01;04 Объемно-плазменая генерация ионов H⁻ в низковольтном ксенон-водородном разряде. I

© Ф.Г. Бакшт, В.Г. Иванов

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: baksht@mail.ioffe.ru

(Поступило в Редакцию 21 ноября 2005 г.)

Предложена теория низковольтного разряда, горящего в смеси молекулярного водорода с ксеноном. Показано, что в плазме такого разряда при межэлектродном расстоянии L = 1 cm и полном давлении плазмы $p_0 \sim 1$ Тогг может быть получена значительная концентрация ($N_{H^-} \ge 10^{12} \text{ cm}^{-3}$) отрицательных ионов водорода, образованных путем диссоциативного прилипания разогретых тепловых электронов к колебательно-возбужденным молекулам H₂. В рассчитанных режимах горения разряда достигается температура электронов $T_e \approx (1-2) \text{ eV}$, соответствующая максимуму констант скорости e-v-обмена молекулы H₂. Это обеспечивает сравнительно высокую колебательную накачку молекул H₂ в разряде.

PACS: 52.80.-s

Для создания объемно-плазменного источника (ОПИ) ионов H⁻ в [1] было предложено использовать низковольтный (HB) разряд в молекулярном водороде. В плазме такого разряда ионы H⁻ образуются вследствие диссоциативного прилипания (ДП) разогретых тепловых электронов к колебательно-возбужденным молекулам в основном электронном состоянии $X'\Sigma_{g}^{+}(v)$ [2]. В разряде катодное падение напряжения $\varphi_1 \leq \check{E_d}/e$, где $E_d \approx 8.8 \,\mathrm{eV}$ — порог прямой диссоциации молекулы H₂ электронным ударом из основного состояния. Выполнение этого условия исключает прямую диссоциацию молекул H₂ из основного состояния электронным катодным пучком и уменьшает концентрацию N_H атомарного водорода в плазме разряда. Последнее существенно снижает скорость колебательной релаксации молекул Н2 и улучшает (по сравнению с обычно используемым относительно высоковольтным разрядом [3]) колебательную функцию распределения (КФР) молекул вследствие уменьшения концентрации атомов Н, так как атомарный водород обладает весьма большой (по сравнению с молекулярным водородом) константой скорости *v*-*t*-обмена с молекулами H₂. Ранее в качестве такого НВ-разряда рассматривался НВ цезий-водородный разряд, в котором малая добавка легкоионизирующейся примеси — цезия — позволяла достаточно просто осуществить НВ-режим горения разряда с большой концентрацией n_e электронов плазмы и малым катодным падением φ_1 [1,4].

В ряде случаев, однако, использование цезия в качестве ионизирующейся примеси нежелательно. В связи с этим встает вопрос о замене цезия другой примесью или об использовании для объемно-плазменной генерации ионов H⁻ чисто водородного HB-разряда. В настоящем сообщении кратко излагается теория HB-разряда, горящего в смеси H₂ с инертным газом — ксеноном. Условия горения разряда выбраны так, что ионизирующимся газом является Xe, но разряд по-прежнему горит в HB-области, где $\varphi_1 \leq E_d/e$. Такой разряд оптимизирован. Найдено оптимальной полное давление p_0 плазмы в газоразрядном промежутке и оптимальный компонентный состав смеси Xe–H₂ для получения максимального значения концентрации N_H–(*L*) ионов H⁻ на прианодной границе плазмы, откуда ионы H⁻ могут быть сравнительно легко извлечены. Работа выполнена по предложению Физико-технического центра ФИАН им. П.Н. Лебедева (г. Протвино).

Расчеты проводились для межэлектродного расстояния L = 1 cm, тока эмиссии катода $j_s = 10$ A/cm² (катод из LaB₆), температуры катода $T_1 = 1900 \,\mathrm{K}$ и анода $T_2 = 600 \, \text{K}$. Рассматривался стационарно горящий разряд. Для расчета газоразрядного промежутка решалась система гидродинамических уравнений, описывающих многокомпонентную плазму разряда в смеси Xe-H₂. Эта система содержит уравнения движения и непрерывности для потоков частиц, кроме молекулярного водорода, а также уравнение непрерывности для потока энергии электронов. Концентрация ионов Н- находилась из условия ионизационно-рекомбинационного равновесия этих ионов. Использованная система уравнений и граничных условий аналогична [4]. При решении уравнений движения и непрерывности для атомов Хе задавались нулевые граничные условия для потоков атомов Хе на границах плазмы с катодом и анодом. Эти условия (равно как и граничные условия для других потоков) соответствуют отсутствию перетекания вещества между электродами в стационарном разряде. Уравнение движения молекулярного водорода не решалось, вместо этого использовалось условие постоянства по зазору полного давления плазмы р₀.¹

¹ В эксперименте давление p_0 , как правило, задается внешними по отношению к газоразрядному промежутку условиями. Например, если в Хе–H₂-разряде разрядный промежуток заключен в колбу, заполненную смесью нейтральных газов Хе и H₂, то в стационарном разряде, в отсутствие газодинамических течений и конвективных потоков, давление p_0 совпадает с суммарным давлением нейтралов в колбе.

Теплопроводность электронов и входящий в уравнение энергии термодиффузионный фактор $k_e^{(T)}$, в отличие от [4], определялись по методу Фроста, что связано со сложной энергетической зависимостью сечения рассеяния электронов на атомах Хе. Кинетические коэффициенты для компонент плазмы вычислялись аналогично [4]. Для определения температуры газа T_g решалось уравнение теплопроводности газа, которое формулировалось аналогично [5] с учетом различных механизмов объемного тепловыделения. Вклад относительно тяжелых атомов Хе в теплопроводность не учитывался.

В данной работе рассматривался диапазон электронных температур в плазме $T_e < 2 \, \text{eV}$. В этом случае приближенно можно учитывать лишь ионизацию более легкоионизирующейся примеси — ксенона. При рассмотрении кинетики ионизации Хе пренебрегалось влиянием водорода на скорость ионизации ксенона Г_{Хе+}. Как и в [6], коэффициент ионизации Хе $K_i(T_e)$, при степенях ионизации, превышающих 10⁻², представлялся в виде экспоненциальной зависимости от 1/T_e. Наряду со значением $K_i(T_e)$, определенным в [6], в расчетах использовалось также измененное значение коэффициента ионизации $K_i(T_e)$, рассчитанное с учетом работ [7–9], откуда заимствовались сечения соответственно возбуждения переходов $6s[3/2]_2 \rightarrow 6s'[1/2]_1$, $6s'[1/2]_0$, $6p[1/2]_1$; $6s[3/2]_1 \rightarrow 6s'[1/2]_1, 6s'[1/2]_0, 6p[1/2]_1$ и сечения ионизации из нижних возбужденных состояний, рассматриваемых в дискретном спектре. Рассчитанное таким образом значение $K_i(T_e)$ оказалось в несколько раз меньше величины $K_i(T_e)$, определенной в [6]. Для решения системы дифференциальных уравнений, описывающих плазму в газоразрядном промежутке, использовался модифицированный нами для неравномерной сетки узлов метод Адамса 6-го порядка, который позволяет получить нужную точность и достаточно устойчив.

На рис. 1 и 2 в качестве примера приведены соответственно результаты расчетов двух модифицикаций НВ-разряда: НВ ксенон-водородного разряда (в качестве коэффициента ионизации Хе здесь использовано значение $K_i(T_e)$, полученное в настоящей работе) и НВ цезий-водородного разряда. Оба разряда оптизимированы по компонентному составу соответствующей смеси газов: Хе–H₂ (рис. 1) или Cs–H₂ (рис. 2). Оптимизация проведена при одинаковом полном давлении p_0 плазмы в зазоре.

Рис. 1, *а* и 2, *а* иллюстрируют оптимизацию режимов горения разряда. Здесь по горизонтальной оси отложены расчетные полные концентрации молекулярно-

го водорода
$$\langle N_{\mathrm{H}_2}^{(0)}
angle = \langle N_{\mathrm{H}_2} + 1/2 \, N_{\mathrm{H}}
angle = 1/L \int\limits_0^L \left(N_{\mathrm{H}_2}(x) + 1/2 \, N_{\mathrm{H}_2}(x) + 1/2 \, N_{\mathrm{H}_2}(x) \right)$$

 $+1/2N_{\rm H}(x))dx$. По вертикальной оси отложены расчетные значения концентрации отрицательных ионов водорода $N_{\rm H^-}(L)$ на прианодной границе плазмы (кривая *I*), значения концентрации ионов H⁻ в центре зазора $N_{\rm H^-}(L/2)$ (кривая 2), а также усредненная по газоразрядному промежутку полная расчетная концентрация атомов и ионов ксено-

Рис. 1. *a* — Зависимость $N_{\rm H^-}(L)$, $N_{\rm H^-}(L/2)$ и $\langle N_{\rm Xe}^{(0)} \rangle$ от $\langle N_{\rm H_2}^{(0)} \rangle$ для HB Xe-H₂-разряда при $p_0 = 0.6$ Torr. *I* — $N_{\rm H^-}(L)$, 10^{12} cm⁻³; *2* — $N_{\rm H^-}(L/2)$, 10^{12} cm⁻³; *3* — $\langle N_{\rm Xe}^{(0)} \rangle$, 10^{15} cm⁻³. *b* — Распределение параметров HB Xe-H₂-разряда по зазору при $p_0 = 0.6$ Torr. $\langle N_{\rm Xe}^{(0)} \rangle =$ $= 1.5 \cdot 10^{15}$ cm⁻³, $\langle N_{\rm H_2}^{(0)} \rangle = 1.66 \cdot 10^{15}$ cm⁻³, $\varphi_1 = 9$ V, $\varphi_2 =$ = 2.09 V, U = 6.79 V, j = 8.83 A/cm². *I* — T_e ; *2* — $10T_g$, eV; *3* — $N_{\rm Xe}$; *4* — $N_{\rm H_2}$, 10^{15} cm⁻³; *5* — 0.1φ , V; *6* — n_e , 10^{14} cm⁻³; *7* — $N_{\rm H}$, 10^{15} cm⁻³; *8* — $N_{\rm H^-}$, 10^{13} cm⁻³.

Рис. 2. a — Зависимость $N_{\rm H^-}(L)$, $N_{\rm H^-}(L/2)$ и $\langle N_{\rm Cs}^{(0)} \rangle$ от $\langle N_{\rm H_2}^{(0)} \rangle$ для HB Cs-H₂-разряда при $p_0 = 0.6$ Torr. 1 — $N_{\rm H^-}(L)$; 2 — $N_{\rm H^-}(L/2)$, 10^{12} cm⁻³; 3 — $\langle N_{\rm Cs}^{(0)} \rangle$, 10^{14} cm⁻³. b — Распределение параметров HB Cs-H₂-разряда по зазору при $p_0 = 0.6$ Torr. $\langle N_{\rm Cs}^{(0)} \rangle = 0.75 \cdot 10^{14}$ cm⁻³, $\langle N_{\rm H_2}^{(0)} \rangle = 2.6 \cdot 10^{15}$ cm⁻³, $\varphi_1 = 9$ V, $\varphi_2 = 2.77$ V, U = 6.62 V, j = 9 A/cm². $1 - T_e$; $2 - 10T_g$, eV; $3 - N_{\rm Cs}$, 10^{13} cm⁻³; $4 - N_{\rm H_2}$, 10^{16} cm⁻³; $5 - 0.1\varphi$, V; $6 - n_e$, 10^{14} cm⁻³; $7 - N_{\rm H}$, 10^{15} cm⁻³; $8 - N_{\rm H^-}$, 10^{13} cm⁻³.

на $\langle N_{\rm Xe}^{(0)} \rangle = 1/L \int_{0}^{L} (N_{\rm Xe}(x) + N_{\rm Xe^+}(x)) dx$ (кривая 3 на рис. 1, *a*) и полная расчетная концентрация атомов и ионов цезия $\langle N_{\rm Cs}^{(0)} \rangle = 1/L \int_{0}^{L} (N_{\rm Cs}(x) + N_{\rm Cs^+}(x)) dx$ (кривая 3 на рис. 2, *a*). Оптимизированный режим горения разряда характеризуется таким набором величин $\langle N_{\rm H_2}^{(0)} \rangle$ и $\langle N_{\rm Xe}^{(0)} \rangle$ (рис. 1, *a*) или $\langle N_{\rm H_2}^{(0)} \rangle$ и $\langle N_{\rm Cs}^{(0)} \rangle$ (рис. 2, *a*), который соответствует достижению максимума на кривой 1. При этом в ксенон-водородном или цезий-водородном разряде достигаются максимальные значения концентрации отрицательных ионов водорода $N_{\rm H^-}(L)$ на прианодной границе квазинейтральной плазмы.

Оптимизация ксенон-водородного разряда проводилась также и при других значениях p_0 , отличных от 0.6 Тогг. Значение $p_0 = 0.6$ Тогг, использованное выше, примерно соответствует максимальной концентрации $N_{\rm H^-}(L)$, которую можно получить, варьируя величину p_0 , в НВ ксенон-водородном разряде при межэлектродном расстоянии L = 1 ст. Отметим, что в ксенон-водородном разряде Хе по сравнению с водородом (атомарным [10] и молекулярным [11]) мало влияет на v-t-релаксацию молекул водорода, а следовательно, и на КФР молекул.

Как и должно быть, в оптимизированном разряде средняя концентрация ксенона $\langle N_{Xe}^{(0)} \rangle$ в плазме существенно превышает среднюю концентрацию цезия $\langle N_{Cs}^{(0)} \rangle$. Замена ионизующейся примеси цезия на ксенон приводит также к увеличению температуры электронов T_e (ср. кривые Iна рис. 1, b и 2, b, а также см. работы [12–15], посвященные исследованию НВ цезий-водородного разряда). Однако максимальные значения концентрации $N_{H^-}(L)$, полученные при заданной величине p_0 в оптимизированных режимах двух типов отличаются не значительно. Например, в рассмотренном случае, при $p_0 = 0.6$ Torr, в ксенон-водородном разряде оптимизированное значение $N_{H^-}(L) \approx 2.25 \cdot 10^{12}$ сm⁻³, в то время как в цезий-водородном разряде — $\approx 4.5 \cdot 10^{12}$ сm⁻³.

Остановимся на той роли, которую играет ионизация водорода в процессе ионообразования в плазме ксенон-водородного НВ-разряда. Для этого сравним расчетные скорости генерации ионов водорода со скоростью ионизации ксенона Γ_{Xe^+} .

На рис. З построены расчетные распределения скорости ионизации ксенона по длине заполненного плазмой газоразрядного промежутка (кривые I и 2). Кривая I рассчитана в настоящей работе, 2 соответствует расчетной скорости ионизации ксенона $\Gamma_{Xe^+} = K_i (T_e(x)) n_e(x) N_{Xe}(x)$, в которой использованы распределения по зазору величин $T_e(x)$, $n_e(x)$, $N_{Xe}(x)$, полученные в настоящей работе, и значение $K_i(T_e)$, рассчитанное в [6]. Различие между кривыми I и 2соответствует различию между коэффициентами ионизации ксенона, использованными в настоящей работе и в [6], что вполне укладывается в рамки обычной погрешности в определении коффициента ионизации и

Рис. 3. Распределение скорости ионизации ксенона (1, 2) и водорода (3-5) по зазору. Параметры разряда соответствуют рис. 2, *b*.

связано с разбросом используемых сечений возбуждения дискретных уровней электронным ударом (ср., например, с [16, с. 50], где проиллюстрирован типичный разброс экспериментальных и расчетных значений коэффициента ионизации для цезиевой плазмы). Кривые 3 и 4 на рис. З представляют собой значения скорости ионизации $\Gamma_{\rm H^+}(x)$ атомарного водорода, рассчитанные аналогично кривой 2, т. е. с использованием полученных в настоящей работе распределений $T_e(x)$, $n_e(x)$, $N_{\rm H}(x)$, и известных данных о коэффициенте ионизации атомарного водорода, рассчитанных в [17] для двух предельных значений вероятности w_{ph} выхода фотона из плазмы в серии Лаймана. Кривая 3 соответствует оптически полностью прозрачной плазме, когда для всех линий, включая серию Лаймана, $w_{ph} = 1$. Кривая 4 соответствует оптически полностью непрозрачной в серии Лаймана плазме, когда для всех линий этой серии $w_{ph} = 0$. Кривая 5 на рис. 3 отражает скорость ионизации $\Gamma_{H^+}(x)$ молекулярного водорода, определенную аналогично кривым 3 и 4, т.е. с использованием рассчитанных в настоящей работе параметров плазмы: $T_e(x)$, $n_e(x)$, $N_{H_2}(x)$ и известных теоретических значений коэффициентов ионизации молекулярного водорода [18]².

Из представленных на рис. З данных видно, что, несморя на имеющийся разброс значений коэффициента ионизации, в рассмотренном НВ ксенон-водородном разряде скорость генерации ионов Хе явно превышает скорость ионизации H₂. Видно также, что в ионизацию водорода значительный вклад может вносить атомарный водород, обладающий достаточно сильным поглощением в серии Лаймана. Соответствующая скорость ионизации $\Gamma_{H_2^+}(x)$ может приближаться к представленной на кривой 4.

Появление в плазме ксенон-водородного разряда сравнительно большой концентрации N_H атомарного водорода связано с предельной по величине вкладываемой мощности модификацией НВ-разряда, которая соответствует максимально допустимому катодному падению напряжения $\varphi_1 = E_d/e$, и следовательно, масимально большим значениям электронной температуры и степени диссоциации молекулярного водорода. При уменьшении катодного падения и температуры электронов Те в плазме степень диссоциации молекулярного водорода довольно быстро уменьшается. При этом ионизация атомарного водорода перестает вносить заметный вклад в ионообразование в плазме. Одновременно с уменьшением Т_е уменьшается и относительный вклад в ионообразование вследствие ионизации молекулярного водорода, что связано с более быстрым уменьшением коэффициента ионизации молекулярного водорода при уменьшении Т_е по сравнению с коэффициентом ионизации ксенона (ср. рис. 3 в [18] с рис. 6 в [6]). Таким образом, в НВ ксенон-водородных разрядах рассматриваемого типа, когда $\varphi_1 \leq E_d/e$ и $j_s \leq 10 \,\mathrm{A/cm^2}$, основной вклад в ионообразование в плазме должна вносить ионизация ксенона.

В заключение отметим основные результаты.

1. В работе выполнено первое теоретическое рассмотрение НВ ксенон-водородного разряда, плазма которого образуется, в основном, путем ионизации примеси инертного газа — ксенона.

2. Проведена оптимизация параметров плазмы разряда и показано, что при оптимальном выборе концентраций компонент смеси водород-ксенон в плазме разряда может быть получена концентрация N_{H^-} ионов H^- , близкая к той, которая (при прочих равных условиях) достигается в НВ цезий-водородном разряде. Достигнутая в настоящей работе расчетная концентрация ионов H^- в прианодной области плазмы ксенон-водородного разряда $N_{H^-}(L) \approx 2 \cdot 10^{12} \text{ cm}^{-3}$ при L = 1 cm.

3. Рассчитанные режимы горения НВ ксенон-водородного разряда оптимальны также с точки зрения выбора напряжения горения разряда и величины катодного падения ($\phi_1 \approx E_d/e$). При этом мощность, вносимая в плазму электродным катодным пучком, почти полностью трансформируется в энергию тепловых электронов [20], а электронная температура в плазме ($T_e \approx 1-2 \,\mathrm{eV}$) достаточна для эффективной ионизации газа и достижения почти максимальных констант ДП.

Отметим также, что при $T_e \approx (1-2) \text{ eV}$ достигается максимум константы скорости e-v-обмена $(v = 0 \Leftrightarrow v = 1)$ для молекулы H₂ (см., например, [21]). Это приводит к интенсивной колебательной накачке

² Коэффициент ионизации молекулярного водорода рассчитан в [18] в приближении оптически прозрачной плазмы. Для слоя плазмы молекулярного водорода протяженностью L = 1 ст оптическая толщина плазмы в полосах Лаймана или Вернера ~ 0.1–0.2 [19].

молекул H_2 , несмотря на относительно большую концентрацию $N_{\rm H}$ атомарного водорода.³

Авторы благодарны В.Е. Балакину за предложение темы исследования и поддержку работы.

Список литературы

- [1] Бакшт Ф.Г., Иванов В.Г. // Письма в ЖТФ. 1986. Т. 12. Вып. 11. С. 672–675.
- Bacal M., Hamilton G.W. // Phys. Rev. Lett. 1979. Vol. 42. N 23. P. 1538–1540.
- [3] Hiskes J.R. // J. Appl. Phys. 1980. Vol. 51. N 9. P. 4592-4594.
- [4] Бакшт Ф.Г., Елизаров Л.И., Иванов В.Г. // Физика плазмы. 1990. Т. 16. № 7. С. 854–861.
- [5] Бакшт Ф.Г., Елизаров Л.И., Иванов В.Г., Юрьев В.Г. // Физика плазмы. 1988. Т. 14. № 1. С. 91–97.
- [6] Бакшт Ф.Г., Иванов В.Г. // ЖТФ. 1978. Т. 48. Вып. 4. С. 688–699.
- Zeman V., Bartschat K., Norew C., Mc-Conkey J.W. // Phys. Rev. A. 1998. Vol. 58. N 2. P. 1275–1281.
- [8] Fons J.T., Lin C.C., Mc-Conkey J.W. // Phys. Rev. A. 1998.
 Vol. 58. N 6. P. 4603–4615.
- [9] Erwin D.E., Kunc J.A. // Phys. Rev. A. 2004. Vol. 70. N 2. P. 022705(1–6).
- [10] Gorse C., Capitelli M., Bacal M., Bretagne J., Laganà A. // Chem. Phys. 1987. Vol. 117. P. 177–195.
- [11] *Dove J.E., Teitelbaum H. //* Chem. Phys. 1974. Vol. 6. P. 431–444.
- [12] Бакшт Ф.Г., Иванов В.Г., Коньков С.И., Школьник С.М. // ЖТФ. 2001. Т. 71. Вып. 8. С. 17–22.
- [13] Baksht F.G., Ivanov V.G., Kon'kov S.I., Shkol'nik S.M., and Bacal M. // J. Phys. D. Appl. Phys. 2003. Vol. 36. N 2. P. 122–128.
- [14] Бакшт Ф.Г., Елизаров Л.И., Иванов В.Г., Коньков С.И., Митрофанов Н.К., Школьник С.М. // Физика плазмы. 2003. Т. 29. № 3. С. 256–260.
- [15] Бакшт Ф.Г., Иванов В.Г. // Физика плазмы. 2005. Т. 31. № 6. С. 572–576.
- [16] Термоэмиссионные преобразователи и низкотемпературная плазма. Под ред. Б.Я. Мойжеса и Г.Е. Пикуса. М.: Наука, 1973. 480 с.
- [17] Johnson L.C., Hinnov E. // JQSRT. 1973. Vol. 13. P. 333-358.
- [18] Sawada K., Fujimoto T. // J. Appl. Phys. 1995. Vol. 78. N 5. P. 2913–2924.
- [19] Chan W.F., Cooper G., Brion C.E. // Chem. Phys. 1992. Vol. 168. P. 375–388.
- [20] Бакшт Ф.Г., Иванов В.Г. // Физика плазмы. 1986. Т. 12. № 3. С. 286–293.
- [21] Janev R.K., Langer W.D., Evans K.Jr., Post D.E.Jr. Elementary Processes in Hydrogen–Helium Plasmas. Springer-Verlag, 1987.
- [22] Lepp S., Shull J.M. // Astrophysical J. 1983. Vol. 270. N 2. Pt 1. P. 578–582.

128

³ Например, при параметрах плазмы, представленных на рис. 1, *b*, частота переходов $v = 1 \rightarrow v = 0$ в молекуле H₂ вследствие e-v-обмена на порядок превышает частоту этого перехода вследствие v-t-обмена с атомарным водородом [10,22].