06;07;12 Электрические характеристики CdHgTe-фотодиодов для длин волн 1.3 и 1.55 µm

© Л.А. Косяченко, В.В. Кульчинский, С.Ю. Паранчич, В.М. Склярчук

Черновицкий национальный университет, 58012 Черновцы, Украина e-mail: lakos@chv.ukrpack.net

(Поступило в Редакцию 18 августа 2005 г.)

Исследованы фоточувствительные в области 1.3 и $1.55 \,\mu$ m поверхностно-барьерные диоды на основе $Hg_{1-x}Cd_xTe$ ($x \approx 0.64$ и 0.71). Найдены параметры, определяющие фотоэлектрические свойства диодов, — концентрация основных носителей и положение уровня Ферми в подложке, контактный потенциал, ширина области пространственного заряда, эффективное время жизни носителей. Измеренные электрические характеристики при температуре 268-340 К свидетельствуют о генерационно-рекомбинационном механизме переноса заряда, а при повышенных обратных смещениях проявляют себя эффекты сильного электрического поля.

PACS: 85.60.Dw

Введение

Полупроводниковый твердый раствор Hg_{1-x}Cd_xTe (x = 0.2 - 0.3) является важнейшим материалом инфракрасной фотоэлектроники для спектральных областей 3-5 и особенно $8-14\,\mu{\rm m}$, которые соответствуют окнам прозрачности земной атмосферы. Сложилось так, что составы Hg_{1-x}Cd_xTe с широкой запрещенной зоной $E_g > 0.4 - 0.5 \, \text{eV}$ оказались вне интересов исследователей оптоэлектронных приборов. Тем не менее этот материал потенциально подходит для фотоприемников, работающих в окнах прозрачности кварцевого оптического волокна 1.3 и 1.55 µm. Поскольку бинарные соединения HgTe и CdTe образуют непрерывный ряд твердых растворов при любом соотношении компонентов, $Hg_{1-x}Cd_xTe$ с повышенным содержанием CdTe может использоваться в диапазоне более коротких длин волн, вплоть до $\lambda = 0.83 \,\mu m$, соответствующей ширине запрещенной зоны CdTe ($E_g = 1.46 \, \text{eV}$ при 300 K).

С точки зрения спектрального согласования требованиям волоконной связи удовлетворяет твердый раствор In_xGa_{1-x}As. Однако проблемы расхождения кристаллической и энергетической структуры вынуждают вводить в состав еще один элемент, а именно использовать твердый раствор Ga_xIn_{1-x}As_yP_{1-y}, слои которого эпитаксиально выращивают на подложке из InP [1]. В случае Hg_{1-x}Cd_xTe такой проблемы нет. Состав $x \approx 0.6$ подходит для работы на длине 1.55, а также $\lambda = 1.3 \,\mu$ m. Однако в последнем случае запрещенная зона может быть пире. Увеличив x до ~ 0.7, можно уменьшить темновой ток фотодетектора, сохранив при этом чувствительность фотодиода для $\lambda = 1.3 \,\mu$ m.

В настоящей работе представлены результаты исследования механизма переноса заряда в фотодиодах с двумя составами $Hg_{1-x}Cd_x$ Те, "настроенными" на две длины волны 1.3 и 1.55 μ m, применяемых в волоконнооптических системах связи. Найдены параметры исследованных материалов, определяющие фотоэлектрические характеристики диодов, и энергетической диаграммы барьерной структуры.

Образцы и экспериментальные результаты

Для изготовления диодных структур использовались монокристаллы $Hg_{1-x}Cd_xTe$ *p*-типа проводимости, выращенные с помощью модифицированного метода Бриджмена. Барьерная структура создавалась напылением алюминия в вакууме 10^{-6} Torr на тщательно отполированные и химически обработанные $Hg_{1-x}Cd_xTe$ пластины. Непосредственно перед нанесением металла монокристалл подвергался бомбардировке ионами аргона при ускоряющем напряжении 500 V в течение 300 s. В результате ионного травления поверхность $Hg_{1-x}Cd_xTe$ обогащается атомами ртути, что способствует большему искривлению энергетических зон и формированию поверхностного барьера [2,3]. Омический контакт к подложке создавался вакуумным напылением никеля.

Кривые поглощения монокристаллов $Hg_{1-x}Cd_x$ Те в области энергии фотонов hv вблизи края фундаментального поглощения показаны на рис. 1. Использованы координаты α^2 от hv исходя из того что для полупроводника с прямыми межзонными переходами, каковым является $Hg_{1-x}Cd_x$ Те, коэффициент поглощения α зависит от hv и описывается выражением [4]

$$\alpha = \alpha_0 \sqrt{h\nu - E_g},\tag{1}$$

где α_0 — коэффициент, не зависящий от hv, E_g — ширина запрещенной зоны полупроводника. Кривые поглощения $\alpha(hv)$ найдены из спектров пропускания T(hv) с учетом многократных отражений от поверхности образца по формуле [5]

$$\alpha = -\frac{1}{d} \ln \left\{ \frac{1}{r^2} \left[-\frac{(1-r)^2}{2T} + \left[\frac{(1-r)^4}{4T^2} + r^2 \right]^{1/2} \right] \right\}, \quad (2)$$

где *d* — толщина образца, *r* — коэффициент отражения.

Как видно из рис. 1, при больших α представленные зависимости аппроксимируются прямыми линиями, что позволяет в соответствии с (1) весьма точно определить E_g , которая для двух образцов равна 0.78 и 0.88 eV. Как известно, зависимость ширины запрещенной зоны $Hg_{1-x}Cd_xTe$ от x и температуры T описывается формулой [6]

$$E_g(x, T) = -0.302 + 1.93x + 5.35 \cdot 10^{-4}T(1 - 2x)$$
$$-0.81x^2 + 0.832x^3, \qquad (3)$$

воспользовавшись которой (если известна E_g при данной температуре) можно определить *x*. Найденные таким образом значения *x* оказались для $E_g = 0.78$ и 0.88 eV равными 0.64 и 0.71 соответственно (при синтезе содержание CdTe в Hg_{1-x}Cd_xTe задавалось равным 65 и 70%).

На рис. 2 представлены вольт-амперные характеристики и предполагаемая энергетическая диаграмма исследуемых диодов (контакт Шоттки) при комнатной температуре, а на рис. 3 — спектры фоточувствительности этих же диодов. На рис. 3 показаны окна прозрачности кварцевого оптического волокна — участок спектра с минимальными ($\lambda = 1.55 \mu$ m) и участок с несколько бо́льшими ($\lambda = 1.3 \mu$ m) потерями. Как видно, эти участки приходятся не на максимумы кривых фоточувствительности диодов, а на длины волн, предшествующие резкому уменьшению чувствительности при увеличении λ и приближении к длине волны, соответствующей ширине запрещенной зоны $\lambda_g = hc/E_g$ (показано

Рис. 1. Кривые оптического поглощения кристаллов $Hg_{0.36}Cd_{0.64}$ Те и $Hg_{0.29}Cd_{0.71}$ Те при комнатной температуре.

Рис. 2. ВАХ диодов Шоттки на основе Hg_{1-x}Cd_xTe. На вставке показана энергетическая диаграмма диода.

Рис. 3. Спектральное распределение фоточувствительности диодов на основе Hg_{0.36}Cd_{0.64}Te и Hg_{0.29}Cd_{0.71}Te при комнатной температуре. Показаны окна прозрачности кварцевого оптического волокна.

штриховыми прямыми на рис. 3). Как уже отмечалось, с точки зрения минимизации темновых токов желательно иметь наиболее широкую запрещенную зону полупроводника. В этом смысле величина E_g используемых монокристаллов $Hg_{1-x}Cd_xTe$ (x = 0.64 и 0.71) является оптимальной, поскольку наименьшее расширение запрещенной зоны приведет к резкому уменьшению фоточувствительности диодов.

Обсуждение полученных результатов

Наблюдаемая на опыте довольно сильная зависимость как прямого, так и обратного токов от температуры позволяет предположить диффузионный или генерационнорекомбинационный механизм переноса заряда в исследуемых диодах. Характерным свойством этих механизмов является зависимость прямого тока от на-

Рис. 4. ВАХ диодов при температуре 270 К (кружки) и 340 К (квадраты). Прямые токи отмечены темными кружками и квадратиками. Штриховыми линиями показаны зависимости $I \propto \exp(qV/2kT) - 1$.

пряжения смещения соответственно $I \propto \exp(qV/kT) - 1$ или $I \propto \exp(qV/2kT) - 1$, что можно выявить, представив I-V кривые в полулогарифмических координатах (рис. 4) [7].

Сравнение показывает, что в обоих случаях прямые I-V характеристики на начальных участках в пределах 3-4 порядков изменения токов описываются зависимостями $I \propto \exp(qV/2kT) - 1$ (при изменении как напряжения, так и температуры). При повышенных прямых смещениях, однако, экспериментальные точки отклоняются от такой зависимости, что можно объяснить падением напряжения на последовательном сопротивлении объемной части диода (подложки) R_s . Величину R_s можно найти из зависимости дифференциального сопротивления диода от прямого смещения $R_{\rm dif}(V)$ (рис. 5).

Рис. 5. Зависимость дифференциального сопротивления диодов от напряжения при прямом смещении (300 K).

При низких смещениях дифференциальное сопротивление резко убывает с напряжением, но при повышенных V величина R_{dif} выходит на насыщение. Последнее свидетельствует о практически полной компенсации контактной разности потенциалов (диффузионного потенциала $V_{\rm bi} = \varphi_0/q$ на рис. 2) приложенным напряжением. В этом диапазоне напряжений дальнейшее увеличение V приходится на подложку и поэтому дифференциальное сопротивление $R_{\rm dif} = dV/dI$ становится равным R_s. Найденные таким образом значения позволяют перестроить измеренные I(V) характеристики как функции напряжения на барьерной части диода $V-IR_s$, а не приложенного напряжения V. Результаты такого построения экспериментальных данных представлены на рис. 6. Как видно, учет падения напряжений на R_s заметно видоизменяет экспериментальные кривые. Теперь участок, следующий зависимости $I \propto \exp(qV/2kT) - 1$, становится более протяженным, а ток 10³ mA достигается при более низких напряжениях. Тем не менее экспоненциальная зависимость I(V) при смещениях выше $\sim 0.4 \,\mathrm{V}$ нарушается. Анализ показывает, что это объясняется особенностями процессов рекомбинации в диоде Шоттки (по сравнению с *p*-*n*-переходом).

Генерационно-рекомбинационный ток можно найти, проинтегрировав скорость рекомбинации U(x) по всей области пространственного заряда диодной структуры [8]:

$$I = Ae \int_{0}^{n} U(x)dx, \qquad (4)$$

$$U(x,V) = \frac{n(x,V)p(x,V) - n_i^2}{\tau_{p0}[n(x,V) + n_1] + \tau_{n0}[p(x,V) + p_1]},$$
 (5)

где A — площадь диода, W — ширина области пространственного заряда; n(x, V) и p(x, V) — неравновесные концентрации носителей соответственно в зоне

Рис. 6. ВАХ диодов, построенные с учетом падения напряжения на сопротивлении подложки (300 K). Штриховыми линиями показана зависимость $I \propto \exp(qV/2kT)$.

проводимости и валентной зоне, n_i — их собственная концентрация, τ_{n0} и τ_{p0} — эффективные времена жизни соответственно электронов и дырок в области пространственного заряда. Величины n_1 и p_1 численно равны равновесным концентрациям электронов и дырок при условии, что уровень Ферми совпадает с уровнем центра рекомбинации.

Применим формулы (4) и (5) к барьеру Шоттки, подобно тому как это сделано в [9], но для случая полупроводника *p*-типа проводимости. Ширина области пространственного заряда описывается выражением

$$W = \sqrt{\frac{2\varepsilon\varepsilon_0(\varphi_0 - eV)}{q^2(N_a - N_d)}},\tag{6}$$

где ε и ε_0 — диэлектрическая проницаемость полупроводника и электрическая постоянная, $(N_a - N_d)$ — концентрация некомпенсированных акцепторов.

Отсчитав энергию от потолка валентной зоны в нейтральной части кристалла, а координату x — от границы раздела полупроводника с металлом, для $\varphi(x, V)$, n(x, V)и p(x, V), n_1 и p можно записать (см. вставку на рис. 2):

$$\varphi(x,V) = (\varphi_0 - eV) \left(1 - \frac{x}{W}\right)^2, \tag{7}$$

$$p(x, V) = N_{\nu} \exp\left[-\frac{\Delta \mu + \varphi(x, V)}{kT}\right],$$
 (8)

$$n(x,V) = N_c \exp\left[-\frac{E_g - \Delta \mu - \varphi(x,V) - eV}{kT}\right], \quad (9)$$

$$n_1 = N_c \exp\left[-\frac{E_g - E_t}{kT}\right],\tag{10}$$

$$p_1 = N_{\nu} \exp\left[-\frac{\Delta \mu}{kT}\right],\tag{11}$$

где $N_c = 2(m_n^* kT/2\pi\hbar^2)^{3/2}$ и $N_v = 2(m_p^* kT/2\pi\hbar^2)^{3/2}$ — эффективная плотность состояний в зоне проводимости

и валентной зоне соответственно, $\Delta \mu$ — энергия уровня Ферми в объемной части диода, E_t — энергетическое расстояние генерационно-рекомбинационного уровня от потолка валентной зоны.

Необходимые для расчета тока параметры $N_a - N_d$ и $\Delta \mu$ найдем, проанализировав температурные зависимости удельного сопротивления материала ρ . Величина ρ , которую легко определить, зная толщину подложки (0.7 mm), площадь диода (0.1 mm²) (при комнатной температуре 2.98 и 11.8 Ω · ст для Hg_{0.36}Cd_{0.64}Te и Hg_{0.29}Cd_{0.71}Te соответственно) и сопротивление R_s , связана с концентрацией дырок p и их подвижностью μ_p соотношением

$$p = \frac{1}{q\rho\mu_p}.$$
 (12)

Для определения μ_p воспользуемся результатами измерений на монокристаллах CdTe, согласно которым при температуре выше ~ 200 К подвижность определяется рассеянием на фононах и убывает при повышении температуры по закону [10,11]

$$\mu_p = \mu_{p0} \left(\frac{T}{300}\right)^{-3/2}.$$
 (13)

Величина μ_{p0} для CdTE находится в пределах $40-70 \text{ cm}^2/\text{V} \cdot \text{s}$. Не допуская существенной ошибки, положим $\mu_{p0} = 50 \text{ cm}^2/\text{V} \cdot \text{s}$.

Рассчитанные по формуле (12) температурные зависимости концентрации дырок в исследуемых образцах показаны на рис. 7, *а*. Зная p(T), легко получить температурную зависимость энергии уровня Ферми в подложке фотодиода

$$\Delta \mu = kT \ln\left(\frac{N_v}{p}\right),\tag{14}$$

которая представлена для тех же образцов на рис. 7, *b*. Заметим, что при комнатной температуре $\Delta \mu = 0.15$

Рис. 7. Температурные зависимости концентрации дырок (*a*) и энергии уровня Ферми (*b*) для двух образцов. Энергии активации равны 0.08 eV ($Hg_{0.29}Cd_{0.71}Te$) и 0.03 eV ($Hg_{0.36}Cd_{0.64}Te$).

Рис. 8. Зависимости фототока $I_{\rm ph}$ от напряжения для диодов Hg_{0.36}Cd_{0.64}Te и Hg_{0.29}Cd_{0.71}Te, измеренные при различных температурах.

и 0.19 eV для $Hg_{0.36}Cd_{0.64}$ Те и $Hg_{0.29}Cd_{0.71}$ Те соответственно ($m_n^* = 0.35m_0$). Концентрация дырок в этих образцах при 300 K равна $3 \cdot 10^{15}$ и $1 \cdot 10^{16}$ cm³.

Проводимость столь низкоомных образцов (2.98 и 11.8 Ω · ст при 300 K) вряд ли сильно компенсирована. Поэтому для оценки концентрацию некомпенсированных акцепторов можно принять приблизительно равной концентрации дырок в валентной зоне при $T \to \infty$, которая для обоих образцов равна $\sim 3 \cdot 10^{17}$ ст⁻³ (концентрация неконтролируемых примесей и дефектов акцепторного типа) [12].

Результаты расчета генерационного-рекомбинационного тока при комнатной температуре с использованием найденных параметров $N_a - N_d$, $\Delta \mu$, $\varepsilon = 10.6$ представлены на рис. 6 сплошными линиями (кружки и квадраты — результаты измерений). Для наилучшего согласования результатов расчета с экспериментом при прямом смещении время жизни электронов и дырок τ_{n0} и τ_{p0} было установлено равным $9 \cdot 10^{-10}$ и $9 \cdot 10^{-11}$ s для Hg_{0.36}Cd_{0.64}Te и Hg_{0.29}Cd_{0.71}Te соответственно. Напряжение, при котором наблюдается отклонение прямого

тока от $\exp(qV/2kT)$ определяется высотой потенциального барьера со стороны полупроводника φ_0 . Для обоих диодов совпадение расчетного и измеренного токов достигается при $\varepsilon_0 = 0.5 \text{ eV}$. Наконец, теория наилучшим образом описывает обратную ветвь характеристики, если E_t выбрать равной $E_g/2$, что вполне оправдано, так как согласно статистике Шокли–Рида уровни посредине запрещенной зоны полупроводника являются наиболее эффективными центрами генерации-рекомбинации [7,8].

Как видно из рис. 6, при напряжении выше ~ 0.4 V измеренный ток превышает расчетные значения, что может быть обусловлено эффектами сильного электрического поля, поскольку барьерная область, согласно (6), довольно узка (8 · 10⁻⁶ cm) при $N_a - N_d = 3 \cdot 10^{17}$ cm⁻³, а напряженность поля у поверхности полупроводника $2(\varphi_0 - eV)/qW$ при V = -1V довольно высока (4 · 10⁵ V/cm). Исследование зависимости фототока $I_{\rm ph}$, возбуждаемого внешним облучением, от напряжения и температуры позволяет выяснить, какой механизм — туннельный эффект или ударная ионизация — ответственен за наблюдаемое увеличение обратного тока. На

рис. 8 приведены такие зависимости I_{ph} , снятые при двух значениях температуры. Как видно, ток заметно возрастает при увеличении напряжения смещения, что является прямым свидетельством происходящих в области пространственного заряда лавинных процессов. При понижении температуры умножение носителей становится более интенсивным, что также свидетельствует в пользу ударной ионизации, а не туннелирования (в последнем случае ток не может увеличиваться при понижении температуры).

Усиление фототока в обратно смещенном фотодиоде представляет практический интерес, тем более что в исследуемых диодах коэффициент умножения фотоносителей значителен. Обращает на себя внимание довольно низкое напряжение, при котором начинается усиление фототока (0.4-0.5 V) и умножение в 4-8 раз при напряжении ~ 1 V. Непонятно, откуда берется энергия для многократной ионизации при столь низком напряжении смещения. Представляется, что лавинное усиление фототока в исследуемых $Hg_{1-x}Cd_x$ Те диодах требует отдельного рассмотрения.

Заключение

Получены диодные структуры на основе $Hg_{1-x}Cd_x$ Те с содержанием Cd и спектром фоточувствительности, оптимальным для работы на длинах волн 1.55 и 1.3 μ m. Показано, что доминирующим механизмом переноса заряда в исследованных диодах является генерациярекомбинация в области пространственного заряда и только при повышенных обратных напряжениях наблюдается дополнительное возрастание тока в результате действия эффектов сильного электрического поля. Найдены параметры, играющие первостепенную роль в определении фотоэлектрических характеристик диодов — время жизни носителей, ширина области пространственного заряда, искривление энергетических зон у поверхности полупроводника, положение уровня Ферми в подложке.

Список литературы

- [1] *Streetman B.G., Banerjee S.* Solid State Electronic Devices. New Jersey: Prentice Hall, 2000.
- Bahir G., Finkman E.J. // Vac. Sci. Technol. 1989. Vol. A 7 (2).
 P. 243–248.
- [3] Brogowski P, Mucha H, Piotrowski J. // Phys. Stat. Sol. A, 1989. Vol. 114. P. K37.
- [4] Зеегер К. Физика полупроводников. М.: Мир, 1977.
- [5] Панков Ж. Оптические процессы в полупроводниках. М.: Мир, 1973.
- [6] Hansen G.L., Schmit J.L., Casselman T.N. // J. Appl. Phys. 1982. Vol. 53. N 10. P. 7099–7101.
- [7] Зи С. Физика полупроводниковых приборов. М.: Мир, 1984.
- [8] Sah C., Noyce R., Shockley W. // Proc. IRE. 1957. Vol. 45. P. 1228.

- Косяченко Л.А., Паранчич С.Ю., Макогоненко В.Н., Склярчук В.М., Склярчук Е.Ф., Герман И.И. // ЖТФ. 2003.
 Т. 73. Вып. 5. С. 126–129.
- [10] Девлин С.С. // Физика и химия соединений А^{II}В^{VI}. М.: Мир, 1970. С. 418–464.
- [11] Turkevych I., Grill R., Frans J., Belas, Hoschl P., and Moravec P. // Semicond. Sc. Techn. 2002. Vol. 17. P. 1064.
- [12] Косяченко Л.А., Марков А.В., Маслянчук Е.Л., Раренко И.М., Склярчук В.М. // ФТП. 2003. Т. 37. № 12. С. 1420.