольку, к сожалению, пока информация (как экспериментальная, так и теоретическая) о таких эффектах отсутствует, проводить более тщательное рассмотрение вызванной электрон-фононным взаимодействием релаксации слоя графена мы считаем преждевременным.

Список литературы

 A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim. Rev. Mod. Phys. 81, *1*, 109 (2009).

- [2] V.N. Kotov, B. Uchoa, V.M. Pereira, A.H. Castro Neto, F. Guinea. arXiv: 1012.3484.
- [3] D.R. Cooper, B. D'Anjou, N. Ghattamaneni, B. Harack, M. Hilke, A. North, N. Majlis, M. Massicotte, L. Vandsburger, E. Whiteway, V.Yu. arXiv: 1110.6557.
- [4] А.В. Елецкий, И.М. Искандерова, А.А. Книжник, Д.Н. Красиков. УФН 181, 3, 233 (2011).
- [5] K.M. Borysenko, J.T. Mullen, E.A. Barry, S. Paul, Y.G. Semenov, J.M. Zavada, M.B. Nardelli, K.W. Kim. arXiv: 0912.0562.
- [6] M. Bianchi, E.D.I. Rienks, R. Balog, L. Horneker, Ph. Hofmann, S. Lizzit, A. Baraldi. arXiv: 0910.4126.
- [7] К.В. Рейх, Е.Д. Эйдельман. ФТТ 53, 8, 1618 (2011).
- [8] S.M. Budalyan, F.M. Peeters. arXiv: 1201.2723.
- [9] J. Hass, W.A. de Heer, E.H. Conrad. J. Phys.: Cond. Matter 20, 323 202 (2008).
- [10] С.Ю. Давыдов. ФТП 45, 5, 629 (2011).
- [11] С.Ю. Давыдов. Письма в ЖТФ 37, 10, 64 (2011).
- [12] С.Ю. Давыдов. ФТП 47, 1, 2013.
- [13] F.D.M. Haldane. Phys. Rev. B 15, 1, 281 (1977).
- [14] В.Е. Кравцов, А.Г. Мальшуков. ЖЭТФ **75**, *2(8)*, 691 (1978).
- [15] С.Ю. Давыдов. ФТТ 22, 11, 3358 (1980).
- [16] В.Е. Кравцов, А.Г. Мальшуков. ЖЭТФ 77, 1(7), 691 (1979).
- [17] С.Ю. Давыдов, А.Д. Чесноков. ФТТ 24, 1, 305 (1982).
- [18] Л.Д. Ландау, Е.М. Лифшиц. Квантовая механика. Наука, М. (1974). 752 с.
- [19] P.W. Anderson. Phys. Rev. 124, 1, 41 (1961).
- [20] С.Ю. Давыдов. Поверхность 8, 17 (1991).
- [21] С.Ю. Давыдов. ФТТ 21, 8, 2283 (1979).
- [22] F.D.M. Haldane, P.W. Anderson. Phys. Rev. B 13, 6, 2553 (1976).
- [23] С.Ю. Давыдов, С.В. Трошин. ФТТ 49, 8, 1508 (2007).