02;03;07 Инициирование детонационной волны при обтекании клина сверхзвуковым потоком водородно-кислородной смеси резонансным лазерным излучением

© Л.В. Безгин, В.И. Копченов, А.М. Старик, Н.С. Титова

Центральный институт авиационного моторостроения им. П.И. Баранова, 111116 Москва, Россия e-mail: star@ciam.ru

(Поступило в Редакцию 11 апреля 2006 г.)

Проанализированы особенности формирования наклонной детонационной волны при обтекании сверхзвуковым потоком водородно-кислородной смеси плоского клина. Показано, что возбуждение электронного состояния $b^1 \Sigma_g^+$ молекулярного кислорода резонансным лазерным излучением с длиной волны 762 nm позволяет осуществить детонационное горение на расстоянии ~ 1 m от носика клина при низкой температуре газа (500–600 K). При этом достаточно проводить облучение газа в узкой приосевой области потока с поперечным размером 0.5–1 cm перед носиком клина. Показано, что лазерно-индуцированное возбуждение молекулярного кислорода в несколько раз эффективнее простого нагрева смеси для инициирования детонационной волны.

PACS: 47.40.Rs, 42.62.-b

Введение

Реализация детонационного горения смеси в сверхзвуковом потоке позволяет не только существенно сократить длину зоны энерговыделения по сравнению с обычным гомогенным или диффузионным режимами горения, но и получить более высокие значения температуры и давления газа [1]. Анализу возможности реализации детонационного горения в горючих смесях, движущихся со сверхзвуковой скоростью, посвящено значительное число работ [2-6]. Было показано, что при воспламенении смеси, в зависимости от геометрии и параметров газа в потоке, могут возникать различные типы как стационарных, так и нестационарных режимов горения и, в частности, детонационный режим. Важнейшими задачами при реализации детонационного горения являются стабилизация детонационной волны в сверхзвуковом потоке и инициирование воспламенения смеси при невысоких значениях температуры газа. Самой простой схемой течения, в которой достигается стабилизация детонационной волны, является обтекание клина или конуса сверхзвуковым потоком горючей смеси. Воспламенение здесь происходит за фронтом наклонной ударной волны, центрированной на носике клина, а детонационная волна формируется на некотором расстоянии от поверхности клина в результате взаимодействия волны сжатия, возникающей в зоне горения (тепловыделения), с фронтом наклонной ударной волны [2]. При небольших полууглах раскрытия клина ($\beta = 8 - 10^{\circ}$) расстояние, на котором формируется детонационная волна в практически интересном диапазоне параметров потока (давление $P_0 = 10^3 - 10^4$ Pa, температура $T_0 = 400-700 \,\mathrm{K}$ и число Маха $M_0 = 4-6)$, даже для водородно-кислородной смеси слишком велико $(\sim 10 \, \text{m})$ [7]. Поэтому поиск методов интенсификации

процессов формирования детонационной волны в такой геометрии является исключительно важной задачей.

Недавние исследования [8,9] показали, что существенного сокращения длины зон воспламенения и тепловыделения в сверхзвуковом потоке смесей H₂/O₂ (воздух) и CH₄/O₂ (воздух) за фронтом наклонной ударной волны можно добиться, возбуждая молекулы O₂ в электронное состояние $b^1\Sigma_g^+$ лазерным излучением с длиной волны $\lambda_I = 762$ nm, генерируемым, например, диодным лазером, даже при малых значениях подведенной к газу энергии излучения ($E_a \sim 10^{-3}$ J/cm³). Представляет интерес провести анализ эффективности использования такого метода для сокращения длины зоны формирования детонационной волны при обтекании клина горючей смесью. Такой анализ и проводится в данной работе.

Постановка задачи и физико-математическая модель

Рассмотрим обтекание клиновидного тела с полууглом раскрытия β сверхзвуковым потоком смеси H₂/O₂. Пусть на поток перед носиком клина в некоторой области, длина которой вдоль потока равна l_p , а высота равна Y_e , действует излучение с длиной волны $\lambda_I = 762$ nm, интенсивность которого одинакова во всей области воздействия. Частота этого излучения ν_I резонансна частоте связанно-связанного электронного перехода $m(X^3\Sigma_g^-, V'=0, J'=9, K'=8) \rightarrow n(b^1\Sigma_g^+, V''=0, J''=8, K''=8)$ молекулы O₂, где V' и V'' — колебательные, а J', K' и J'', K'' — вращательные квантовые числа в состояниях $X^3\Sigma_g^-$ и $b^1\Sigma_g^+$ соответственно. При заданных J', K' и J'', K'' величина коэффициента поглощения для рассматриваемого электронно-колебательного перехода максимальна при температуре газа T = 300 K.

Рис. 1. Схема течения и расчетная область.

Схема течения приведена на рис. 1. Параметры потока перед зоной воздействия: $P_0 = 10^4$ Pa, $T_0 = 500-600$ K, $M_0 = 6.$

Как и в [8,9], будем рассматривать электронно-возбужденные молекулы $\mathrm{O}_2(b^1\Sigma_g^+), \ \mathrm{O}_2(a^1\Delta_g)$ и атомы $O(^{1}D)$, которые могут возникать в реагирующей смеси вследствие протекания химических реакций и процессов электронно-электронного обмена, как отдельные химические компоненты с соответствующей энтальпией образования и полагать, что колебательные, вращательные и поступательные степени свободы молекул смеси находятся в термодинамическом равновесии.

Анализ проведен для случая, когда $l_p \ll L_v$, где L_v длина поглощения. В этом случае анализ можно проводить, используя приближение оптически тонкого слоя. Газодинамика течения реагирующего газа Н2/О2 при наличии электронно-возбужденных молекул $O_2(b^1\Sigma_a^+)$ и $O_2(a^1\Delta_g)$ и слоя смешения, возникающего на границе внешнего и внутреннего (подверженного воздействию излучения) потоков, рассматривалась в рамках осредненных параболизованных уравнений Навье-Стокса. При этом полагалось, что смешение определяется турбулентным переносом, а коэффициенты турбулентной диффузии одинаковы для всех компонентов. Кроме того, считалось, что для всех компонентов числа Льюиса равны единице. Систему уравнений, описывающую физикохимические и газодинамические процессы в сверхзвуковом потоке, можно представить в следующем виде:

)

k,

Журнал технической физики, 2007, том 77, вып. 1

Здесь *и*, *v* — проекции вектора скорости на оси ОХ и *ОY* соответственно, $V = \sqrt{u^2 + v^2}$; *P* и ρ — давление и плотность газа; Н — удельная энтальпия смеси; $\|uN_i\|, \|vN_i\|, \|J_i^y\|$ и $\|q_{ch}^i + q_I^i\|$ — одностолбцовые матрицы размерности M (M — число компонентов в смеси); N_i — плотность молекул *i*-го компонента смеси (далее i = 1, 2, 3 соответствуют молекулярному кислороду в основном $O_2(X^3\Sigma_g^-)$ и в возбужденных $O_2(a^1\Delta_g), O_2(b^1\Sigma_g^+)$ состояниях); \Pr_T — турбулентное число Прандтля; $\mu_T = \rho v_T$, v_T — турбулентная вязкость. При проведении расчетов полагалось $Pr_T = 0.9$. Для замыкания системы уравнений привлекается однопараметрическая дифференциальная модель для турбулентной вязкости [10]. Выражения для энтальпии смеси Н, а также источников q_{ch}^i и q_I^i , определяющих изменение концентрации і-го компонента в смеси в результате протекания химических реакций и индуцированных переходов, удобно представить в виде

$$H = \sum_{i=1}^{M} \frac{h_{0i}}{\mu} \gamma_{i} + C_{p}T,$$

$$C_{p} = \frac{R}{\mu} \left(\frac{5}{2} + \sum_{i=1}^{S} C_{R}^{i} \gamma_{i} + \sum_{i=1}^{S} C_{v}^{i} \gamma_{i}\right),$$

$$C_{v}^{i} = \sum_{j=1}^{L} \left(\frac{\theta_{ij}}{T}\right)^{2} \frac{\exp(\theta_{ij}/T)}{[\exp(\theta_{ij}/T) - 1]^{2}},$$

$$\mu = \sum_{i=1}^{M} \mu_{i} \gamma_{i}, \quad P = \frac{\rho RT}{\mu}, \quad \gamma_{i} = \frac{N_{i}}{N}, \quad N = \sum_{i=1}^{M} N_{i},$$

$$q_{ch}^{i} = \sum_{q=1}^{M_{1i}} S_{iq}, \quad S_{iq} = (\alpha_{iq}^{-} - \alpha_{iq}^{+}) \lfloor R_{q}^{+} - R_{q}^{-} \rfloor,$$

$$R_{q}^{+(-)} = k_{+(-)q} \prod_{j=1}^{n_{q}^{+(-)}} N_{J}^{\alpha_{iq}^{+(-)}}, \quad Q_{I} = k_{v}I,$$

$$q_{I}^{i} = l_{iI} W_{I} \left(\frac{g_{n}}{g_{m}} N_{m} - N_{n}\right), \quad W_{I} = \frac{\sigma_{mn}I}{hv_{I}},$$

$$\sigma_{mn} = \frac{\lambda_{mn}^{2}}{4\pi b_{D}} A_{mn} \sqrt{\frac{\ln 2}{\pi}} H(x, a),$$

$$k_{v} = \sigma_{mn} \left(\frac{g_{n}}{g_{m}} N_{m} - N_{n}\right), \quad N_{m} = N_{1} \varphi_{m}, \quad N_{n} = N_{3} \varphi_{n},$$

$$\varphi_{m} = \frac{g_{m} B_{v'}}{kT} \frac{\exp(-\theta_{1} v'/T)}{1 - \exp(-\theta_{I}/T)} \exp\left(-\frac{E_{j'}}{kT}\right),$$

$$\varphi_{n} = \frac{g_{n} B_{v''}}{kT} \frac{\exp(-\theta_{1} v'/T)}{1 - \exp(-\theta_{I}/T)} \exp\left(-\frac{E_{j''}}{kT}\right).$$

Здесь μ_i — молярная масса *i*-го компонента смеси; h_{0i} — энтальпия образования *i*-го компонента при T = 298 K; S — число только молекулярных компонентов; $C_R^i = 1$ — для компонентов из линейных молекул и $C_R^i = 1.5$ — для компонентов из нелинейных молекул;

 θ_{ij} — характеристическая колебательная температура *j*-й моды для *i*-го компонента $(j = 1 \div L); M_{1i}$ — число реакций, приводящих к образованию (уничтожению) *i*-го компонента; a_{iq}^+ и a_{iq}^- — стехиометрические коэффициенты q-й реакции; $n_q^{+(-)}$ — число компонентов, участвующих в прямой (+) и обратной (-) реакциях; $k_{+(-)q}$ константы скорости этих реакций; R — универсальная газовая постоянная; h — постоянная Планка; k постоянная Больцмана; l_{i1} — число квантов, теряемых (приобретаемых) *i*-м компонентом при индуцированных переходах; N_m и N_n — число молекул в нижнем и верхнем состояниях поглощающего перехода $m \rightarrow n, g_m$ и g_n — кратности вырождения этих состояний; λ_{mn} длина волны, соответствующая центру спектральной линии поглощающего перехода; А_{тп} — коэффициент Эйнштейна; b_D — допплеровская ширина спектральной линии перехода $m \to n$, H(x, a) — функция Фойхгта; *B_v* — вращательная постоянная молекулы O₂ в состоянии $v'(v' \in m, v'' \in n); E_{i'}$ и $E_{i''}$ — вращательные энергии молекулы О2 в состояниях т и п. Их значения вычислялись с учетом расщепления уровня ј' в состоянии $X^{3}\Sigma_{g}^{-}$ на три компонента с j' = K' + 1, j' = K' и $j' = K' - \mathbf{\hat{1}}.$

Кинетическая модель, которая использовалась в данной работе, включает 89 обратимых химических реакций с участием H₂, H, H₂O, OH, HO₂, H₂O₂, O₃, $O_2(X^3\Sigma_g^-)$, $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$, $O(^3P)$, $O(^1D)$, а также процессы электронно-электронного (E-E) обмена и процессы тушения возбужденных молекул $O_2(a^1\Delta_g)$, $O_2(b^1\Sigma_g^+)$ и атомов $O(^1D)$ [8]. Константы скоростей соответствующих процессов и необходимые для расчета молекулярные и спектроскопическике постоянные были взяты такими же, как в [8].

Для численного интегрирования системы уравнений (1) использовался маршевый метод, в основе которого лежит стационарный аналог метода Годунова [11]. Для аппроксимации источниковых членов Q_I, q_{ch}^i, q_I^i использовалась неявная разностная схема, а для аппроксимации конвективных членов в (1) метод "предиктор-корректор", имеющий второй порядок точности. Для определения параметров потока и концентраций компонентов на новом пространственном слое применялась специальная процедура, основанная на методе Гаусса–Зейделя. Для разрешения областей с большими градиентами параметров использовалась адаптивная сетка. Проводился специальный анализ по определению сходимости численного решения. При этом количество расчетных точек по оси *ОУ* доходило до 500.

Инициирование детонационного горения при ларезно-индуцированном возбуждении молекул O₂

Как было показано в [8,9], концентрация возбужденных молекул O_2 в зоне воздействия определяется величиной энергии излучения, поглощенной одной молекулой О2,

$$E_s = I_0 \int_0^{l_p} \frac{k_v}{uN_1} \, dx.$$

Для рассматриваемых параметров потока длина поглощения меняется в пределах $L_v = 778 - 1507$ сm. Конкретный анализ проводился при длине зоны облучения $l_p = 10$ cm, т.е. заведомо $l_p \ll L_v$. В этом случае облучение потока перед носиком клина при небольших Y_e можно проводить путем многократного сканирования поперек потока лазерным пучком с радиусом 0.1–0.5 cm при небольшой интенсивности воздействующего излучения $I_0 = 0.5 - 5$ kW/cm². Такой способ облучения дает возможность добиться требуемой величины E_s при воздействии даже относительно слабого источника лазерного излучения.

Рассмотрим сначала, как меняются параметры смеси в зоне воздействия лазерного излучения при различных значениях поглощенной молекулами О2 энергии. На рис. 2 представлено изменение массовых долей $C_i = \gamma_i \mu_i / \mu$ различных компонентов и температуры газа в зоне воздействия для смеси H₂/O₂ = 2/1. Коэффициент поглощения при x = 0 здесь равен $6.64 \cdot 10^{-2} \,\mathrm{m}^{-1}$, соответственно $L_{\nu} = 15 \, \text{m}$. Видно, что при более высоком значении E_s концентрация молекул $O_2(b^1\Sigma_{\rho}^+)$ и $O_2(a^1\Delta_g)$ в смеси выше. Больше при этом и нагрев среды. Однако в рассматриваемом диапазоне параметров этот нагрев незначителен, и даже при $E_s = 0.05 \,\mathrm{eV}/(\mathrm{molecule \ O_2})$ не превышает 27 К. При $T_0 = 600 \, {\rm K}$ в зоне облучения уже начинаются химические реакции, в которых образуются активные радикалы ОН и атомы О и Н. Эти реакции стимулированы образованием возбужденных молекул $O_2(b^1\Sigma_{\sigma}^+)$ и $O_2(a^1\Delta_g)$ в смеси [8]. При $E_s = 0$ наработки H, O и ОН не происходит. К концу зоны облучения массовая доля $O_2(a^1\Delta_g)$ при $E_s = 0.05 \text{ eV}/(\text{molecule O}_2)$

Рис. 2. Изменение массовых долей компонентов и температуры газа при воздействии на сверхзвуковой поток смеси $H_2/O_2 = 2/1$ с $M_0 = 6$, $P_0 = 10^4$ Pa, $T_0 = 600$ K лазерного излучения с $\lambda_I = 762$ nm, $E_s = 0.01$ и 0.05 eV/(molecule O_2) (сплошные и пунктирные линии, соответственно).

Журнал технической физики, 2007, том 77, вып. 1

T_0, \mathbf{K}	500			600		
E_s , eV/(molecule O ₂)	0.01	0.03	0.05	0.01	0.03	0.05
<i>Т</i> ,К <i>Р</i> ,Ра	505.7 $1.01 \cdot 10^4$	$517.1 \\ 1.03 \cdot 10^4$	$528.4 \\ 1.06 \cdot 10^4$	$605.5 \\ 1.01 \cdot 10^4$	$616.5 \\ 1.03 \cdot 10^4$	$627.5 \\ 1.05 \cdot 10^4$
$\gamma_{O_2(X^3\Sigma_g^-)}$ $\gamma_{O_2(X^3\Sigma_g^-)}$ γ_{O_3} γ_{H} γ_{H_2} γ_{OH} γ_{HO_2} γ_{HO_2}	$\begin{array}{c} 2.08 \cdot 10^{-13} \\ 3.31 \cdot 10^{-1} \\ 7.86 \cdot 10^{-14} \\ 1.09 \cdot 10^{-11} \\ 6.67 \cdot 10^{-1} \\ 8.82 \cdot 10^{-13} \\ 1.04 \cdot 10^{-11} \\ 2.41 \cdot 10^{-12} \end{array}$	$\begin{array}{c} 2.45 \cdot 10^{-12} \\ 3.27 \cdot 10^{-1} \\ 2.74 \cdot 10^{-13} \\ 4.32 \cdot 10^{-11} \\ 6.67 \cdot 10^{-1} \\ 4.64 \cdot 10^{-12} \\ 4.08 \cdot 10^{-11} \\ 1.11 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 9.02 \cdot 10^{-12} \\ 3.23 \cdot 10^{-1} \\ 5.40 \cdot 10^{-13} \\ 9.67 \cdot 10^{-11} \\ 6.67 \cdot 10^{-1} \\ 1.30 \cdot 10^{-11} \\ 9.00 \cdot 10^{-11} \\ 2.85 \cdot 10^{-11} \end{array}$	$\begin{array}{c} 2.39 \cdot 10^{-11} \\ 3.31 \cdot 10^{-1} \\ 2.57 \cdot 10^{-12} \\ 7.03 \cdot 10^{-10} \\ 6.67 \cdot 10^{-1} \\ 6.34 \cdot 10^{-11} \\ 4.45 \cdot 10^{-10} \\ 3.41 \cdot 10^{-10} \end{array}$	$\begin{array}{c} 2.53 \cdot 10^{-10} \\ 3.27 \cdot 10^{-1} \\ 8.40 \cdot 10^{-12} \\ 2.56 \cdot 10^{-9} \\ 6.67 \cdot 10^{-1} \\ 3.06 \cdot 10^{-10} \\ 1.60 \cdot 10^{-9} \\ 1.42 \cdot 10^{-9} \end{array}$	$\begin{array}{c} 8.48 \cdot 10^{-10} \\ 3.23 \cdot 10^{-1} \\ 1.54 \cdot 10^{-11} \\ 5.22 \cdot 10^{-9} \\ 6.67 \cdot 10^{-1} \\ 7.77 \cdot 10^{-10} \\ 3.20 \cdot 10^{-9} \\ 3.25 \cdot 10^{-9} \end{array}$
$\begin{array}{c} \gamma_{\mathrm{H}_{2}\mathrm{O}} \\ \gamma_{\mathrm{H}_{2}\mathrm{O}_{2}} \\ \gamma_{\mathrm{O}_{2}(a^{1}\Delta_{g})} \\ \gamma_{\mathrm{O}_{2}(b^{1}\Sigma_{a}^{+})} \end{array}$	$\begin{array}{c} 2.41 \cdot 10 \\ 1.05 \cdot 10^{-18} \\ 1.94 \cdot 10^{-3} \\ 1.07 \cdot 10^{-4} \end{array}$	$5.21 \cdot 10^{-18} 5.84 \cdot 10^{-3} 3.15 \cdot 10^{-4}$	$\begin{array}{c} 2.03 \times 10 \\ 1.47 \cdot 10^{-17} \\ 9.74 \cdot 10^{-3} \\ 5.14 \cdot 10^{-4} \end{array}$	$7.35 \cdot 10^{-16} 1.91 \cdot 10^{-3} 1.40 \cdot 10^{-4}$	$3.20 \cdot 10^{-15} 5.74 \cdot 10^{-3} 4.14 \cdot 10^{-4}$	$\begin{array}{c} 5.25 \times 10 \\ 7.79 \times 10^{-15} \\ 9.58 \times 10^{-3} \\ 6.79 \times 10^{-4} \end{array}$

Таблица 1. Температура, давление и мольные доли компонентов смеси в конце зоны воздействия лазерного излучения с $\lambda_I = 762 \,\mathrm{nm}$ при $M_0 = 6$

достигает ~ 2.5% и становится больше, чем массовая доля $O_2(b^1\Sigma_g^+)$. Отметим, что молекулы $O_2(a^1\Delta_g)$ формируются вследствие тушения состояния $O_2(b^1\Sigma_g^+)$: $O_2(b^1\Sigma_g^+) + M = O_2(a^1\Delta_g) + M$. Этот процесс протекает существенно быстрее, чем аналогичный для $O_2(a^1\Delta_g)$: $O_2(a^1\Delta_g) + M = O_2(X^3\Sigma_g^-) + M$, где M — любая молекула смеси. Увеличение подведенной к газу энергии интенсифицирует все эти процессы. Естественно, что при этом увеличивается концентрация как электронно-возбужденных молекул О2, так и активных радикалов ОН и атомов О и Н в смеси. Это хорошо видно из табл. 1, где для разных E_s (0.01, 0.03, 0.05 eV/(molecule O₂)) даны значения мольных долей различных компонентов смеси, температура и давление в конце зоны воздействия при $T_0 = 500$ и 600 K ($P_0 = 10^4 \text{ Pa}$).

 $\gamma_{O_2(b^1\Sigma_g^+)}$

Обтекание сверхзвуковым потоком горючей смеси клина приводит при определенных условиях к формированию сложной волновой структуры с детонационной волной. На рис. 3 приведены поля статического давления, реализующиеся в потоке стехиометрической водородно-кислородной смеси при различных значениях подведенной к газу энергии излучения. Видно, что во всех случаях воспламенение начинается за фронтом первичной наклонной ударной волны, центрированной на носике клина, у его поверхности.

Можно выделить три характерные области течения, размер которых при фиксированных параметрах потока зависит от величины подведенной к газу энергии излучения E_s: зона индукции, зона воспламенения смеси (она еще называется переходной областью) и зона детонационного горения. На рис. 3 и далее эти зоны обозначены соответственно цифрами 1, 2 и 3.

В зоне 1 газодинамические параметры потока за фронтом ударной волны не меняются. Длина этой зоны Lind вдоль образующей клина может быть оценена из простого соотношения $L_{\text{ind}} = u_1 \tau_{\text{ind}}$, где u_1 — скорость газа за фронтом ударной волны, а au_{ind} — период индукции. Его величина может быть определена из расчетов неравновесных физико-химических процессов за

Рис. 3. Поля статического давления при обтекании клина с $\beta = 8^{\circ}$ сверхзвуковым потоком смеси H₂/O₂ = 2/1 (параметры те же, что для рис. 2) при воздействии лазерного излучения в приосевой области потока с $Y_e = 2$ ст при $E_s = 0$ (*a*); 0.01 (*b*) и 0.05 eV/(molecule O_2) (c). Изолинии P = const даны в барах.

фронтом в одномерном приближении (для рассматриваемых параметров невозмущенного потока температура и давление газа за фронтом $T_1 = 824$ К и $P_1 = 28.2$ kPa). В отсутствии возбуждения молекул О2 лазерным излучением значение $L_{ind} = 4.2 \,\mathrm{m}$ достаточно велико даже для стехиометрической водородно-кислородной смеси. Непосредственно за зоной индукции располагается зона, в которой происходит воспламенение смеси и переход от дефлаграционного горения к детонационному. Именно здесь вследствие выделения химической энергии формируются волны сжатия, взаимодействие которых между собой приводит к формированию первичной детонационной волны, расположенной в зоне 2 между поверхностью клина и фронтом наклонной ударной волны. В случае отсутствия облучения при рассматриваемых параметрах длина этой зоны $L_t < L_{ind}$. Величина L_t зависит от P_1 , T_1 и характерных времен химических реакций, т.е. от состава смеси, и определяется как временем выделения химической энергии в процессе горения, так и временем формирования из волн сжатия первичной детонационной волны.

Взаимодействие первичной детонационной волны с фронтом наклонной ударной волны приводит в области *3* к образованию основной детонационной волны, которая имеет меньший угол наклона фронта к оси *OX*, чем первичная детонационная волна. Начало области *3* определяется координатой пересечения фронтов ударной и первичной детонационной волн.

Возбуждение молекул О2 лазерным излучением с длиной волны $\lambda_I = 762 \,\mathrm{nm}$ в состояние $b^1 \Sigma_g^+$ даже в узкой зоне перед носиком клина ($Y_e = 2 \, \mathrm{cm}$) приводит к существенному сокращению как зоны индукции, так и переходной зоны (зоны воспламенения). Велична этого сокращения зависит от E_s, а следовательно, от концентрации возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ в смеси. При $E_s = 0.01 \text{ eV}/(\text{molecule O}_2)$ (эта величина E_s при рассматриваемых параметрах потока отвечает энергии излучения, выделившейся в единице объема газа, $E_a = 6.45 \cdot 10^{-4} \,\text{J/cm}^3$) длина зоны индукции уменьшается с 4.24 при отсутствии облучения до $L_{ind} = 1.3$ m. Длина переходной области Lt уменьшается при этом с 1.2 до 0.6 m, т. е. уменьшение L_{ind} при воздействии излучения больше, чем Lt. Тем не менее следует отметить, что возбуждение молекул O_2 в состояние $b^1 \Sigma_g^+$ приводит к сокращению не только длины зоны индукции, но и зоны энерговыделения.

При увеличении E_s до $0.05 \text{ eV}/(\text{molecule O}_2)$ ($E_a = 3.23 \cdot 10^{-3} \text{ J/cm}^3$) значение L_{ind} уменышается до 0.45, а L_t до 0.3 m. Расстояние от носика клина до начала области, занятой детонационной волной, L_D ($L_D = L_{\text{ind}} + L_t$) уменышается при этом с 5.45 (при отсутствии облучения) до 0.76 m, т. е. более чем в 7 раз. Уменышение длины зоны индукции и переходной зоны зависит также от поперечного размера облучаемой области потока Y_e . Это иллюстрирует данные расчета значений L_{ind} и L_D при различных значениях Y_e для E_s , приведенные в табл. 2. Видно, что для каждого E_s при заданных параметрах

Таблица 2. Длина зоны индукции L_{ind} и длина зоны возникновения детонационной волны L_D в зависимости от размеров возбужденной зоны Y_e при $\beta = 8^\circ$ и различных значениях E_s

	E_s , eV/(molecule O ₂)								
Y _e , cm	0.01		0.03		0.05				
	L _{ind} , cm	L_D, cm	L _{ind} , cm	L_D, cm	L _{ind} , cm	L_D, cm			
0	424.3	545.0	424.3	545.0	424.3	545.0			
0.25	262.4	358.2	149.1	216.0	98.9	163.0			
0.5	192.6	273.8	96.0	154.0	63.8	112.8			
1	146.9	213.8	64.3	117.0	45.3	88.7			
2	131.1	190.5	64.1	102.8	44.7	76.0			
5	124.5	174.2	64.0	89.1	43.5	62.9			

потока существует некоторое критическое значение Y_e^* , начиная с которого уменьшение поперечного размера облучаемой области потока приводит к резкому увеличению L_{ind} и L_D . При $T_0 = 600$ K, $P_0 = 10^4$ Pa, $M_0 = 6$ для $E_s = 0.01$ eV/(molecule O₂) $Y_e^* = 1.5$ cm, а для $E_s = 0.05$ eV/(molecule O₂) $Y_e^* = 0.75$ cm. Наоборот, при $Y_e > Y_e^*$ значения L_{ind} и L_D меняются мало. Это означает, что для обеспечения приемлемых значений L_D (~ 1 m) достаточно проводить облучение потока в очень узкой приосевой области. Например, при $E_s = 0.05$ eV/(molecule O₂) даже при $Y_e^* = 0.5$ cm можно стабилизировать детонационную волну на расстоянии всего 1.1 m от носика клина.

Ускорение процессов, приводящих к сокращению длины зоны индукции и зоны энерговыделения при лазерноиндуцированном возбуждении молекул О2, обусловлено интенсификацией цепных процессов в смеси H₂/O₂. На рис. 4 показано изменение вдоль линии тока с $y = Y_e = 2 \,\mathrm{cm}$ (эта линия ограничивает область облучения для вариантов, представленных на рис. 3) массовых концентраций компонентов смеси и температуры газа в случае воздействия излучения с $\lambda_I = 762 \, \text{nm}$, $E_s = 0.05 \,\mathrm{eV}/(\mathrm{molecule } \mathrm{O}_2) \,(a)$ и при его отсутствии (b). Из приведенных распределений видно, что присутствие в смеси после зоны облучения электронновозбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ существенно меняет динамику изменения концентраций активных атомов О, Н и радикалов ОН, являющихся носителями цепного механизма, за фронтом наклонной ударной волны, где повышение температуры до 824 К стимулирует протекание химических реакций.

При $E_s = 0$ главными компонентами, образующимися в смеси за фронтом ударной волны, являются молекулы H₂O и HO₂. Инициирование цепи здесь происходит вследствие протекания реакции H₂ + O₂ = 2OH. Далее радикалы OH реагируют с H₂: OH + H₂ = H₂O + H. Атомы H участвуют в двух процессах. Один из них является реакцией разветвления цепи O₂ + H = OH + O, а другой, H + O₂ + M = HO₂ + M, протекающий достаточно интенсивно при условиях, реализующихся за фронтом наклонной ударной волны, приводит к обрыву

Рис. 4. Изменение концентраций (массовых долей) компонентов и температуры смеси $H_2/O_2 = 2/1$ с $M_0 = 6$, $P_0 = 10^4$ Pa, $T_0 = 600$ K вдоль линии тока $y = Y_e = 2$ ст при $E_s = 0.05$ eV/(molecule O_2) (*a*) и при $E_s = 0$ (*b*).

цепи. Именно благодаря этой реакции резко возрастает концентрация НО2 за фронтом. При этом происходит замедление цепного процесса, и длина зоны индукции на данной линии тока составляет ~ 4.24 m. При лазерноиндуцированном возбуждении молекул О2 перед носиком клина основными каналами инициирования цепи за фронтом ударной волны явлются следующие реакции: $H_2 + O_2(a^1 \Delta_g) = 2OH$, $H_2 + O_2(a^1 \Delta_g) = HO_2 + H$. Именно вследствие протекания этих реакций за фронтом резко увеличивается концентрация атомов Н и радикалов ОН (она становится сравнимой с концентрацией HO₂, хотя перед фронтом концентрация молекул НО₂ была значительно больше). Развитие цепного процесса происходит в реакциях продолжения цепи: $H + O_2(a^1 \Delta_g) = OH + O, H_2 + OH = H_2O + H$ и H₂ + O = OH + H. Эти реакции протекают значительно быстрее по сравнению со случаем отсутствия облучения [8], что и приводит к значительному сокращению длины зоны индукции (здесь $L_{\text{ind}} \approx 45 \,\text{cm}$). Отметим, что для данной линии тока характерна достаточно низкая концентрация возбужденных молекул $O_2(b^1\Sigma_g^+)$ в смеси перед фронтом ударной волны $(C_{O_2(b^1\Sigma_s^+)} < 10^{-6})$. Уменьшение $C_{O_2(b^1\Sigma_s^+)}$ в этой области обусловлено процессом тушения $O_2(b^1\Sigma_g^+) + M = O_2(a^1\Delta_g) + M$. В результате этого процесса происходит нагрев газа, и температура в зоне поглощения меняется при $E_s = 0.05 \text{ eV}/(\text{molecule } O_2)$ от 600 до 627 К. Однако этот нагрев не вносит значительного вклада в уменьшение L_{ind} . При $T_0 = 627 \text{ K}$ в отсутствие возбужденных молекул $O_2(a^1\Delta_g)$ и $O_2(b^1\Sigma_g^+)$ в смеси длина зоны индукции на линии тока $y = Y_e = 2 \text{ ст была бы равна 2.8 m}$.

Важным параметром, влияющим на особенности формирования волновых структур при обтекании клина сверхзвуковым потоком горючей смеси, является температура невозмущенного потока. Понятно, что уменьшение T_0 приводит к увеличению L_{ind} и L_D , а повышение Т₀, наоборот, к уменьшению всех характерных длин. Чем меньше Т₀, тем большие значения E_s и Y_e требуются для стабилизации детонационной волны на приемлемых для практики расстояниях от носика клина $(L_D = 1 - 1.5 \text{ m})$. На рис. 5 показаны поля статического давления при обтекании клина сверхзвуковым потоком смеси $H_2/O_2 = 2/1$ с меньшей, чем в предыдущем случае, температурой газа, $T_0 = 500 \, \text{K}$, при воздействии излучения с $\lambda_I = 762 \, \text{nm}$, $E_s = 0.05 \,\mathrm{eV}/(\mathrm{molecule} \,\mathrm{O}_2)$ и $Y_e = 1, 2, 4 \,\mathrm{cm}$ (при $Y_e = 0$ $L_D = 315 \,\mathrm{m}$, что существенно больше масштаба рисунка). Из сравнения полей давления, представленных на рис. 3 и 5 $(E_s = 0.05 \text{ eV}/(\text{molecule O}_2)$ и $Y_e = 2 \text{ cm})$, видно, что относительно небольшое (всего на 16.5%)

Рис. 5. Поле статического давления при обтекании клина с $\beta = 8^{\circ}$ потоком смеси H₂/O₂ = 2/1 с $M_0 = 6$, $P_0 = 10^4$ Pa, $T_0 = 500$ K при $Y_e = 1$ (*a*), 2 (*b*) и 4 сm (*c*).

Рис. 6. Зависимость относительной длины зоны индукции $L_{\text{ind}}/L_{\text{ind}}^0$ (1) и длины зоны возникновения детонационной волны L_D/L_D^0 (2) при обтекании клина с $\beta = 8^\circ$ потоком $H_2/O_2 = 2/1$ от поперечного размера зоны возбуждения Y_e в случае теплового воздействия лазерного излучения и при возбуждении молекул O_2 в состояние $b^1\Sigma_g^+$ (штриховые и сплошные линии).

уменьшение температуры газа приводит к изменению структуры течения. При $T_0 = 600 \, \text{K}$ формирование первичной детонационной волны реализуется ближе к поверхности клина, чем при 500 К. В обоих случаях в точке образования первичной детонационной волны возникает волна сжатия, распространяющаяся от области выделения химической энергии к поверхности клина и в области 2 формируется λ-структура, состоящая из двух волн сжатия и первичной детонационной волны. Особенно ясно эта структура проявляется при $T_0 = 500$ K. Здесь отраженная от поверхности клина волна сжатия приводит к формированию в области 3 двухфронтовой структуры, включающей детонационную и слабую ударную волны. Следует отметить, что при больших Ye (> 4 cm) эта ударная волна очень быстро затухает, и в области 3, как и при $T_0 = 600$ K, реализуется лишь одна детонационная волна. Как и ожидалось, даже небольшое снижения То приводит к значительному увеличению L_{ind} , L_t и L_D . Например, при $E_s = 0.05 \,\text{eV}/(\text{molecule O}_2)$ и $Y_e = 2 \,\mathrm{cm}$ уменьшение температуры с 600 до 500 K приводит к увеличению L_{ind} вдвое, а L_D — в 2.65 раза. Лишь при $Y_e = 4 \,\mathrm{cm}$ и $E_s = 0.05 \,\mathrm{eV}/(\mathrm{molecule} \,\mathrm{O_2})$ для потока $H_2/O_2 = 2/1$ с $M_0 = 6$, $P_0 = 10^4$ Pa, $T_0 = 500$ K удается стабилизировать детонационную волну на расстоянии < 1.4 m. При таких параметрах потока энергия излучения, поглощенная единицей объема газа, составляет $\sim 3.9 \cdot 10^{-3} \text{ J/cm}^3$.

Проведенные расчеты показывают, что предлагаемый метод инициирования детонационного горения в сверхзвуковом потоке, основанный на лазерноиндуцированном возбуждении молекул $O_2(X^3\Sigma_g^-)$ в состояние $b^1\Sigma_g^+$, намного эффективнее чисто теплового метода воздействия лазерного излучения, рассмотренного ранее [12,13], когда вся поглощенная энергия выделяется в поступательные степени свободы молекул. Это иллюстрирует рис. 6, на котором показано изменение относительной длины зоны индукции L_{ind}/L_{ind}^0 и длины зоны формирования детонационной волны L_D/L_D^0 , где L_{ind}^0 и L_D^0 — длины соответствующих зон в отсутствие облучения, в зависимости от Уе при лазерноиндуцированном возбуждении молекул $\mathrm{O}_2(X^3\Sigma_g^-)$ в состояние $b^1\Sigma_g^+$ и при тепловом воздействии лазерного излучения для одинаковой величины удельной поглощенной энергии $E_s = 0.05 \, \text{eV}/(\text{molecule O}_2)$ на стехиометрическую смесь H_2/O_2 с $T_0 = 600 \text{ K}$ и $P_0 = 10^4 \text{ Pa}$ (при $E_s = 0$ $L_{ind}^0 = 4.24$ m, $L_D^0 = 5.45$ m). Видно, что при любых Y_e значения длины зоны индукции и зоны горения при тепловом воздействии лазерного излучения существенно больше, чем при возбуждении молекул кислорода излучением с $\lambda_I = 762$ nm. Особенно это заметно при малых Y_e . Так, например, при $Y_e = 1 \,\mathrm{cm}$ величина L_{ind} при лазерно-индуцированном возбуждении молекул О2 в состояние $O_2(b^1\Sigma_{\rho}^+)$ в 4.6, а L_D — в 3.3 раза меньше, чем при простом нагреве среды лазерным излучением. Из представленных зависимостей также видно, что тепловое воздействие лазерного излучения при рассматриваемых параметрах среды и $E_s = 0.05 \, \text{eV}/(\text{molecule O}_2)$ не позволяет ни при каких значениях Ye стабилизировать детонационную волну на клине на расстоянии менее 2 т. В то же время в случае неравновесного возбуждения молекул О2 резонансным лазерным излучением даже при очень малой высоте области облучения (всего 0.25 cm) возможно инициировать детонационное горение в сверхзвуковом потоке смеси $H_2/O_2 = 2/1$ $(T_0 = 600 \,\mathrm{K}$ и $P_0 = 10^4 \,\mathrm{Pa})$ и при небольшой энергии, подведенной к газу, $E_s = 0.05 \, \text{eV}/(\text{molecule O}_2)$ на расстоянии 1.6 m от носика клина.

Уменьшение температуры газа приводит к еще более значительному отличию в величине L_D для этих двух рассматриваемых способов подвода энергии лазерного излучения к сверхзвуковому потоку горючей смеси.

Заключение

Возбуждение молекулярного кислорода в электронное состояние $O_2(b^1\Sigma_g^+)$ резонансным лазерным излучением с длиной волны 762 nm (переход $X^3\Sigma_{\sigma}^-, V' = 0 \rightarrow b^1\Sigma_{\sigma}^+,$ V'' = 0) позволяет реализовать детонационное горение при обтекании клина сверхзвуковым потоком водороднокислородной смеси на расстояниях, не превышающих 1.5 m, от его носика даже при небольшой подведенной к газу энергии излучения $E_s \leq 0.05 \, \text{eV}/(\text{molecule O}_2)$ и температуре газа $T_0 = 500-600$ К. В случае отсутствия облучения при таких параметрах потока не удается стабилизировать детонационную волну на расстояниях, меньших 5.5 m от носика клина. Эффекты сокращения длины зоны воспламенения смеси и зоны формирования детонационной волны обусловлены интенсификацией цепных реакций вследствие присутствия в реагирующей смеси электронно-возбужденных молекул $O_2(a^1\Delta_g), O_2(b^1\Sigma_g^+)$ и формирования новых каналов образования активных атомов О, Н и радикалов ОН в

реакциях с участием этих молекул. Оказалось, что для стабилизации детонационной волны в сверхзвуковом потоке над поверхностью клина на небольших расстояниях от зоны воздействия излучения (*L*_D < 1.5 m) достаточно проводить облучение в узкой приосевой области потока с поперечным размером $Y_e = 0.5 - 1$ ст непосредственно перед носиком клина. Лазерно-индуцированное возбуждение молекул О2 намного (в несколько раз) эффективнее простого нагрева среды лазерным излучением для инициирования детонационного режима горения в сверхзвуковом потоке горючей смеси. Такой способ подвода энергии лазерного излучения к потоку позволяет даже при облучении небольшого объема газа достаточно слабым источником стабилизировать детонационную волну в сверхзвуковом потоке на приемлемых для реализации детонационного режима горения расстояниях.

Работа выполнена при финансовой поддержке Российского Фонда Фундаментальных Исследований (гранты 05-01-00355 и 05-02-16419), МНТЦ (проект № 2740) и INTAS (проект № 03-51-4736).

Список литературы

- [1] Chinitz W. On the use of shock-induced combustion in hypersonic engines. AIAA Paper. 1996. N 96–4536.
- [2] Li C., Kailasanath K., Oran E.S. // Combust. Flame. 1997.
 Vol. 108. N 1/2. P. 173–186.
- [3] Bezgin L., Canzhelo A., Gouskov O., Kopchenov V., Yarunov Yu. Some estimations of a possibility to utilize shockinduced combustion in propulsion systems. In Gaseous and Heterogeneous Detonations: Science to Applications / Ed. by G. Roy, S. Frolov, K. Kailasanath, N. Smirnov. Moscow: ENAS Publishers, 1999. P. 285–300.
- [4] Старик А.М., Титова Н.С. // Физика горения и взрыва. 2000. Т. 36. № 3. С. 31–38.
- [5] Figueira Da Silva L.F., Deshaies B. // Combust. Flame. 2000.
 Vol. 121. N 1/2. P. 152–166.
- [6] Varatharajan B., Williams F.A. // J. Propulsion and Power. 2002. Vol. 18. N 2. P. 344–351.
- [7] Безгин Л.В., Копченов В.И., Старик А.М., Титова Н.С. // Физика горения и взрыва. 2006. Т. 42. № 1. С. 78–86.
- [8] Старик А.М., Титова Н.С. // Кинетика и катализ. 2003. Т. 44. № 1. С. 35–46.
- [9] Старик А.М., Титова Н.С. // ЖТФ. 2004. Т. 74. Вып. 9. С. 15–32.
- [10] Козлов В.Е., Секундов А.Н., Смирнова И.П. // Изв. АН СССР. МЖГ. 1986. № 6. С. 38–44.
- [11] Bezgin L., Ganzhelo A., Gouskov O., Kopchenov V. Some numerical investigation results on shock-induced combustion. AIAA Paper. 1998. N 98–1513.
- [12] Fendell F., Mitchell J., McGregor R., Sheffield M. // J. Propulsion adn Power. 1993. Vol. 9. N 2. P. 182–190.
- [13] Trott W.M. // J. Appl. Phys. 1983. Vol. 54. N 1. P. 118-130.