Термоэдс био-SiC и экокерамики SiC/Si, приготовленных на основе дерева сапели

© И.А. Смирнов¹, Б.И. Смирнов¹, Т.С. Орлова¹, Сz. Sulkovski², H. Misiorek², J. Mucha², A. Jezowski², J. Ramirez-Rico³, J. Martinez-Fernandez³

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Wroclaw, Poland

³ Dpto Fisica de la Materia Condensada — ICMS Universidad de Sevilla-CSIC,

Sevilla, Spain

04

E-mail: Igor.Smirnov@mail.ioffe.ru, Smir.bi.@mail.ioffe.ru

(Поступила в Редакцию 28 мая 2012 г.)

В интервале температур 5–300 К измерены коэффициенты термоэдс био-SiC и экокерамики SiC/Si, приготовленных на основе дерева сапели. Измерения проведены вдоль и поперек пустых (био-SiC), а также пустых и частично заполненных кремнием (SiC/Si) каналов в образцах. В био-SiC в области температур 5–200 (250) К обнаружен вклад в термоэдс, связанный с эффектом увлечения электронов фононами. В SiC/Si такой эффект отсутствует. Сделано предположение, что это связано с наличием в данном материале сильнолегированного кремния, расположенного в каналах SiC, и его преимущественной ролью в поведении термоэдс керамики. Полученные для термоэдс результаты, сравниваются с имеющимися в литературе данными для био-SiC, приготовленного на основе дерева белого эвкалипта, и сильнолегированного висмута.

Работа выполнена при финансовой поддержке программ Президиума РАН (П-20), проекта Университета Севильи (Испания) Р09-ТЕР-5152, проекта Министерства науки и высшего образования Польши N202259939 и в рамках двустороннего соглашения между Польской и Российской академиями наук.

1. Введение

Новые физические объекты — био-углерод (био-С), а также био-SiC и экокерамика (металлокерамика) SiC/Si, получение которых основано на превращении дерева в сильнолегированные высокопористые карбиды кремния (со специфическим видом микро- и наноканальных пор) [1,2], — продолжают интересовать физиковэкспериментаторов и инженеров-практиков вследствие их нестандартных физических свойств и возможных новых сфер для практических приложений.

За последние годы в литературе появилось большое число работ, посвященных этим материалам, выполненных в ведущих лабораториях Европы, США, Японии, Китая. В [3–7] содержатся литературные ссылки на некоторые наиболее важные работы по обсуждаемой тематике.

Получение био-С, био-SiC и SiC/Si подробно описано в литературе [3,4,8–11]. Био-С образуется при пиролизе (обугливании) в токе аргона при температурах от 400 до ~ 2500°С выбранного для эксперимента типа дерева с присущей ему сеткой "питательных" каналов микро- и наноразмеров, ориентированных преимущественно вдоль направления его роста.

Экокерамику SiC/Si получают при инфильтрации в вакууме расплава Si в пустые каналы био-C с последующей химической реакцией его с углеродом и образованием β -SiC. Карбид кремния + избыточный Si и небольшое количество C, не вступившего в реакцию с Si, формируют экокерамику SiC/Si. Био-SiC образуется в результате удаления из SiC/Si химическим путем избыточного Si.

Настоящая работа продолжает цикл исследований физических свойств био-SiC и SiC/Si, приготовленных на основе дерева сапели (био-SiC(SA) и SiC/Si(SA)). Ранее у этих материалов в интервале температур 5–300 К мы измерили теплопроводность \varkappa и удельное электросопротивление ρ [6,7]. Цель данной работы — исследовать в том же интервале температур их коэффициенты термоэдс *S*.

В литературе имеется всего одна работа, в которой в интервале 5–300 К была измерена термоэдс био-SiC, приготовленного на основе дерева белого эвкалипта (био-SiC(WE)) [12]. В этом материале в области низких температур был обнаружен вклад в термоэдс, связанный с эффектом увлечения электронов фононами (УЭФ).

2. Приготовление образцов и методика измерений

В качестве объектов исследования выбраны образцы био-SiC(SA) и SiC/Si(SA), у которых ранее нами были изучены $\kappa(T)$ и $\rho(T)$ [6,7]. Эти образцы получены по методике, описанной во Введении. Пиролиз и инфильтрация Si проводились соответственно при T = 1000 и 1500°C. Образцы для измерений имели размеры $3 \times 3 \times 15$ mm. Их длинные стороны были ориентированы вдоль направления роста дерева

(т. е. вдоль каналов в образцах). Пористость образца био-SiC(SA) составляла 52 vol.%, а эффективная пористость и концентрация Si в образце SiC/Si(SA) были равны 31 и 21 vol.% соответственно.

Измерения коэффициентов термоэдс проводились с помощью стандартной дифференциальной методики в вакууме вдоль (S_{\parallel}) и поперек (S_{\perp}) каналов в образцах. Результаты рентгеновских и микроскопических измерений образцов, а также данные о размерах имеющихся в них пор приведены в [6,7].

3. Экспериментальные результаты

-70

a

3.1. Био-SiC(SA). На рис. 1 представлены экспериментальные данные для коэффициентов термоэдс $S_{\perp}^{\text{tot}}(T)$ и $S_{\parallel}^{\text{tot}}(T)$ био-SiC(SA) (с пористостью 52 vol.%). Для сравнения на этом рисунке и на рис. 2 приведены также соответственно величины $S_{\perp}^{\text{tot}}(T)$ био-SiC(WE) (с пористостью ~ 38 vol.% [6]) и $S^{\text{tot}}(T)$ монокристаллического образца β -SiC, заимствованные из нашей работы [12], для термоэдс которых, как отмечалось во Введении, был обнаружен эффект УЭФ.

Рис. 1. Температурные зависимости термоэдс $S_{\perp}^{\text{iot}}(a)$ и $S_{\parallel}^{\text{tot}}(b)$ для образцов био-SiC(SA) (1, 2) и био-SiC(WE) [12] (3). Штриховые линии — диффузионные составляющие термоэдс: $S_{\perp}^{\text{diff}}(a)$ и $S_{\parallel}^{\text{diff}}(b)$. Объяснение обозначений $S_{\perp}^{\text{ph}}(a)$ и $S_{\parallel}^{\text{ph}}(b)$ см. в тексте.

Рис. 2. Температурная зависимость термоэдс S^{tot} монокристаллического образца β -SiC из работы [12] с концентрацией носителей тока $n \sim (1-2) \cdot 10^{18} \text{ cm}^{-3}$. Штриховая линия — термоэдс S^{diff} . Объяснение обозначения S^{ph} см. в тексте.

Из проведенного сравнения можно заключить, что $S_{\perp}^{\text{tot}}(T)$ био-SiC(SA) ведет себя подобно $S_{\perp}^{\text{tot}}(T)$ био-SiC(WE) и $S^{\text{tot}}(T)$ β -SiC. Это обстоятельство может указывать на то, что у био-SiC(SA) в области низких температур, по-видимому, также наблюдается вклад в термоэдс, связанный с эффектом УЭФ.

Обсудим этот вывод подробнее. Для получения более общей картины характера поведения S(T) рассматриваемых материалов будем использовать как данные, полученные в настоящей работе для био-SiC(SA), так и результаты измерений S(T) био-SiC(WE) и β -SiC из работы [12]. Для обоих образцов био-SiC при обсуждении воспользуемся данными по $S_{\perp}^{\text{tot}}(T)$, для которой эффект УЭФ проявился более ярко, чем для $S_{\parallel}^{\text{tot}}$.

Основополагающий вклад в объяснение поведения эффекта УЭФ в термоэдс твердых тел для металлов впервые был сделан Гуревичем [13], а для полупроводников — Херрингом [14], Фредериксом [15], Джеболлом и Халлом [16]. К настоящему времени в литературе опубликовано большое число теоретических и экспериментальных работ, в которых рассматривается этот эффект.

Для термоэдс, у которой обнаруживается эффект УЭФ, измеряемую в эксперименте величину S^{tot} можно записать в виде суммы двух составляющих [17,18]

$$S^{\text{tot}} = S^{\text{diff}} + S^{\text{ph}},\tag{1}$$

где S^{diff} — диффузионная, а S^{ph} — фононная составляющая термоэдс.

-30

-20

В [6] на основании прямых измерений (эффект Холла) и косвенных оценок по данным для $\kappa(T)$ и $\rho(T)$ был сделан вывод, что концентрация носителей тока в материалах био-SiC достаточно велика и составляет $\sim 10^{19}$ cm⁻³. В образце β -SiC, исследованном в [12], она была равна 10^{18} cm⁻³. Это позволяет использовать при анализе полученных экспериментальных результатов формулу для S^{diff} , справедливую для вырожденного электронного газа с одним типом носителей тока [12,18,19],

$$S^{\text{diff}} = \frac{k^2 \pi^2 T}{3eE_{\text{F}}},\tag{2}$$

где k — постоянная Больцмана, e — заряд электрона, $E_{\rm F}$ — энергия Ферми.

Согласно (2), $S^{\text{diff}} \sim T$. Такое поведение $S^{\text{diff}}(T)$ для $S_{\perp}(T)$ био-SiC(SA), био-SiC(WE) и S(T) β -SiC наблюдается экспериментально при T > 200(250) K (рис. 1 и 2). В области температур T < 200(250) K S^{diff} для рассматриваемых материалов определяется с помощью линейной экстраполяции термоэдс из области высоких (T > 200(250) K) в область низких (T < 200(250) K) температур (см. штриховые прямые на рис. 1 и 2).

40

32

24

16

8

0

0

50

 S^{ph} , $\mu V/K$

Рис. 3. Фононные составляющие термоэдс S^{ph} . $1 - \beta$ -SiC [12], 2 -био-SiC(SA), 3 -био-SiC(WE) [12].

100

150

T. K

200

250

m =

Рис. 4. Фононная составляющая термоэдс $S_{\perp}^{\rm ph}$ для образца био-SiC(SA).

Величину фононной составляющей термоэдс, связанной с наличием в материале эффекта УЭФ, можно определить экспериментально с помощью (1) как разность между S^{tot} и S^{diff} (рис. 1 и 2). Результаты такой операции для рассматриваемых материалов представлены на рис. 3.

Согласно теории [20], для эффекта УЭФ в термоэдс только колебания решетки с большой длиной волны, а именно с волновыми векторами, сравнимыми с волновыми векторами носителей тока, эффективно взаимодействуют с такими носителями. Это имеет место, как правило, в области не очень низких и средних температур. При более высоких температурах фононфононное рассеяние, а при достаточно низких температурах граничное рассеяние фононов приводит к снижению величины УЭФ. При этом $S^{ph}(T)$ образует колоколообразную кривую с максимумом и стремлением к нулю при высоких и очень низких температурах. Такую зависимость $S^{\mathrm{ph}}(T)$ мы и получили для всех трех рассматриваемых материалов: био-SiC(SA), био-SiC(WE) и β -SiC (рис. 3). Необходимо отметить, что с увеличением концентрации носителей тока в исследованных материалах величины их S^{ph} уменьшаются, а температуры максимумов сдвигаются в сторону более высоких температур (рис. 3).

На рис. 4 в логарифмическом масштабе представлена температурная зависимость $S^{\rm ph}_{\perp}(T)$ для исследованного образца био-SiC(SA). Ее мы сравнили с данными для $S^{\rm ph}$ образца Ві, легированного теллуром [17] (рис. 5), который имел концентрацию носителей тока $1.5 \cdot 10^{19}$ cm⁻³, близкую к таковой для исследованного образца био-SiC(SA) ($n \sim 10^{19}$ cm⁻³).

В [17] было показано, что для сильнолегированного образца Ві значения $S_{22}^{\rm ph}$, расположенные справа по температурной шкале от максимума $S_{22}^{\rm ph}(T)$, подчиняются зависимости $S_{22}^{\rm ph} \sim T^m$. При этом вблизи максимума $S_{22}^{\rm ph}$

Рис. 5. Температурная зависимость фононной составляющей термоэдс S_{22}^{ph} образца Ві, легированного Те ($n = 1.49 \cdot 10^{19} \text{ cm}^{-3}$) [17]. Градиент температуры в нем направлен параллельно кристаллографической оси C_1 .

m = 1, а при более высоких температурах m = 4 (рис. 5). Измерения $S_{22}^{\rm ph}(T)$ в [17] проводились при низких температурах (2–50 K). К нашему удивлению, оказалось, что такие же значения m наблюдаются и у $S_{\perp}^{\rm ph}$ исследованного образца био-SiC(SA), но вся картина (включая и положение максимума $S_{\perp}^{\rm ph}$) для него оказалась смещенной в область более высоких температур — 70–250 К. Объяснения такого поведения $S_{\perp}^{\rm ph}(T)$ для био-SiC(SA) мы пока не нашли.

Следует отметить также важный для характеристики материала био-SiC факт. В литературе принято по знаку экспериментально измеренной термоэдс судить о том, какие носители тока (электроны или дырки) принимают участие в процессе проводимости исследуемого материала. В случае с био-SiC(SA) знак $S_{\perp}^{\rm ph}$ (рис. 1) соответствует минусу. Таким образом, в этом материале имеет место электронный (*n*-тип) проводимости.

3.2. Экокерамика SiC/Si(SA). На рис. 6 приведены температурные зависимости экспериментально измеренной термоэдс S^{exp} экокерамики SiC/Si (SA) с концентрацией Si и эффективной пористостью 21 и 31 vol.% соответственно. Измерение S^{exp} проводилось вдоль (S_{\parallel}^{exp}) и поперек (S_{\perp}^{exp}) пустых и частично заполненных кремнием канальных пор в образце. Из данных, представленных на этом рисунке, видно следующее.

1. Величины термоэдс SiC/Si(SA), измеренные вдоль и поперек различных каналов в образце, равны в интервале температур 5–50 K, но при 50–300 K $S_{\perp}^{exp} > S_{\parallel}^{exp}$.

2. Во всем исследованном интервале температур термоэдс SiC/Si(SA) по величине больше, чем термоэдс био-SiC(SA) (ср. рис. 1 и 6).

3. При всех температурах знак термоэдс у экокерамики SiC/Si(SA) положительный, что указывает на дырочный характер (*p*-тип) проводимости, которая обусловлена (как будет более подробно рассмотрено далее), по-видимому, присутствием в каналах SiC/Si(SA) кремния [7].

4. И наконец, что является самым важным, из температурной зависимости $S^{\exp}(T)$ SiC/Si(SA) следует, что у термоэдс этого материала эффект УЭФ отсутствует.

Возможной причиной, ответственной за такое поведение $S^{\exp}(T)$ в SiC/Si(SA), также могло быть наличие в каналах SiC кремния. Известно [7], что Si, находящийся в этом материале, имеет концентрацию дырок и величину ρ при 300 К 10^{19} сm⁻³ и 0.002 $\Omega \cdot$ сm соответственно.

Очень грубая оценка для термоэдс композита (S_c) , состоящего из системы параллельно включенных однородных проводников (при условии равномерного распределения температуры вдоль них), проведенная с

Рис. 6. Температурные зависимости экспериментальных величин термоэдс S^{\exp} образцов SiC/Si(SA) с концентрацией Si ~ 21 vol.%. $I - S_{\perp}^{\exp}$, $2 - S_{\parallel}^{\exp}$.

Рис. 7. Температурные зависимости произведения ST для p-Ge [16]. Числа около кривых — значения ρ (в $\Omega \cdot \text{cm}$) при 300 К.

помощью формулы [21]

$$S_c = S_1 + \frac{S_2 - S_1}{R_1 + R_2} R_1 \tag{3}$$

(где S_1 , S_2 и R_1 , R_2 — соответственно коэффициенты термоэдс и электросопротивления компонент композита), показала, что главный вклад в термоэдс композита будет вносить расположенный в нем кремний. Такой же вывод о роли Si в композите был получен в [21] при анализе данных для термоэдс композита биоуглеродная матрица сосны/медь.

К сожалению, нам не удалось найти в литературе данных о поведении термоэдс Si с различной концентрацией носителей тока при низких температурах. Мы нашли лишь данные о термоэдс кремния, полученные при температурах выше 300 К [22]. Величина S для пленки Si с концентрацией носителей тока ~ 10^{19} сm⁻³ при 300 K, согласно этой работе, составила ~ $100 \,\mu$ V/K, что близко к термоэдс исследованной нами экокерамики SiC/Si(SA).

В литературе имеются данные о S(T) Ge [16] (родственного кремнию материала), полученные для области низких температур и широкого набора концентраций носителей тока у измеренных образцов. Некоторые кривые для термоэдс Ge, представленной в виде *ST*, из работы [16] приведены на рис. 7. Видно, что для образца Ge с большой концентрацией носителей тока с $\rho_{300 \text{ K}} \sim 0.0033 \Omega \cdot \text{сm}$ (что близко к величине $\rho_{300 \text{ K}} \sim 0.0002 \Omega \cdot \text{сm}$ для Si, располагающегося в каналах исследованной нами экокерамики SiC/Si(SA)) вклад в термоэдс от эффекта УЭФ отсутствует. По-видимому, это имеет место и в Si, находящемся в каналах SiC экокерамики SiC/Si(SA), что и приводит к отсутствию эффекта УЭФ в SiC/Si(SA).

4. Заключение

На основе результатов, полученных в настоящей работе, можно сделать следующие выводы.

1. Впервые в интервале температур 5–300 К измерены термоэдс вдоль и поперек канальных пор в образцах био-SiC(SA) и SiC/Si(SA), приготовленных на основе дерева сапели.

2. В био-SiC(SA) в интервале температур 5–200 (250) К обнаружен вклад в термоэдс от эффекта увлечения электронов фононами. Показано, что измеренная в эксперименте $S_{\perp}^{\text{tot}}(T)$ этого материала состоит из суммы фононной термоэдс (S_{\perp}^{ph}) , ответственной за обнаруженный эффект, и диффузионной термоэдс $(S_{\perp}^{\text{diff}})$, описывающей поведение вырожденного электронного газа с одним типом носителей тока.

3. Показано, что при T > 200(250) К $S_{\perp}^{\text{diff}} \sim T$.

4. В интервале 5–200 (250) К $S_{\perp}^{\rm ph}(T)$ можно представить в виде колоколообразной кривой с максимумом при $T_{\rm max} \sim 70$ К.

5. Показано, что при $T > T_{\max}$ $S_{\perp}^{\rm ph} \sim T^{-m}$. Вблизи температуры, отвечающей T_{\max} , m = 1, а при T > 200 К m = 4.

6. В SiC/Si(SA) вклада в термоэдс от эффекта увлечения электронов фононами не обнаружено. Сделано предположение, что в этой экокерамике за поведение $S^{\exp}(T)$ несет ответственность сильнолегированный $(p \sim 10^{19} \,\mathrm{cm^{-3}})$ кремний, располагающийся в каналах SiC, у которого эффект увлечения электронов фононами отсутствует.

7. Термоэдс био-SiC(SA) и SiC/Si(SA) во всем исследованном интервале температур имеет соответственно знаки минус и плюс. Это указывает на то, что проводимость в первом материале осуществляется за счет электронов, а во втором реализуется за счет дырок и обусловлена наличием кремния.

Список литературы

- H. Sieber, C. Hoffman, A. Kaindl, P. Greil. Adv. Eng. Mater. 2, 105 (2000).
- [2] H. Siber. Mater. Sci. Eng. A 412, 43 (2005).
- [3] A.R. de Arellano-Lopez, J. Martinez-Fernandez, P. Gonzalez, C. Dominguez, V. Fernandez-Quero, M. Singh. Int. J. Appl. Ceram. Tech. 1, 56 (2004).
- [4] C. Zollifrank, H. Sieber. J. Europ. Ceram. Soc. 24, 495 (2004).
- [5] T.E. Wilkes, S.P. Stock, F. De Carlo, X. Xiao, K.T. Faber. Phil. Mag. 89, 1373 (2009).
- [6] Л.С. Парфеньева, Т.С. Орлова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, J. Mucha, A. Jezowski, R. Cabezas-Rodriguez, J. Ramirez-Rico. ФТТ 54, 1623 (2012).
- [7] Л.С. Парфеньева, Т.С. Орлова, Б.И. Смирнов, И.А. Смирнов, Н. Misiorek, J. Mucha, A. Jezowski, A. Gutierrez-Pardo, J. Ramirez-Rico. ФТТ 54, 2003 (2012).
- [8] C.E. Byrne, D.C. Nagle. Pat. US 605 1096 (1996); Pat. US 612 4028 (1998).
- [9] P. Greil, T. Lifka, A. Kaindl. J. Eur. Ceram. Soc. 18, 1961; 1975 (1998).

- [10] M. Singh. Ceram. Sci. Eng. Proc. 21, 39 (2000).
- [11] C. Zollifrank, H. Sieber. J. Am. Ceram. Soc. 88, 51 (2005).
- [12] И.А. Смирнов, Б.И. Смирнов, Е.Н. Мохов, Сz. Sulkowski, H. Misiorek, A. Jezowski, A.R. de Arellano-Lopez, J. Martinez-Fernandez. ФТТ 50, 1355 (2008).
- [13] L. Gurevich. J. Phys. (USSR) 9, 477 (1945); 10, 67 (1946).
- [14] C. Herring. Phys. Rev. 96, 1163 (1954).
- [15] H.P. Frederikse. Phys. Rev. 92, 248 (1953).
- [16] T.H. Geballe, G.H. Hull. Phys. Rev. 94, 1134 (1954).
- [17] В.Д. Каган, Н.А. Редько, Н.А. Радионов, В.Н. Польшин, О.В. Зотова. ФТТ 46, 1372 (2004).
- [18] Л.Л. Вовченко, И.В. Дворкина, Л.Ю. Мацуй. ФНТ 20, 463 (1994).
- [19] В.В. Попов, С.К. Гордеев, А.В. Гречинская, А.М. Данишевский. ФТТ 44, 758 (2002).
- [20] Г.И. Фэн. 64, 733 (1958).
- [21] А.Т. Бурков, С.В. Новиков, Б.И. Смирнов, И.А. Смирнов, Cz. Sulkovski, А. Jezowski. ФТТ **52**, 2191 (2010).
- [22] W. Shin, M. Ishikawa, M. Nishibori, N. Izu, T. Itoh, I. Matsubara. Mater. Trans. 50, 1596 (2009).