08,16

Концентрационная зависимость спектров ЭПР в смешанных кристаллах $(BaF_2)_{1-x}(CeF_3)_x$

© Л.К. Аминов, И.Н. Куркин

Казанский (Приволжский) федеральный университет, Казань, Россия E-mail: Igor.Kurkin@ksu.ru

(Поступила в Редакцию 21 мая 2012 г.)

В спектрах ЭПР системы $(BaF_2)_{1-x}(CeF_3)_x$ с ростом концентрации *x* в шихте в пределах от 10^{-3} до 10^{-2} возникают дополнительные линии, часть из которых соответствует тетрагональным центрам с $g_{\parallel} = 0.725$ и $g_{\perp} = 2.52$. Эти линии аналогичны обнаруженным ранее в смешанных системах $(BaF_2)_{1-x-y}(CeF_3)_x(LaF_3)_y$ с малой концентрацией церия ($x \approx 10^{-3}$), а также в кристалле $CaF_2:Ce^{3+}$, выращенном с добавлением ионов Na⁺. Обсуждаются возможные модели дополнительных тетрагональных центров.

1. Введение

Структуре смешанных кристаллов $(MeF_2)_{1-x}(RF_3)_x$ (Me = Ca, Sr, Ba; R = Y, La-Lu) посвящено значительное количество исследований (см., например, [1-4]). В широком диапазоне концентраций x = 0 - 0.5 катионная подрешетка этих кристаллов практически сохраняет кубическую гранецентрированную структуру, характерную для флюорита CaF₂. При малых $x \approx 10^{-4} - 10^{-3}$ "примесные" ионы R^{3+} замещают ионы Me^{2+} , а ионкомпенсатор F⁻ располагается либо вдали от этого центра (нелокальная компенсация заряда), либо в одном из ближайших к R³⁺ междоузлий подрешетки фтора кристалла MeF₂. В первом случае возникают примесные центры R³⁺ с кубической симметрией окружения, во втором — центры с более низкой симметрией. Используя редкоземельные ионы с незаполненной 4f-оболочкой (будем обозначать их далее Re^{3+}), авторы работ [5-7] подробно изучили эти центры методами оптической и ЭПР-спектроскопии.

С ростом концентрации х возникают кластеры, включающие несколько ионов Re^{3+} , однако сильное взаимодействие редкоземельных ионов внутри кластера может препятствовать наблюдению ЭПР и установлению структуры центров. Чтобы преодолеть это затруднение, Казанский с соавторами в работах [8-11] исследовали двойные смешанные кристаллы $(MeF_2)_{1-x-y}(ReF_3)_x(RF_3)_y$ с малой концентрацией x редкоземельных ионов Re^{3+} (Re = Er, Tm, Yb) и произвольной концентрацией у их диамагнитных аналогов R = Y, Lu. Авторы пришли к выводу, что в исследованных ими соединениях образуются лишь кубооктаэдрические кластеры вида R_6F_{37} , причем начиная с очень малых суммарных концентраций $x + y \approx 10^{-3}$. Ион Re^{3+} в таком кластере предположительно занимает позицию с тетрагональной симметрией и обладает g-фактором (g_{||}), близким к максимально возможному.

Однако эта схема начала кластеризации все же не универсальна. Проведенные нами исследования спектров ЭПР смешанных кристаллов $(BaF_2)_{1-x-y}(YbF_3)_x(LaF_3)_y$

с $x = 10^{-3}$ и широким набором значений 0 < y < 0.05 позволили обнаружить появление с ростом *у* ряда линейных кластеров вида $La^{3+}-F^--Yb^{3+}-F^-$, вытянутых вдоль тригональной оси [12,13]. Сходные кластеры $Yb^{3+}-F^--Yb^{3+}-F^-$ проявились в спектрах ЭПР "чистых" кристаллов $(BaF_2)_{1-x}(YbF_3)_x$ (y = 0) при возрастании концентрации *x* до 0.003 [14]. Никаких признаков кластеров La_6F_{37} в спектрах ЭПР ионов Yb^{3+} не было обнаружено.

В работах [15,16] были изучены спектры ЭПР кристаллов $(BaF_2)_{1-x-y}(CeF_3)_x(LaF_3)_y$ с $x = 10^{-3}$ и набором значений y = 0-0.02. Наряду с обычными для сильно разбавленных систем $BaF_2:Ce^{3+}$ тетрагональными центрами (*O*-центры) с $g_{\parallel} = 2.601$ и $g_{\perp} = 1.555$ [17] при $x \ge 0.002$ наблюдались тетрагональные центры с $g_{\parallel} = 0.725$ и $g_{\perp} = 2.52$ (*K*-центры), т.е. с *g*-факторами, практически совпадающими со значениями в системе $KY_3F_{10}:Ce^{3+}$ [18]. Появление *K*-центров естественно объясняется предположением о наличии кластеров La₆F₃₇, в которых ион Ce³⁺ замещает один из ионов La³⁺ и оказывается в окружении восьми ионов F^- , сходном с ближайшим окружением иона Ce³⁺ в KY_3F_{10} .

Для дальнейшей проверки модели мы предприняли исследование ЭПР ионов Ce^{3+} в "чистых" кристаллах $(BaF_2)_{1-x}(CeF_3)_x$ с y = 0, но с разными концентрациями $0 < x \le 0.01$. Предполагаемые условия возникновения кластеров Ce_6O_{37} $(x + y \ge 10^{-3})$ при этом соблюдаются, но сигнал ЭПР таких комплексов, если он и будет наблюдаться, должен существенно отличаться от сигнала разбавленного кластера $CeLa_5F_{37}$. Результаты исследования, излагаемые в разделе 2, этих ожиданий не подтвердили. В разделе 3 проводится обсуждение результатов работы и их связи с возможными моделями парамагнитных центров в смешанных кристаллах.

2. Экспериментальные результаты

Проведено исследование спектров ЭПР монокристаллов BaF_2 с низкой (0.1 at.%) и высокой (1.0 at.%) концентрацией примеси CeF₃. Образцы были выращены методом вертикальной направленной кристаллизации в графитовом тигле во фторирующей атмосфере. Образец I с меньшей концентрацией был получен в Лаборатории магнитной радиоспектроскопии КФУ Р.Ю. Абдулсабировым и С.Л. Кораблёвой. Образец II с высокой концентрацией был выращен в Научном центре лазерных материалов и технологий ИОФ РАН В.А. Конюшкиным. Спектры ЭПР измерялись стационарным методом в *X*диапазоне (на частотах ~ 9.2–9.4 GHz) на спектрометре фирмы Bruker ESP-300 при температурах 10–100 K в магнитных полях 0.2–12.0 kG. Для определения реальной концентрации ионов Ce³⁺ одновременно регистрировался спектр ЭПР стандартного образца CaF₂:0.8 wt.% Er³⁺.

На рис. 1 и 2 приведены спектры ЭПР исследованных образцов. Линии *I*, *2* на рисунках относятся к основному, ранее исследованному тетрагональному центру ионов Ce^{3+} , о чем свидетельствует близость измеренных *g*-факторов (g(1) = 2.593, g(2) = 1.563) к литературным данным [17]. Линия *I* соответствует центру в ориентации **B** || **C**₄, линия *2* — сдвоенная линия от центров в ориентации **B** \perp **C**₄. Линии *3*, *4* на рис. 2 относятся к "новому" тетрагональному центру с *g*-факторами

Рис. 1. Спектр ЭПР ионов Ce^{3+} в монокристаллах BaF_2 — 0.1 at.% CeF₃. T = 15 K. $\nu = 9.42$ GHz. Обозначения *1*, *2* пояснены в тексте.

Рис. 2. Спектр ЭПР ионов Ce^{3+} в монокристаллах BaF_2 — 1 at.% CeF₃. T = 13 K. $\nu = 9.18$ GHz. Обозначения *1–4* пояснены в тексте.

 $g_{\parallel} = g(3) = 0.725, \quad g_{\perp} = g(4) = 2.528.$ Линия 3 центр в ориентации В || С₄, линия 4 — два магнитнонеэквивалентных центра в ориентации $\mathbf{B} \perp \mathbf{C}_4$. Кроме указанных интенсивных центров тетрагональной симметрии в спектре ЭПР образца с высокой концентрацией церия наблюдаются менее интенсивные линии центров другой симметрии (тригональные и (или) ромбические), расшифровка которых нами не выполнялась. При $T \sim 30 \,\mathrm{K}$ линии ЭПР всех центров ионов Ce^{3+} уширялись, а при $T \sim 50 \,\mathrm{K}$ не наблюдались из-за коротких времен спин-решеточной релаксации. Измеренная реальная концентрация С тетрагональных центров оказалась следующей: в образце I с номинальной концентрацией 0.1 at.% C = 0.015 at.% Ce^{3+} ; в образце II концентрация "старого" (основного) центра C = 0.003 at.% Ce^{3+} , "нового" — C = 0.01 at.% Ce^{3+} . Измеренные значения g-факторов "нового" тетрагонального центра ионов Ce³⁺ в BaF₂ очень близки к значениям *g*-факторов тетрагональных К-центров ионов Се³⁺ в смешанных кристаллах $(BaF_2)_{1-x-y}(CeF_3)_x(LaF_3)_y$ с $x = 10^{-3}$ [16] и к *g*-факторам ионов Ce^{3+} в монокристаллах KY_3F_{10} [18].

3. Обсуждение результатов

Наблюдение смешанных кристаллах в $(BaF_2)_{1-x-y}(CeF_3)_x(LaF_3)_y$ при малых $x \approx 0.1$ at.% спектра ЭПР иона Ce³⁺ с $g_{\parallel} = 0.725, g_{\perp} = 2.52$ [15,16], сходного со спектром системы KY_3F_{10} : Ce³⁺ ($g_{\parallel} = 0.807$, $g_{\perp} = 2.46$ [18]), было истолковано как результат образования кубооктаэдрического кластера La₆F₃₆₍₃₇₎, в котором один из ионов La³⁺ замещается ионом Ce³⁺. При этом ион Ce³⁺ оказывается в позиции с тетрагональной симметрией и ближайшим окружением из восьми ионов F⁻, аналогичным окружению иона Ce³⁺ в КУ₃F₁₀. Однако приведенные выше экспериментальные результаты заставляют вновь вернуться к обсуждению указанной модели кластера. Для объяснения их в рамках этой модели пришлось бы пренебречь магнитными взаимодействиями ионов Се³⁺ в сравнительно компактном кластере Ce₆F₃₇ ($r_{Ce-Ce} \approx 0.45 \text{ nm}$).

Отметим в связи с этим некоторые результаты давней работы Мак-Лохлана [19] по исследованию спектров ЭПР ионов Ce^{3+} , Nd^{3+} , Dy^{3+} , Yb^{3+} во флюорите CaF_2 , выращенном с добавкой NaF. В этой работе в основном рассматривались ромбические парамагнитные центры, возникающие вследствие замещения пары ближайших ионов Ca²⁺-Ca²⁺ в решетке флюорита парой Re³⁺-Na⁺. В CaF₂: Ce³⁺ при малых концентрациях натрия наблюдался обычный тетрагональный центр с $g_{\parallel} = 3.038$ и $g_{\perp} = 1.396$ (ср. с [20]); с ростом концентрации натрия возрастала интенсивность ромбического спектра, а также возникал "новый" тетрагональный центр с $g_{\parallel} = 0.725$ и $g_{\perp} = 2.402$. При соотношении концентраций Ce: Na = 1:10 в расплаве, из которого выращивался кристалл, исходный тетрагональный спектр исчезал, и оставались лишь "новый" тетрагональный и ромбический спектры. Сходная картина возникновения "нового"

тетрагонального центра с инверсией g-факторов имела место и в системе $CaF_2: Nd^{3+}$.

Как видно, обсуждаемый в работе [19] "новый" тетрагональный центр в $CaF_2:Ce^{3+}$ по спектроскопическим характеристикам практически совпадает с добавочным тетрагональным центром, наблюдаемым нами ранее в смешанных кристаллах $(BaF_2)_{1-x-y}(CeF_3)_x(LaF_3)_y$ [15,16] и в настоящей работе в "чистом" $BaF_2:Ce^{3+}$ с большой концентрацией церия. Очевидно, однако, что в системах, исследованных Мак-Лохланом, не идет речи о кластерах Re_6F_{37} ввиду очень малой концентрации трехвалентных ионов.

В качестве возможной модели второго тетрагонального центра автор работы [19] рассматривает пару Re^{3+} -Na⁺, замещающую пару соседних ионов Ca²⁺, расположенных вдоль оси четвертого порядка. Аналогом этой модели в отсутствие одновалентных ионов Na⁺, но при значительной концентрации редкоземельных ионов могла бы служить вытянутая вдоль оси четвертого порядка цепочка $Re^{3+} - \Box - Re^{3+}$ (\Box — вакансия в позиции Ca²⁺), замещающая соответствующую цепочку Ca²⁺-Ca²⁺-Ca²⁺ в идеальном кристалле CaF₂. Эти варианты зарядовой компенсации отмечались еще Блини и др. [21]. Недостатком модели считалось то, что чужеродный ион Na⁺ (или вакансия в позиции Ca²⁺) располагался довольно далеко от парамагнитного центра Re^{3+} (~ 0.6 nm), вследствие чего кубическое кристаллическое поле на ионе Re^{3+} должно было подвергаться лишь слабому возмущению со стороны иона Na⁺ (или вакансии). Поэтому указанную модель второго тетрагонального центра также нельзя было считать твердо установленной.

Заметим, что в кубическом поле основным состоянием иона Ce^{3+} (4 f^1 , ${}^2F_{5/2}$) является квартет Γ_8 , составленный из двух тетрагональных крамерсовых дублетов [22],

$$\alpha_{1,2} = \sqrt{\frac{5}{6}} \left| \pm \frac{5}{2} \right\rangle + \sqrt{\frac{1}{6}} \left| \mp \frac{3}{2} \right\rangle, \quad \beta_{1,2} = \left| \pm \frac{1}{2} \right\rangle.$$

Для дублета $\alpha_{1,2}$ имеем (фактор Ланде $g_J = 6/7$)

$$g_{\parallel} = 2g_J \langle \alpha_1 | J_z | \alpha_1 \rangle = 3.143,$$

 $g_{\perp} = 2g_J \langle \alpha_1 | J_x | \alpha_2 \rangle = 1.428,$

т.е. значения, близкие к тем, которые наблюдаются для основного тетрагонального центра $Re^{3+}-F^-$ (междоузельный фтор). Для дублета $\beta_{1,2}$

$$g_{\parallel} = 0.857, \qquad g_{\perp} = 2.571,$$

что близко к значениям *g*-факторов для второго тетрагонального центра, наблюдаемого в [15,16,19] и в настоящей работе. Квартет Г₈ в соответствии с теоремой Яна–Теллера неустойчив относительно деформации кубического комплекса CeF₈. Вполне возможно, что в вариантах зарядовой компенсации посредством тетрагональных пар Ce³⁺–Na⁺ или Ce³⁺–П–Ce³⁺ реализуется тетрагональная деформация куба, при которой основным уровнем оказывается крамерсов дублет $\beta_{1,2}$. Слабое возмущение со стороны компенсаторов заряда лишь стабилизирует эту деформацию.

4. Заключение

Таким образом, наиболее подходящей моделью дополнительных тетрагональных центров в системах (Са, Ва)F₂:Ce³⁺ представляются вытянутые вдоль оси четвертого порядка пары $Ce^{3+}-Na^+$ (в системах с добавкой Na⁺), цепочки $Ce^{3+}-\Box-Ce^{3+}$ (в системах с повышенной концентрацией Ce³⁺), цепочки Ce³⁺-D-La³⁺ (в смешанных кристаллах с добавлением диамагнитного La³⁺). Это единообразная модель для сходных церийсодержащих кристаллов. Очевидно, она может быть применена и к системам CaF₂: Nd³⁺ [19], CaF₂: U³⁺ [23], в которых также наблюдались "новые" тетрагональные центры. В рамках этой модели структурирование линий 3, 4 "нового" центра на рис. 2 могло бы быть приписано наличию более длинных цепочек из примесных ионов и компенсаторов заряда, подобно тому как это было сделано при анализе дополнительных тригональных центров в системе $(BaF_2)_{1-x-y}(YbF_3)_x(LaF_3)_y$ [13,14]. Возможно, что в рассматриваемых системах образуются и кубооктаэдрические кластеры R₆F₃₇, предложенные в работах [8-11], но при более высоких суммарных концентрациях трехвалентных ионов R^{3+} , когда уже возникает существенное разупорядочение внутрикристаллических полей и наблюдение обычного ЭПР становится невозможным. Этот вопрос требует дальнейшего изучения.

Авторы благодарят А.А. Родионова и М.Р. Гафурова за помощь в работе и Б.З. Малкина за обсуждение результатов.

Список литературы

- [1] Б.Г. Бокий. Кристаллохимия. Наука, М. (1971).
- [2] P.P. Fedorov, O.E. Izotova, V.B. Alexandrov, B.P. Sobolev. J. Solid State Chem. 9, 368 (1974).
- [3] D.J.M. Bevan, J. Strahle, O. Greis. J. Solid Chem. 44, 75 (1982).
- [4] J.M. Reau, P. Hagenmuller. Appl. Phys. A 49, 3 (1989).
- [5] А.А. Каминский. Лазерные кристаллы. Наука, М. (1975).
- [6] С.А. Альтшулер, Б.М. Козырев. Электронный парамагнитный резонанс соединений элементов промежуточных групп. Наука, М. (1972).
- [7] М.П. Давыдова, Б.З. Малкин, А.Л. Столов. Спектроскопия кристаллов. Наука, Л. (1972). С. 27.
- [8] С.А. Казанский. ЖЭТФ 89, 1258 (1985).
- [9] С.А. Казанский, А.И. Рыскин. ФТТ 44, 1356 (2002).
- [10] А.Е. Никифоров, А.Ю. Захаров, М.Ю. Угрюмов, С.А. Казанский, А.И. Рыскин, Г.С. Шакуров. ФТТ 47, 1381 (2005).
- [11] S.A. Kazanskii, A.I. Ryskin, A.E. Nikiforov, A.Yu. Zaharov, M.Yu. Ougrumov, G.S. Shakurov. Phys. Rev. B 72, 014 127 (2005).

- [12] L.K. Aminov, R.Yu. Abdulsabirov, M.R. Gafurov, S.L. Korableva, I.N. Kurkin, S.P. Kurzin, R.M. Rakhmatullin, A.G. Ziganshin. Appl. Magn. Res. 28, 41 (2005).
- [13] L.K. Aminov, R.Yu. Abdulsabirov, S.L. Korableva, I.N. Kurkin, S.P. Kurzin, A.G. Ziganshin, S.B. Orlinskii. Appl. Magn. Res. 29, 561 (2005).
- [14] Л.К. Аминов, И.Н. Куркин. ФТТ 51, 700 (2009).
- [15] Л.К. Аминов, Р.Ю. Абдулсабиров, С.Л. Кораблева, И.Н. Куркин, С.П. Курзин, А.Г. Зиганшин, И.А. Громов. ФТТ 47, 1413 (2005).
- [16] Л.К. Аминов, И.Н. Куркин, С.П. Курзин, И.А. Громов, Г.В. Мамин, Р.М.Рахматуллин. ФТТ 49, 1990 (2007).
- [17] А.А. Антипин, И.Н. Куркин, Г.К. Чиркин, Л.Я. Шекун. ФТТ 6, 2014 (1964).
- [18] В.А. Иванышин, И.Н. Куркин, И.Х. Салихов, Ш.И. Ягудин. ФТТ **28**, 2580 (1986).
- [19] S.D. McLaughlan. Phys. Rev. 160, 287 (1967).
- [20] J.M. Baker, W. Hayes, D.A. Jones. Proc. Phys. Soc. (London) 73, 942 (1959).
- [21] B. Bleaney, P.M. Llewellyn, D.A. Jones. Proc. Phys. Soc. (London) B 69, 858 (1956).
- [22] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1973).
- [23] V. Lupei, C. Stoicescu, I. Ursu. J. Phys. C 9, L317 (1976).