05;12 Продольная и объемная сжимаемость натриево-известкового стекла при давлениях до 10 GPa

© А.С. Савиных,¹ Г.В. Гаркушин,¹ С.В. Разоренов,¹ Г.И. Канель²

¹ Институт проблем химической физики РАН,

142432 Черноголовка, Московская область, Россия

² Институт теплофизики экстремальных состояний Объединенного института высоких температур РАН,

125412 Москва, Россия

e-mail: savas@ficp.ac.ru

(Поступило в Редакцию 30 мая 2006 г.)

Представлены результаты изменений продольной и объемной сжимаемости натриево-известкового стекла. Продольная упругая сжимаемость восстановлена путем анализа профиля волны сжатия в рамках приближения простой центрированной волны. Объемная сжимаемость определена методом смесей. Найдено, что коэффициент Пуассона при одноосном упругом сжатии возрастает вплоть до значений, близких к его предельной величине v = 0.5. Сильная зависимость коэффициента Пуассона от девиаторных напряжений приводит к возрастанию среднего механического импеданса стекла в процессе его разрушения сжатием.

PACS: 62.50.+p

Введение

Для расчетов ударно-волновых явлений в стекле, в частности волн разрушения [1–3], необходимы сведения об его объемной и продольной сжимаемости. Для получения соответствующей информации обычно используют методы физики ударных волн [4], однако задача осложняется тем, что силикатные стекла имеют высокие (5-9 GPa) значения предела упругости, аномальную сжимаемость в области упругого деформирования и необратимое уплотнение под действием давления. Ранее сообщалось [5] об удачном применении метода смесей для измерения сжимаемости медистого стекла, однако полученные данные соответствуют давлениям за пределами диапазона, где наблюдались волны разрушения, и в любом случае требуют проверки и подтверждения. Натриево-известковое стекло в этом смысле представляет интерес по той причине, что с ним проведено наибольшее количество ударно-волновых исследований. Это стекло имеет плотность $\rho_0 = 2.48 \, \text{g/cm}^3$, продольную скорость звука $c_1 = 5.73 \pm 0.03$ km/s и коэффициент Пуассона $\nu = 0.23$.

В настоящей статье представлены результаты измерений продольной и объемной сжимаемости натриевоизвесткового стекла в диапазоне давлений, где наблюдались волны разрушения. Из сопоставления этих данных определен ход изменения коэффициента Пуассона в процессе одноосного сжатия.

Определение продольной сжимаемости стекла

На рис. 1 представлен измеренный ранее [6] профиль скорости свободной поверхности $u_{fs}(t)$ пластины натриево-известкового стекла, по которой был произведен удар алюминиевой пластиной со скоростью 1.9 ± 0.05 km/s. По результатам измерений профиля волны сжатия в рамках приближения простой центрированной волны [4] может быть восстановлена диаграмма одноосного деформирования материала. Для простой волны, описываемой веером прямолинейных характеристик, приращения продольного напряжения $d\sigma$ и деформации $d\varepsilon_x = -dV/V_0$ связаны соотношением

$$d\sigma = \rho_0 a_\sigma^2 d\varepsilon_x,\tag{1}$$

где a_{σ} — фазовая скорость распространения участка волны с напряжением сжатия σ в координатах Лагранжа. Для простой центрированной волны фазовая

Рис. 1. Профиль скорости поверхности пластины натриевоизвесткового стекла толщиной 5.9 mm после удара алюминиевой пластиной толщиной 2 mm [6]. Слабая волна сжатия AS есть следствие воздушной ударной волны.

Рис. 2. Скорость распространения возмущений и деформация в продольной волне сжатия в стекле.

скорость a_{σ} определяется как

$$a_{\sigma} = \frac{h}{h/c_l + t(\sigma)},\tag{2}$$

где h — расстояние между поверхностью соударения (полюсом веера характеристик центрированной волны) и сечением в образце, для которого анализируется профиль напряжения, $\sigma(t)$, t — интервал времени, отсчитываемый от фронта упругого предвестника. При анализе профиля скорости свободной поверхности $u_{fs}(t)$ используется эмпирический закон удвоения скорости $u_{fs}(t) = 2u_p(t)$ и $d\sigma(t) = \rho a_{\sigma} du_p(t)$. Более детальный анализ с учетом взаимодействия между падающей и отраженной волнами вблизи поверхности образца дает

$$a_{\sigma} = c_l \frac{2h - c_l t(\sigma)}{2h + c_l t(\sigma)}.$$
(3)

Результаты обработки профиля скорости свободной поверхности представлены на рис. 2 в виде зависимостей деформации одноосного сжатия и скорости распространения возмущений от напряжения в волне сжатия в стекле от напряжения сжатия.

Измерение объемной сжимаемости стекла

Для определения объемной сжимаемости стекла использовался метод смесей [5]. Измерялась ударная адиабата смеси стекла с парафином. Объем единицы массы смеси V_m представляет собой сумму объемов парафина V_p и стекла V_{gl} :

$$V_m(p) = \alpha V_{gl}(p) + (1 - \alpha) V_p(p), \qquad (4)$$

где α — массовая доля стекла в смеси. При небольших давлениях и соответственно небольших температурах ударного сжатия удельный объем парафина $V_p(P)$ с достаточной точностью может быть определен по его

ударной адиабате и измеренному давлению p. При измеренном удельном объеме $V_m(p)$ смеси и удельном объеме парафина $V_p(p)$ удельный объем стекла $V_{gl}(p)$ рассчитывается из соотношения

$$V_{gl}(p) = [V_1(p) - (1 - \alpha)V_p(p)]/\alpha.$$
 (5)

Для приготовления смеси стекло измельчалось в шаровой мельнице до размера частиц 0.1 mm. Образцы для измерения ударной сжимаемости диаметром 60 и толщиной 10 mm изготавливались путем прессования порошковой смеси стекла и парафина при соотношении их масс 50/20. Плотность полученных таким образом смесевых образцов составляла 1.66, что на 0.5% ниже расчетной плотности 1.669 g/cm³.

Ударные волны амплитудой в диапазоне 2-7 GPa генерировались в исследуемых образцах ударом алюминиевой пластины толщиной 7 mm, разогнанной с помощью взрывных устойств до 1.1 или 1.8 km/s. Давление ударного сжатия варьировалось использованием промежуточных экранов-ослабителей из меди или полиметилметакрилата. В экспериментах с применением электроконтактных датчиков и лазерного допплеровского измерителя скорости VISAR [7] измерялись значения скорости свободной поверхности экранов, скорости распространения ударной волны в смесевых образцах и профили скорости свободной поверхности $u_{fs}(t)$ смесевых образцов. Давление ударного сжатия, удельный объем смеси определялись методом отражения [8]. Погрешность определения скорости ударной волны и массовой скорости ударно-сжатой смеси составляет ±1%. В последующих расчетах сжимаемости стекла использовалась ударная адиабата парафина в виде $U_s = 1.965 + 2.325 u_p$, полученная усреднением приведенных в [9,10] экспериментальных данных.

Результаты измерений суммированы в таблице, где W — скорость свободной поверхности экрана; U_{sm} , p_m , u_m — скорость ударной волны, давление и массовая скорость ударно-сжатой смеси; V_m , V_p , V_{gl} — значения удельного объема смеси и ее компонент: парафина и стекла соответственно; V_{gl}/V_{0gl} — степень

Рис. 3. Результаты измерений ударной сжимаемости смеси парафина со стеклом.

№ опыта	Материал экрана	W, km/s	U _{sm} , km/s	p _m , GPa	<i>u</i> _m , km/s	$V_m, m^3/kg$	$V_p, m^3/kg$	$V_{gl}, m^3/kg$	V_{gl}/V_{0gl}
1	Cu	0.51	3.296	2.558	0.4386	0.5223	0.2485	0.3833	0.9505
2	Cu	0.69	3.743	3.486	0.5937	0.5069	0.2416	0.3714	0.9211
3	Cu	0.69	3.775	3.585	0.591	0.5081	0.2410	0.3739	0.9275
4	PMMA	1.69	3.965	4.731	0.718	0.4932	0.2356	0.3607	0.8945
5	Al	1.1	4.088	5.210	0.7676	0.4893	0.2330	0.3588	0.8898
6	Al	1.1	4.066	5.187	0.769	0.4885	0.2331	0.3575	0.8866
7	Cu	1.07	4.433	6.574	0.893	0.4810	0.2284	0.3537	0.8773

Результаты экспериментов по ударному сжатию смеси стекла с парафином

сжатия стекла в смеси. Результаты измерений ударной сжимаемости смеси представлены на рис. 3, из которого видно, что в диапазоне 2–7 GPa полученные данные описываются линейным соотношением $U_{sm} = 2.32 + 2.33u_m$.

На рис. 4 сопоставляются результаты измерения продольной и объемной сжимаемости натриево-известкового стекла, для сравнения представлены экспериментальные точки [5] для медистого стекла. Погрешность этих данных по оценкам существенно превышает погрешность исходных измерений (±1%). Большая погрешность вызвана тем, что основной вклад в сжимаемость смеси вносит парафин, ударная адиабата которого известна не вполне точно. На рис. 4 показана также оценка объемной сжимаемости по результатам измерений продольной сжимаемости в предположении постоянства коэффициента Пуассона. Сопоставление результатов измерений с оценкой объемной сжимаемости, сделанной в предположении постоянства коэффициента Пуассона, указывает на существенное возрастание последнего.

Рис. 4. Продольная и объемная сжимаемость натриевоизвесткового стекла. • — данные по объемной сжимаемости, рассчитанные по результатам измерения ударной адиабаты смеси стекла с парафином; *I* — продольная сжимаемость по результатам обработки профиля скорости свободной поверхности стеклянной пластины; *2* — оценка объемной сжимаемости по результатам измерений продольной сжимаемости в предположении постоянства коэффициента Пуассона; ∆ — результаты измерений объемной сжимаемости медистого стекла [5].

Изменение коэффициента Пуассона стекла при одноосном сжатии

Результаты измерений объемной сжимаемости стекла в диапазоне давлений 2–7 GPa в пределах погрешности описываются линейным соотношением

$$p = K\varepsilon, \tag{6}$$

где K = 46.2 GPa — модуль объемного сжатия, $\varepsilon = 1 - V/V_0$ — деформация сжатия. Зная продольную и объемную сжимаемость материала, можно определить зависимость коэффициента Пуассона v от степени одноосного сжатия, воспользовавшись соотношением

$$\nu = \frac{3 - \rho_0 a_\sigma^2(\varepsilon)/K}{3 + \rho_0 a_\sigma^2(\varepsilon)/K},\tag{7}$$

где $a_{\sigma}(\varepsilon)$ — скорость распространения участка волны одноосного сжатия, соответствующего напряжению σ , в координатах Лагранжа.

Результаты обработки экспериментальных данных, показанные на рис. 5, демонстрируют примерное постоянство коэффициента Пуассона до напряжения одноосного сжатия $\sigma_r = 1.5 \,\text{GPa}$ (давление $p \approx 0.9 \,\text{GPa}$). По мере дальнейшего сжатия он возрастает и достигает значения $\nu = 0.5$ при напряжении сжатия $\sigma_x \approx 8$ GPa. Заметим, что при этом или близком к нему напряжении имеет место переход от упругого деформирования к пластическому в условиях одноосного ударного сжатия [6]. Для дальнейшего использования полученные данные нужно описать некоторым соотношением. При этом возникает вопрос: что определяет изменение коэффициента Пуассона при одноосном сжатии — гидростатические или девиаторные компоненты деформации и напряжения? Ультразвуковые измерения скорости звука в плавленном кварце [11] указывают на некоторое возрастание коэффициента Пуассона при гидростатическом сжатии. С другой стороны, сильная зависимость коэффициента Пуассона от давления противоречит наблюдениям волн разрушения. В волне разрушения падение девиаторных напряжений сопровождается возрастанием плотности материала [6]. При этом скорость распространения упругих волн в разрушенном материале весьма близка к продольной скорости звука при нулевом давлении и значительно превышает a_{σ} при напряжении 6.6 GPa в волне

Рис. 5. Зависимость коэффициента Пуассона от деформации одноосного сжатия, рассчитанная по результатам измерений продольной (1) и объемной (2) сжимаемости стекла.

Рис. 6. Зависимость коэффициента Пуассона стекла от величины девиаторной компоненты напряжения сжатия: • результаты непосредственной обработки экспериментальных данных, кривая — аппроксимирующая зависимость (8).

сжатия, соответствующей условиям измерений. Такое изменение скорости распространения волн невозможно в случае сильной зависимости коэффициента Пуассона от плотности, но не противоречит предположению о его возрастании по мере увеличения девиаторных напряжений. В соответствии с этим на рис. 6 результаты измерений представлены в виде зависимости коэффициента Пуассона стекла от величины девиаторной компоненты напряжения сжатия. В диапазоне до 2.3 GPa полученные данные хорошо аппроксимируются соотношением

$$v = 0.2617 + 0.01428(\sigma_x - p)^3.$$
 (8)

Сильная зависимость коэффициента Пуассона от девиаторных напряжений позволяет согласовать различные данные о кинематических параметрах волн разрушения, в частности о приращении массовой скорости и напряжения в ней. Анализ профилей давления при формировании волн разрушения в стопке стеклянных пластин [6] приводит к оценкам приращения напряжения сжатия в волне разрушения 0.15–0.19 GPa и приращения массовой скорости 41–52 m/s при значении напряжения одноосного сжатия перед ее фронтом 6.4 GPa. При этом падение величины девиаторных напряжений в волне разрушения согласуется с прямыми измерениями [2] разности главных напряжений в ударно-сжатом стекле. Однако профили скорости свободной поверхности стеклянных пластин дают существенно меньшие изменения параметров состояния в волне разрушения.

На рис. 7 представлены профили скорости свободной [6] и контактной поверхностей стеклянной пластины, измеренные при напряжении ударного сжатия 6.7 GPa. На профилях четко видна вторая волна сжатия, образующаяся в результате переотражения волны разгрузки от фронта волны разрушения [1–3]. В случае постоянного коэффициента Пуассона приращение скорости в переотраженной волне должно составлять примерно те же 41–52 m/s. Численное моделирование волн разрушения [12] дает даже несколько большее значение этой величины. Между тем измеренные значения приращения скорости в переотраженной волне составляют лишь 21 ± 5 m/s.

На рис. 8 приведена диаграмма разгрузки ударносжатого стекла, суммирующая эти данные. Видно, что механический импеданс разрушенного стекла, описывающий его поведение при разгрузке, в среднем превышает импеданс упругого сжатия и разгрузки исходного материала. Это согласуется с выводом о сильной зависимости коэффициента Пуассона от девиаторных напряжений, если предположить, что разгрузка разрушенного материала имеет преимущественно упругий характер. В этом случае релаксация напряжений при разрушении сжатием должна сопровождаться уменьшением

Рис. 7. Профили скорости свободной поверхности [6] и поверхности контакта с преградой из оргстекла при ударном сжатии пластины натриево-известкового стекла толщиной 5.9 mm до напряжения 6.7 GPa. Стрелками показан выход на поверхность второй волны сжатия, образующейся в результате переотражения волны разгрузки от фронта волны разрушения.

Рис. 8. Диаграмма разгрузки ударно-сжатого стекла.

коэффициента Пуассона и соответственно увеличением механического импеданса и продольной скорости звука в разрушенном материале. При этом преимущественно упругая разгрузка разрушенного материала может рассматриваться как свидетельство большой величины сил трения между его частицами.

Заключение

В работе представлены результаты измерений продольной и, с использованием метода смесей, объемной сжимаемости натриево-известкового стекла. Новые данные об объемной сжимаемости стекла несколько отличаются от полученных аналогичным способом ранее [5], что, вероятно, связано с погрешностью ударной адиабаты второго компонента смеси — парафина. Найдено, что коэффициент Пуассона при одноосном упругом сжатии возрастает вплоть до значений, близких к предельному $\nu = 0.5$. Сильная зависимость коэффициента Пуассона от девиаторных напряжений приводит к возрастанию среднего механического импеданса стекла в процессе его разрушения сжатием и позволяет согласовать противоречивые данные о кинематических параметрах волн разрушения.

Работа выполнена при поддержке РАН в рамках программы фундаментальных исследований "Физика и механика сильносжатого вещества и проблемы внутреннего строения Земли и планет", программы фундаментальных исследований ОЭММПУ РАН "Накопление поврежденности, разрушение, изнашивание и структурные изменения материалов при интенсивных механических, температурных и радиационных воздействиях", и European Research Office USARDSG-UK в рамках контракта N 62558-03-M-0038.

Авторы благодарят доктора A. Rajendran, US Army Research Office за стимулирующие дискуссии и поддержку исследований.

Список литературы

- [1] Разоренов С.В., Канель Г.И., Фортов В.Е., Абазехов М.М. // Стекло и керамика. 1991. № 7. С. 13–15.
- [2] Brar N.S., Bless S.J., and Rosenberg Z. // Appl. Phys. Lett. 1991. Vol. 59. N 26. P. 3396–3398.
- [3] Канель Г.И., Разоренов С.В., Фортов В.Е. // Успехи механики. 2005. Т. 3. № 3. С. 3–51.
- [4] Канель Г.И., Разоренов С.В., Уткин А.В., Фортов В.Е. Ударно-волновые явления в конденсированных средах. М.: Янус-К, 1996. 407 с.
- [5] Дремин А.Н., Ададуров Г.А. // ФТТ. 1964. Т. 6, № 6. С. 1757–1764.
- [6] Kanel G.I., Bogatch A.A., Razorenov S.V., Zhen Chen // J. Appl. Phys. 2002. Vol. 92. N 9. P. 5045–5052.
- [7] Barker L.M. and Hollenbach R.E. // J. Appl. Phys. 1972. Vol 43. P. 4669.
- [8] Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явлений. М.: Наука, 1966. 687 с.
- [9] McQueen R.G., Marsh S.P., Taylor J.W. et al. // High Velocity Impact Phenomena / Ed. by R. Kinslow. New York: Academic Press, 1970. P. 293–417, 515–568.
- [10] LASL Shock Hugoniot Data / Ed. by S.P. Marsh. Univ. California Press, Berkeley, 1980.
- [11] Suito K. and Miyoshi M. // High Pressure Science and Technology–1993 / Ed. by S.C. Schmidt et al. AIP CP 309. 1994. P. 101–104.
- [12] Partom Y. // Int. J. Impact Engng. 1998. Vol. 21. N 9. P. 791–799.