01;04 Объемно-плазменная генерация ионов H⁻ в низковольтном ксенон-водородном разряде. II

© Ф.Г. Бакшт, В.Г. Иванов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: baksht@mail.ioffe.ru

(Поступило в Редакцию 1 июня 2006 г.)

Теоретически рассмотрен низкольтный ксенон-водородный разряд при различных токах эмиссии катода $(j_s = 2-20 \text{ A/cm}^2)$ и межэлектродном расстоянии L = 1 сm. Проведена оптимизация основных параметров плазмы разряда, в частности полной концентрации водорода и ксенона в объеме, для достижения наибольшей концентрации отрицательных ионов водорода $N_{\rm H^-}(L)$ на прианодной границе плазмы. В оптимизированных режимах рассчитаны распределения всех параметров плазмы по длине газоразрядного промежутка. По данным расчетов, при умеренных плотностях тока эмиссии катода $j_s \approx 5-10 \text{ A/cm}^2$ в оптимизированных режимах горения разряда концентрация отрицательных ионов водорода в прианодной области плазмы составляет $N_{\rm H^-}(L) \approx (1.5-2.5) \cdot 10^{12} \, {\rm cm}^{-3}$. Полное давление плазмы при этом $p_0 = 0.5-0.6$ Torr.

PACS: 52.80.-s

В [1] была изложена теория низковольтного (НВ) разряда в смеси ксенона с молекулярным водородом. В качестве примера был рассчитан разряд, горящий при полном давлении плазмы $p_0 = 0.6$ Torr, токе эмиссии катода $j_s = 10$ A/cm² (катод из LaB₆), температуре электродов: катода $T_1 = 1900$, анода $T_2 = 600$ K и межэлектродном расстоянии L = 1 сm. При заданном давлении p_0 была проведена оптимизация компонентного состава плазмы для получения наибольшей концентрации $N_{\rm H^-}(L)$ отрицательных ионов водорода на границе плазмы с анодом (точнее, на границе с прианодным ленгмюровским слоем). При этом варьировались полные концентрации ксенона $\langle N_{\rm Xe}^{(0)} \rangle$ и молекулярного водорода $\langle N_{\rm H_2}^{(0)} \rangle$. Символ $\langle \ldots \rangle$ означает здесь усреднение величины по межэлектродному промежутку.

В результате было показано, что в НВ ксенон-водородном разряде может быть получена достаточно большая концентрация отрицательных ионов водорода (в рассмотренном примере $N_{\rm H^-}(L) \approx (2-2.5) \cdot 10^{12} \,{\rm cm^{-3}}$), которая примерно вдвое меньше оптимизированного значения $N_{{\rm H}^-}(L)$, полученного, по данным расчетов, в цезий-водородном НВ-разряде. При этом предполагалось, что оба разряда горят при одинаковых значениях j_s и *L* и при катодном падении потенциала $\varphi_1 = 9 \text{ V}$, примерно равном порогу прямой диссоциации E_d/e молекул H₂ электронным ударом из основного электронноколебательного состояния $X^{1}\Sigma_{g}^{+}(0)$ ($E_{d} \approx 8.8 \,\mathrm{eV}$). Считалось, что в каждом из этих разрядов плазма создавалась исключительно путем ионизации добавки: соответственно ксенона или цезия. Основное отличие между двумя указанными видами разряда состояло в том, что оптимизированное значение $\langle N_{\rm Xe}^{(0)} \rangle$, как и должно быть, существенно превышало значение $\langle N_{Cs}^{(0)} \rangle$.

Температура T_e в ксенон-водородном разряде хотя и заметно превышала температуру T_e в цезий-водородном

разряде, все же была недостаточно высока для того, чтобы был существенным вклад в ионообразование от ионизации водорода: плазма создавалась вследствие ионизации ксенона, средняя концентрация $\langle N_{\rm Xe}^{(0)} \rangle$ которого в зазоре была близка к средней концентрации $\langle N_{\rm H_2}^{(0)} \rangle$ водорода.

Поскольку использование цезия в качестве ионизирующейся примеси в ряде случаев нежелательно, представляет интерес подробнее рассмотреть ксенон-водородный разряд в качестве возможного источника ионов H⁻. Этому посвящена настоящая работа, выполненная по предложению Физико-технического центра ФИАН им. П.Н. Лебедева (г. Протвино).

Основное внимание уделено зависимости параметров плазмы разряда и, в частности, концентрации отрицательных ионов водорода $N_{\rm H^-}(L)$ от тока эмиссии j_s катода. Что касается напряжения U на разрядном промежутке, то, как и в [1], оно будет выбираться таким, чтобы катодное падение потенциала $\varphi_1 \approx E_d/e$. Это обеспечивает максимальный разогрев электронов плазмы катодным пучком при отсутствии прямой диссоциации молекул H₂ пучковыми электронами из основного состояния (подробнее см. [2]).

Рассмотрим расчет и оптимизацию НВ ксенон-водородного разряда при различных токах эмиссии j_s катода. Методика расчета разряда была описана в [1,3]. В [1] оптимизация разряда проводилась при заданном давлении p_0 путем варьирования усредненных по зазору концентраций водорода $\langle N_{\rm H_2}^{(0)} \rangle = \langle N_{\rm H_2}(x) + N_{\rm H}(x)/2 \rangle$ и ксенона $\langle N_{\rm Xe}^{(0)} \rangle = \langle N_{\rm Xe}(x) + N_{\rm Xe^+}(x) \rangle$. В настоящей работе оптимизация разряда для получения максимальной величины $N_{\rm H^-}(L)$ проводится, при заданных j_s и L, путем варьирования как концентраций компонент плазмы $\langle N_{\rm H_2}^{(0)} \rangle$ и $\langle N_{\rm Xe}^{(0)} \rangle$, так и полного давления p_0 плазмы. Пример такой оптимизации при $j_s = 10$ A/cm² приведен

Рис. 1. Оптимизация параметров низковольтного разряда Xe/H₂ для получения наибольшей концентрации ионов H⁻ на прианодной границе плазмы: L = 1 cm, $j_s = 10 \text{ A/cm}^2$, $T_1 = 1900$, $T_2 = 600 \text{ K}$, $\varphi_1 = 9 \text{ V}$. $I - N_{\text{H}^-}(L)$, 10^{11} cm^{-3} ; $2 - n_e(L)$, 10^{12} cm^{-3} ; 3 - j, A/cm²; 4 - U, V; $5 - \langle N_{\text{Xe}}^{(0)} \rangle$, 10^{15} cm^{-3} ; $6 - p_0$, 10^{-1} Torr. На рис. 3–5 параметры L, T_1 , T_2 и φ_1 те же, что на рис. 1.

на рис. 1. Для каждого $\langle N_{\rm H_2}^{(0)} \rangle$ путем вариации значений полного давления p_0 и концентрации $\langle N_{\mathrm{Xe}}^{(0)} \rangle$ находилось максимальное значение $N_{\rm H^-}(L)$, которое представлено кривой 1. Соответствующие значения $\langle N_{\rm Xe}^{(0)} \rangle$ и p_0 показаны на кривых 5 и 6. На кривых 2-4 показаны значения концентрации электронов $n_e(L)$ на прианодной границе плазмы, тока ј разряда и напряжения U на разряде. Из рис. 1 видно, что при некотором значении $\langle N_{\rm H_2}^{(0)}
angle pprox 1.66 \cdot 10^{15} \, {\rm cm}^{-3}$ (точнее, при соответствующем наборе величин $\langle N_{\rm H_2}^{(0)} \rangle$, $\langle N_{\rm Xe}^{(0)} \rangle$ и p_0) достигается наибольшее возможное значение $N_{\mathrm{H}^{-}}(L)$, которому соответствует максимум на кривой 1. Распределения параметров плазмы по газоразрядному промежутку, соответствующие указанному максимуму $N_{\rm H^-}(L)$ на кривой 1, приведены на рис. 1, *b* в [1]. Отметим, что величина *p*₀ представляет собой суммарное давление всех компонент плазмы, в том числе электронов и ионов, причем p_0 является постоянной, т.е. не зависящей от x, величиной. Из рис. 1 видно, в частности, что при практически неизменной величине тока *j* разряда, при увеличении *p*₀ сверх значения $p_0 \approx 1$ Torr наблюдается резкое уменьшение концентрации $N_{\rm H^-}(L)$ ионов H⁻. Это объясняется соответствующим понижением температуры Те электронов в плазме вследствие увеличения потерь энергии электронов на разогрев компонент плазмы и, в частности, на колебательное возбуждение молекул H₂.

Результаты аналогичной оптимизации НВ-режима горения ксенон-водородного разряда для других значений тока эмиссии j_s катода представлены на рис. 2-5. На этих рисунках (для оптимизированных режимов горения разряда) приведены распределения по длине газоразрядного промежутка основных параметров плазмы, включая расчетную концентрацию отрицательных ионов водорода $N_{\rm H^{-}}(x)$. Соответствующие значения тока эмиссии катода *j*_s и полного давления плазмы *p*₀ приведены в подписях к рисункам. Отметим, что так же, как и в [1], на рисунках за нуль отсчета потенциала $\varphi(x)$ принята поверхность катода, так что $\varphi(0) = \varphi_1$ падению потенциала в прикатодном ленгмюровском слое пространственного заряда. Прианодное падение потенциала ϕ_2 приведено в подписях к рисункам. На рисунках приведены также распределения по длине газоразрядного промежутка концентрации электронов $n_e(x)$, газовой температуры $T_g(x)$, концентрации атомарного водорода $N_{\rm H}(x)$.

Из рис. 2–5 и рис. 1, *с* в [1] видно, что с увеличением тока эмиссии j_s возрастают концентрация $N_{\rm H^-}(L)$ и давление плазмы p_0 , соответствующие оптимальным режимам горения разряда. Это связано с увеличением мощности jU, вкладываемой в плазму НВ-разряда при уве-

Рис. 2. Распределение параметров плазмы HB разряда Xe/H₂ по зазору в оптимальном режиме горения. $J_s = 2 \text{ A/cm}^2$, $p_0 = 0.3 \text{ Torr}$, $\varphi_2 = 2.61 \text{ eV}$. $\langle N_{Xe}^{(0)} \rangle = 1.22 \cdot 10^{15} \text{ cm}^{-3}$, $\langle N_{H_2}^{(0)} \rangle = 0.96 \cdot 10^{15}$, U = 5.94 V, $j = 1.81 \text{ A/cm}^2$. $I - T_e$, eV; $2 - n_e$, 10^{13} cm^{-3} ; $3 - N_{\text{H}^-}$, 10^{12} cm^{-3} ; $4 - 0.1\varphi$, V; $5 - 10 T_g$, eV; $6 - N_{\text{H}}$, 10^{15} cm^{-3} ; $7 - N_{Xe}$, 10^{15} cm^{-3} ; $8 - N_{\text{H}_2}$, 10^{15} cm^{-3} .

Puc. 3. To же, что на рис. 2, $j_s = 5 \text{ A/cm}^2$, $p_0 = 0.5 \text{ Torr}$, $\varphi_2 = 2.17 \text{ eV}$. $\langle N_{Xe}^{(0)} \rangle = 1.74 \cdot 10^{15}$, $\langle N_{H_2}^{(0)} \rangle = 1.38 \cdot 10^{15} \text{ cm}^{-3}$, U = 6.53 V, $j = 4.57 \text{ A/cm}^2$. $I - T_e$, eV; $2 - n_e$, 10^{13} cm^{-3} ; $3 - N_{\text{H}^-}$, 10^{12} cm^{-3} ; $4 - 0.1 \varphi$, V; $5 - 10 T_g$, eV; $6 - N_{\text{H}}$, 10^{15} cm^{-3} ; $7 - N_{Xe}$, 10^{15} cm^{-3} ; $8 - N_{H_2}$, 10^{15} cm^{-3} .

Интересно определить место рассмотренных выше оптимальных режимов горения НВ ксенон-водородного разряда на соответствующих вольт-амперных характеристиках (ВАХ) разряда. Для примера на рис. 6 приведен участок расчетной ВАХ ксенон-водородного разряда, соответствующий низковольтному режиму, при токе эмиссии катода $j_s = 5 \text{ A/cm}^2$. В этом случае ток эмиссии j_s заметно превышает ионный ток и обратный электронный ток, текущий из плазмы на катод. Поэтому ВАХ близка к характеристике с насыщением тока j разряда и $j \approx j_s$.

Характеристика ограничена со стороны больших напряжений на разряде значением напряжения $U = U_2$, при котором катодное падение потенциала φ_1 таково, что при этом происходит смена механизма релаксации

Puc. 4. To же, что на рис. 2, $j_s = 15 \text{ A/cm}^2$, $p_0 = 0.7 \text{ Torr}$, $\varphi_2 = 2.16 \text{ eV}$. $\langle N_{Xe}^{(0)} \rangle = 1.63 \cdot 10^{15}$, $\langle N_{H_2}^{(0)} \rangle = 1.58 \cdot 10^{15} \text{ cm}^{-3}$, U = 6.8 V, $j = 13.3 \text{ A/cm}^2$. $I - T_e$, eV; $2 - n_e$, 10^{14} cm^{-3} ; $3 - N_{\text{H}^-}$, 10^{12} cm^{-3} ; $4 - 0.1 \varphi$, V; $5 - 10 T_g$, eV; $6 - N_{\text{H}}$, 10^{15} cm^{-3} ; $7 - N_{Xe}$, 10^{15} cm^{-3} ; $8 - N_{H_2}$, 10^{15} cm^{-3} .

в плазме катодного пучка электронов [2]. Это связано с тем, что при реализующемся в катодной области отношении $n_e/N_{
m H_2} \sim 10^{-2}$ при бо́льших значениях φ_1 релаксация по энергии катодного пучка происходит уже не путем столкновений пучковых электронов с тепловыми электронами плазмы, как это предполагается в теории разряда, а путем возбуждения разлетного $b^3 \Sigma^+_{\mu}$ терма молекулы H₂ и более высоко возбужденных состояний молекулы H₂: $B^{1}\Sigma_{u}^{+}$, $C^{1}\Pi_{u}^{\pm}$ и т.п. При этом энергия катодного пучка начинает расходоваться не столько на нагрев тепловых электронов, сколько на прямую диссоциацию, а также на электронное возбуждение молекулы H₂. Теория разряда, развитая в [1] и в настоящей работе, в таких условиях перестает быть применимой. Поскольку при $U > U_2$ молекулярный водород в разряде начинает интенсивно разрушаться электронным катодным пучком, использование столь больших напряжений U на разряде должно приводить к уменьшению скорости объемной генерации ионов Н⁻ в процессе диссоциативного прилипания тепловых электронов к колебательно возбужденным молекулам H₂. Поэтому для интенсивной объемной генерации ионов H⁻ в разряде наиболее целесообразно использовать лишь низковольтный участок ВАХ разряда, заключенный между точкой гашения U_1 и напряжением U_2 . При этом катодное падение φ_1 лишь незначительно превышает порог прямой диссоциации *E*_d/*e* молекул катодным пучком.

Puc. 5. To же, что на рис. 2, $j_s = 20 \text{ A/cm}^2$, $p_0 = 1 \text{ Torr}$, $\varphi_2 = 1.85 \text{ eV}$. $\langle N_{\text{Xe}}^{(0)} \rangle = 1.93 \cdot 10^{15}$, $\langle N_{\text{H}_2}^{(0)} \rangle = 2.14 \cdot 10^{15} \text{ cm}^{-3}$, U = 7.42 V, $j = 17.7 \text{ A/cm}^2$. $I - T_e$, eV; $2 - n_e$, 10^{14} cm^{-3} ; $3 - N_{\text{H}^-}$, 10^{12} cm^{-3} ; $4 - 0.1 \varphi$, V; $5 - 10 T_g$, eV; $6 - N_{\text{H}}$, 10^{15} cm^{-3} ; $7 - N_{\text{Xe}}$, 10^{15} cm^{-3} ; $8 - N_{\text{H}_2}$, 10^{15} cm^{-3} .

Остановимся на некоторых особенностях расчета ВАХ разряда, приведенной на рис. 6. Расчет проводился следующим образом. Вначале при заданных параметрах разряда *j*_s, *L*, *T*₁ и *T*₂ проводилась оптимизация разряда, т.е. значения $\langle N_{\rm Xe}^{(0)} \rangle$, $\langle N_{\rm H_2}^{(0)} \rangle$ и p_0 варьировались для получения максимальной величины $N_{\rm H^-}(L)$. Соответствующая оптимальная точка показана на ВАХ разряда (рис. 6). Оптимальное напряжение на разряде обозначено как U₀. Затем рассчитывался участок ВАХ между точкой гашения U₁ и максимальным напряжением U₂. Ввиду малости изменения напряжения U (а также и параметров плазмы) на этом участке характеристики, расчет проводился приближенно. Считалось, что на этом участке полное количество ксенона в газоразрядном промежутке постоянно и равно тому количеству ксенона, которое было определено в оптимальной точке, т.е. при $U = U_0$. Таким образом, при расчете ВАХ усредненная концентрация $\langle N_{\rm Xe}^{(0)} \rangle$ считалась постоянной. Отметим, что получающееся при этом изменение концентрации $\langle N_{
m H_2}^{(0)}
angle$ невелико и составляет $|\Delta \langle N_{
m H_2}^{(0)}
angle | / \langle N_{
m H_2}^{(0)}
angle \leq 20\%$. В ряде расчетов постоянной считалась величина $\langle N_{\rm H_2}^{(0)} \rangle$, которая полагалась равной своему оптимизированному значению, рассчитанному для $U = U_0$. Получающаяся при этом ВАХ практически совпадала с приведенной на рис. 6, а относительное изменение $|\Delta \langle N_{Xe}^{(0)} \rangle| / \langle N_{Xe}^{(0)} \rangle$ также не превышало 20%.

Проведенные расчеты показали, что оптимальные для генерации ионов H⁻ режимы горения HB ксенонводородного разряда (им соответствует катодное падение напряжения $\varphi_1 \approx 9 \text{ V}$) реализуются при сравнительно низком напряжении U на газоразрядном промежутке и располагаются вблизи точки гашения разряда (рис. 6).

В заключение остановимся на определении концентрации положительных ионов водорода $N_{\rm H}^+, N_{\rm H_2}^+$ и $N_{\rm H_3}^+$ в разряде. Для самосогласованного определения концентрации положительных ионов водорода в рамках использованной в настоящей работе системы уравнений (см. [1]) дополнительно решались уравнения движения для положительных ионов совместно с соответствующими уравнениями непрерывности. В уравнениях непрерывности учитывались процессы генерации ионов Н+ и H₂⁺ в результате ионизации атомарного [4] и молекулярного [5] водорода электронным ударом; основной процесс конверсии ионов H_2^+ : $H_2^+ + H_2 \rightarrow H_3^+ + H$ [6], приводящий к образованию ионов Н₃⁺, диссоциативная рекомбинация ионов H_2^+ [7] и H_3^+ [8], а также взаимная нейтрализация ионов H^+ и H^- , H_2^+ и H^- , H_3^+ и Н⁻ [9]. В результате решения уравнений движения и непрерывности для положительных ионов с бомовскими граничными условиями на обоих концах газоразрядного промежутка были получены распределения концентрации положительных ионов водорода по длине зазора.

Рис. 6. Участок ВАХ вблизи оптимального режима горения разряда. $j_s = 5 \text{ A/cm}^2$, $p_0 = 0.5 \text{ Torr}$, L = 1 cm, $T_1 = 1850$, $T_2 = 600 \text{ K}$. Отмечены точка гашения разряда $(U = U_1)$ и точка, соответствующая оптимизированному режиму $(U = U_0)$. Усредненные полные концентрации водорода и ксенона в оптимизированном режиме при $U = U_0$: $\langle N_{\text{H}_2}^{(0)} \rangle = 1.38 \cdot 10^{15}$, $\langle N_{\text{Xe}}^{(0)} \rangle = 1.74 \cdot 10^{15} \text{ cm}^{-3}$. I - j(U), A/cm²; $2 - \varphi_1(U)$, V.

Полученные расчетные концентрации $N_{\rm H}^+$, $N_{\rm H_2}^+$ и $N_{\rm H_3}^+$ оказались на порядок и выше мешьше, чем расчетная концентрация $N_{\rm Xe}^+$. Например, в режиме горения разряда при токе эмиссии катода $j_s = 10 \,\mathrm{A/cm^2}$, согласно расчетам, отношение суммарной концентрации положительных ионов водорода к концентрации ионов Xe⁺ составляет менее 0.1. Так что, как и предполагалось, вклад положительных ионов водорода в концентрацию плазмы оказывается пренебрежимо малым. Это связано как со сравнительно малой скоростью генерации ионов H⁺ и H₂⁺ в рассматриваемых режимах горения разряда [1], так и с большой величиной подвижности и коэффициента диффузии относительно легких ионов водорода по сравнению с ионами Xe⁺.

Таким образом, в работе проведена оптимизация режимов горения низковольтного ксенон-водородного разряда для интервала плотности тока эмиссии катода $j_s = 1-20$ A/cm². В зависимости от j_s определены оптимальное полное давление плазмы p_0 и ее компонентный состав, в частности количество ксенона и молекулярного водорода, которые обеспечивают максимальную концентрацию отрицательных ионов водорода $N_{\rm H^-}(L)$ на прианодной границе плазмы.

Авторы благодарны В.Е. Балакину за поддержку работы.

Список литературы

- [1] Бакит Ф.Г., Иванов В.Г. // ЖТФ. 2006. Т. 76. Вып. 7. С. 124– 128.
- [2] Бакшт Ф.Г., Иванов В.Г. // Физика плазмы. 1986. Т. 12. № 3. С. 286–293.
- [3] Бакит Ф.Г., Елизаров Л.И., Иванов В.Г. // Физика плазмы. 1990. Т. 16. № 7. С. 854–861.
- [4] Johnson L.C., Hinnov E. // QSRT.1973. Vol. 13. P. 333-358.
- [5] Sawada K., Fujimoto T. // J. Appl. Phys. 1995. Vol. 78. N 5. P. 2913–2924.
- [6] Shao J.D., Ng C.Y. // J. Chem. Phys. 1986. Vol. 84. N 8. P. 4317–4326.
- [7] Larrson M. et al. // Physica Scripta. 1995. Vol. 51. P. 354-358.
- [8] Jensen M.J. et al. // Phys. Rev. A. 2000. Vol. 63. N 5. P. 052 701.
- [9] Matveyev A.A., Silakov V.P. // Plasma Sources Sci. Technol. 1995. Vol. 4. P. 606–617.