05;06;08 Монокристаллы семейства лангасита — необычное сочетание свойств для применений в акустоэлектронике

© И.А. Андреев

Федеральное государственное унитарное предприятие Государственный оптический институт им. С.И. Вавилова, 199034 Санкт-Петербург, Россия e-mail: andi.17@bk.ru

(Поступило в Редакцию 14 июля 2005 г.)

Рассмотрены основные этапы развития акустоэлектроники и требования, предъявляемые к основе акустоэлектронных компонент — высокодобротным и термостабильным пьезоэлектрическим монокристаллам с умеренной и сильной электромеханической связью. Показано, что с 1984 г. наиболее интенсивно развивается направление исследований акустических и пьезоэлектрических свойств монокристаллов сложных окислов лангасита LGS, ланганита LGN и лангатата LGT, превосходящих по совокупности основных параметров все ранее известные кристаллы. Представлены материальные постоянные и основные характеристики монокристаллов семейства лангасита. Приведены основные этапы разработки акустоэлектронных устройств на этих кристаллах, начиная с разработки первых резонаторов LGS на продольных волнах частотой 128 KHz для канальных фильтров проводной телефонной связи в 1986 г. до разработки фильтров LGS на поверхностных волнах для мобильной телефонии нового стандарта W–CDMA, позволяющей передавать изображение в реальном времени.

PACS: 43.20.+g, 62.65.+k

Введение

История развития пьезоэлектроники — первой фазы акустоэлектроники — началось в 1921 г., когда профессор Кэди включил кварцевую пластину в схему радиогенератора. Хотя пластина не имела высокой температурной стабильности, стабильность генератора улучшилась. С этого момента по 1984 г. из многих тысяч работ по пьезо- и акустоэлектронике одиннадцать экспериментальных работ (событий) оказали, по мнению автора, определяющее влияние на развитие этого наиболее сложного, интересного и практически важного раздела прикладной физики (табл. 1), четыре из них относятся к появлению кристаллографических ориентаций (срезов) с нулевым температурным коэффициентом частоты (ТКЧ) упругих колебаний пьезоэлектрических монокристаллов — кварца, танталата лития LiTaO₃, берлинита Al₂PO₄ и тетрабората лития Li₂B₄O₇. Появление нового кристалла с нулевым ТКЧ — редкое событие (известно более 1500 пьезоэлектрических соединений; из них более 100 монокристаллов хорошо изучены). Потребность в новых термостабильных и высокодобротных пьезоэлектрических монокристаллах с коэффициентом электромеханической связи более 10% очень велика. Мировое производство только резонаторов на объемных акустических волнах (ОАВ) в 1990 г. составило более миллиарда устройств, а фильтров на поверхностных акустических волнах (ПАВ) только в США в 2002 г. произведено на 10 миллиардов долларов.

В течение многих лет частота электромагнитного сигнала в диапазоне 10 KHz-300 MHz стабилизируется с помощью пьезоэлектрических резонансных элементов

из кристаллического кварца с кратковременной стабильностью частоты до $1 \cdot 10^{-9} \, \mathrm{s}^{-1}$, что определяется малым внутренним трением (высокой акустической добротностью $Q \cdot f = 1.5 \cdot 10^{13} \, \mathrm{Hz}$) кварца. Более высокой стабильностью обладают только квантовые стандарты частоты, используемые в стационарных условиях.

Идеальный пьезоэлектрический монокристалл как основа устройств стабилизации и селекции частот радиодиапазона должен обладать, как минимум, тремя основными свойствами:

1) Коэффициент электромеханической связи (КЭМС) для объемных акустических волн должен быть более 10%.

2) Кристалл должен иметь кристаллографические ориентации (срезы) с нулевым уровнем упругих колебаний в области комнатной температуры.

3) Потери при распространении упругих колебаний в кристалле должны быть менее $1 \, dB/\mu s \cdot GHz^2$. Желательно, чтобы у кристалла отсутствовали дополнительные физические эффекты, осложняющие получение и ухудшающие параметры устройств. Например, сильный пироэффект и сегнетоэлектрическая природа танталата лития приводят к частому разрушению образцов на стадии обработки и при увеличении мощности электрического управляющего сигнала, а также к низкой долговременной стабильности параметров (старению).

Кристаллический кварц с 1935 г. по настоящее время остается основой пьезоэлектроники, однако он является слабым пьезоэлектриком и поэтому, несмотря на наличие термостабильных ориентаций для ОАВ и ПАВ и идеальных упругих свойств, не может использоваться в перспективных разработках.

O	1
ō.	н
~	-

Таблица 1.	Основополагающие	работы в а	кустоэлектронике

Год	Автор	Основной результат
1921	Кэди Ј.	Стабилизация частоты радиогенератора кварцевой пластиной без нулевого ТКЧ
1935	Мэзон Ј.	Выявление срезов кварца с нулевым ТКЧ. Начало пьезоэлектронного приборостроения
1957	Баран- ский К.Н.	Возбуждение гиперзвука в кварце с помощью СВЧ-резонатора. Начало микроволновой акустики
1961	Толман Ю.	Обнаружение и использование влияния постоянного электрического поля на частоту кварцевого резонатора. Начало нелинейной акустоэлектроники
1963	Бехман Р., Шокли Ј.	Реализация принципа захвата акустической энергии в пьезоэлект- рической пластине. Начало направления "монолитные пьезоэлектрические фильтры и полосковые резонаторы"
1964	Гуляев Ю.В.	Усиление ПАВ в полупроводнике
1965	Уайт Р., ВольтмерФ.	Возбуждение ПАВ с помощью встречно-штыревого преобразователя. Начало интегральной акустоэлектроники
1965	Уайт Р., Уэлш Ф.	Выявление срезов с нулевым ТКЧ у танталата лития LiTaO3
1975	Гуляев Ю.В.	Обнаружение влияния постоянного электрического поля на распространение ПАВ в ниобате лития
1976	Чанг З., Барш Дж.	Выявление срезов с нулевым ТЧК у берлинита AlPO4
1983	Пич Р.	Выявление срезов с нулевым ТЧК у тетрабората лития Li ₂ B ₄ O ₇

Новые пьезоэлектрические монокристаллы с сильной электромеханической связью и нулевым ТКЧ (танталат лития, фосфат алюминия (берлинит) и тетраборат лития) по совокупности физических, технологических параметров и высокой стоимости значительно уступают кристаллическому кварцу и не могут служить основной пьезо- и акустоэлектронных устройств стабилизации и селекции частоты в аппаратуре радиоэлектронных и оптических систем связи следующих десятилетий.

Обнаружение ориентаций с нулевым ТКЧ первого порядка вблизи 20°С, и следовательно, с параболической зависимостью частоты от температуры с экстремумом при T = 20°С у кристаллов лангасита (LGS) осенью 1983 г. [1,2] (рис. 1) стало началом интенсивного проведения акустических исследований, а затем и применения в акустоэлектронике кристалла LGS и других кристаллов, изоморфных лангаситу.

Упругопьезодиэлектрические свойства кристаллов семейства LGS

Монокристаллы лангасит La₃Ga₅SiO₁₄ (LGS). ланганит La₃Ga₅ 5Nb₀ 5O₁₄ (LGN) И лангатат La₃Ga_{5.5}Ta_{0.5}O₁₄ (LGT) принадлежат, как и кристаллический кварц, к тригональному классу 32. Полный набор упругих, пьезоэлектрических и диэлектрических постоянных LGS был опубликован Каминским и др. [3] в 1983 г. Температурные зависимости упругих постоянных LGS впервые опубликованы в [4] и [5]. К 2001 г. выполнено более 28 работ, уточняющих значения материальных констант LGS [6]. Чистые (нелегированные) кристаллы лангасита имеют неупорядоченную структуру [3] с дефицитом ионов Ga³⁺ и Si⁴⁺, возникающим из-за повышенной летучести этих ионов в процессе роста кристаллов. Желание улучшить механические и пьезоэлектрические свойства LGS привело авторов [7,8] к разработке модифицированного LGS, легированного алюминием или титаном. Новые кристаллы имели лучшие электромеханические параметры и более высокую добротность. Позже в ряде лабораторий были получены LGN и LGT, кристаллы с более упорядоченной структурой, а следовательно, с более высокой добротностью, превосходящей добротность кварца [9,10]. Значения материальных констант и основные характеристики LGS, LGT и LGN приведены в табл. 2. Все три кристалла имеют от 2 до 4 раз больший, по сравнению с кварцем, КЭМС и кристаллографические ориентации взаимной компенсацией положительных с И отрицательных температурных зависимостей упругих модулей. Существование таких ориентаций (срезов) кристаллов позволяет реализовать акустоэлектронные устройства с параболической зависимостью частоты упругих колебаний от температуры или скорости объемных и поверхностных акустических волн, что

Рис. 1. Полученная впервые параболическая зависимость частоты упругих колебаний в LGS от температуры на примере контурных колебаний пластин срезов YZl (кривая I) и $YZl + 30^{\circ}$ (кривая 2) [1].

	LGT			LGN			LGS		
	10 ¹⁰	$\begin{array}{c} TK^{(1)} \\ (10^{-6}) \end{array}$	$\begin{array}{c} TK^{(2)} \\ (10^{-9}) \end{array}$	10 ¹⁰	$\begin{array}{c} TK^{(1)} \\ (10^{-6}) \end{array}$	$\begin{array}{c} TK^{(2)} \\ (10^{-9}) \end{array}$	10 ¹⁰	$\begin{array}{c} TK^{(1)} \\ (10^{-6}) \end{array}$	$\begin{array}{c} TK^{(2)} \\ (10^{-9}) \end{array}$
C ₁₁ (N/m)	18.85	-78.24	-273.6	19.30	-56.33	-5.74	18.85	-43.91	-8.18
$C_{66} \ \left(N/m \right)$	4.032	-43.63	-901.5	4.116	15.25	-176.8	4.221	-22.43	-64.4
$C_{33} \ \left(N/m \right)$	26.18	-102.2	-107.7	26.46	-114.6	90.72	26.17	-91.9	-491.3
$C_{44} \ \left(N/m \right)$	5.11	21.65	-11.98	4.956	-14.18	-379.5	5.371	-44.05	127.13
$C_{14} \ \left(N/m \right)$	1.35	-359.6	1605	1.485	-473.9	-1944	1.415	-309	261.11
$C_{13} \ \left(N/m \right)$	10.34	-111.4	-557.7	10.22	-31.27	947.9	9.688	-61.95	-1446
α_{11}	_	6.087	4.736	_	6.673	-4.135	_	5.63	5.98
α_{33}	_	3.827	5.030	_	5.060		_	4.08	4.58
Плотность $ ho~({ m g/cm^3})$	6.15	-16.02	-14.50	6.03	-18.41	9.01	5.74	-15.34	-13.46
e_{\parallel} (C/m ²)	-0.456	-22.80	-981	-0.452	99.30	456	-0.40	329	199
$e_{14} (C/m^2)$	0.094	1587	2293	0.061	2306	5053	0.130	-342	2287
$\varepsilon_{11}/\varepsilon_0$	18.3	-65.48	-35.96	20.09	171.4	-290.5	19.62	323	-1073
$\varepsilon_{33}/\varepsilon_0$	78.95	-1417	-16.1	79.33	-1596	2935	49.41	-737	543.9
Частотная постоянная Y -среза, c -мода (kHz \cdot mm)	1314			1332			1372		
$Q \cdot f \cdot 10^{13} (\mathrm{Hz})$	3-4.5			2-3			1-1.3		
Затухание звука, (dB/µs GHz ²)	0.6-1.2			0.6-1.6			0.5-2.0		

Таблица 2. Материальные константы LGS, LGN и LGT при комнатной температуре

Примечание: С — упругие модули, α — коэффициенты теплового расширения, е — пьезоэлектрические коэффициенты, TK⁽¹⁾ и TK⁽²⁾ — температурные коэффициенты первого и второго порядка.

обеспечивает высокую температурную стабильность параметров устройств. Дополнительным достоинством кристаллов является уникальное малое поглощение акустических волн от 0.5 до $1.0 \, \text{dB}/\mu \text{s} \cdot \text{GHz}^2$ и низкая скорость поперечных ОАВ и ПАВ. Кристаллы не относятся к классу сегнетоэлектриков и не имеют структурных фазовых переходов вплоть до температуры плавления 1470°С.

Устройства ОАВ на кристаллах лангасита

Первые резонаторы из LGS изгибных (50–123 KHz), продольных (100–130 KHz), контурных (400–650 KHz) и толщинных (3–20 MHz) колебаний, выполненные на элементах с нулевым ТКЧ, защищенных в [11–15], разработаны в ОАО "Морион" в 1985–1986 гг. Было обнаружено, что температурные зависимости частоты всех типов колебаний описываются параболой 2-го порядка, причем положение температуры экстремума параболы T_0 у *Y*-срезов до 7 раз менее критично к изменению угла среза, чем у кварцевых повернутых *Y*-срезов АТ и ВТ. Впервые была реализована относительно высокая добротность $Q = 10^5$ у плоско-выпуклых линз $Y/ - 2^\circ$

среза с частотой 3 MHz. Ориентационная зависимость основных характеристик медленной поперечной волны в пластинах повернутого Y/β -среза представлена на рис. 2.

Более сильный пьезоэффект по сравнению с кварцем обеспечил улучшение всех параметров резонаторов LGS (резонансного промежутка и емкостного отношения C0/Cq в 2–3 раза, динамической индуктивности Lq в 6–18 раз). Отсутствие сегнетоэлектрических свойств определило в 3–5 раз меньшее старение разонаторов LGS, чем резонаторов танталата лития. Это позволило создать на основе резонаторов LGS продольных колебаний с частотой 125–135 KHz экспериментальные образцы канальных фильтров проводной телефонной связи с лучшими характеристиками и меньшими габаритами, чем у кварцевого фильтра компании Bell Systems.

Первые монолитные фильтры на LGS для выделения тактовых частот в цифровых системах передачи информации с импульсно-кодовой модуляцией разработаны Андреевым и Юхно в конце 1985 г. Фильтры были выполнены на $Y/-2^{\circ}$ срезе LGS, имели центральную частоту 2.048 MHz с нестабильностью — 200 · 10⁶ °C в интервале температур от -60 до +80°C. Независимо Бронниковой, Ларионовым и др. разработаны моно-

Рис. 2. Зависимость частотной постоянной N₂₆ (a), КЭМС (b) и ТКЧ первого порядка (c) пластин повернутого Y/β -среза LGS от угла поворота.

литные фильтры LGS на частоты от 5 до 18.5 MHz с неравномерностью 0.5-2 dB в полосе пропускания 8-60 KHz и подавлением 60-80 dB в полосе задерживания 60-160 KHz (рис. 3, 4) [16,17].

ПАВ-характеристики и устройства

Первые эксперименты по возбуждению, регистрации и измерению характеристик ПАВ в LGS были выполнены в 1948 г. [18]. Было обнаружено, что одноповоротные X-и Y-срезы LGS обладают высокими значениями КЭМС до 0.38% при температурном коэффициенте скорости ПАВ первого порядка от 0 до $-35 \cdot 10^{-6}$ /°C и потерях на распространение ПАВ от 0.5 до 0.8 db/µs. В том же году Блистановым с сотрудниками впервые были рассчитаны анизотропия фазовой скорости и ко-

эффициент электромеханической связи (КЭМС) волн Релея и Гуляева-Блюстейна. Максимальные значения КЭМС и фазовой скорости волн Релея на свободной поверхности для X-среза LGS составляли соответственно 0.48% и 2772 m/s, для Y-среза — 0.35 и 2796, для Z-среза — 0.30 и 2590 [19]. Гайвянис [20] и Науменко [21] независимо провели расчеты термостабильных ориентаций LGS с достаточно высокой эффективностью

Рис. 3. Частотная характеристика монолитного фильтра LGS частотой 5.3 MHz [17].

Рис. 4. Температурная зависимость центральной частоты (сплошная кривая) и частот среза (штриховая и штрихпунктирная кривые) монолитного фильтра LGS [17].

преобразований ПАВ. В дальнейшем теоретически и экспериментально было доказано существование у LGS многих ориентаций с достаточно высоким КЭМС, нулевым углом потока энергии, оптимальным параметром анизотропии и нулевым ТКЧ первого порядка. Оптимальным для практического использования является повернутый Y/ + 50° срез при распространении ПАВ в направлении X₁, состовляющем с осью X кристалла угол $\theta = 22 - 25^{\circ}$ (рис. 5,6). Сочетание КЭМС (0.32%), низкой скорости ПАВ (2742 m/s) ТКЧ^{(1),(0)}, малого ТКЧ⁽²⁾ $(52 \cdot 10^{-9} / {}^{\circ}C^2)$ и температуры экстремума ТКЧ ($T_0 = 40^{\circ}$ C) позволяет реализовать широкополосные LGS-фильтры на ПАВ для систем сотовой связи множественного доступа с кодовым разделением CDMA, имеющие лучшие характеристики и меньшие размеры, чем кварцевые ПАВ-фильтры на ST-срезе (рис. 7, 8) [22].

Для кристаллов LGN и LGT проведен поиск оптимальных ПАВ-ориентаций путем численного анализа и найдено несколько термостабильных срезов [23–25]. Для пластин LGN при значении углов Эйлера $\varphi = 10^{\circ}$, $\theta = 19.2^{\circ}$ и $\psi = 79.4^{\circ}$ КЭМС = 0.28%, ТКЧ⁽¹⁾ = $-0.3 \cdot 10^{-6}/^{\circ}$ С и ТКЧ⁽²⁾ = $-264 \cdot 10^{-9}/^{\circ}$ С². Для пластин LGT при значении углов Эйлера $\varphi = 10^{\circ}$, $\theta = 10^{\circ}$ и

Рис. 5. Дважды повернутый *Y*-срез LGS. Оси кристалла (X, Y) и оси координатной системы x_1, x_3 связаны углами Эйлера α и Θ .

Рис. 6. Зависимость скорости волны Релея V_R и КЭМС K^2 от угла Θ в подложке (0, 140, Θ^0) LGS.

Рис. 7. Частотная характеристика ПАВ фильтра на подложке (0, 140, 24°) LGS [22].

Рис. 8. Температурная зависимость центральной частоты ПАВ на подложке (0, 140, Θ°) LGS [22] (• — $\Theta = 30$; ▲ — 22.5; ■ — 20°).

 $\psi = 79.5^{\circ}$ КЭМС = 0.27%, ТКЧ⁽¹⁾ = -0.24 · 10⁻⁶/°С и ТКЧ⁽²⁾ = -576 · 10⁻⁹/°С². Таким образом, в LGN и LGT пока не найдены ориентации с таким же оптимальным сочетанием параметров, как в LGS.

Технология и стоимость производства элементов LGS

Подобие лангасита кварцу (основа обоих кристаллов — оксид кремния), достаточно высокая твердость по Моосу (6.6), отсутствие пироэлектрических свойств и фазовых или структурных переходов вплоть до температуры плавления (1470°С) позволяют при изготовлении устройств из LGS сохранять все этапы технологического процесса изготовления кварцевых элементов, кроме травления. Это позволяет изготавливать элементы LGS размеров до 2 cm для устройств на объемных волнах, близкие по стоимости к кварцевым элементам.

Широкое применение цифровых методов обработки радиочастотного сигнала выдвигает требование по расширению полосы пропускания полезного сигнала в усилителях промежуточной частоты. При изготовлении кварцевых широкополосных фильтров необходимо применять дополнительные расширительные индуктивные элементы, что приводит к значительному увеличению габаритно-весовых характеристик фильтров. Применение лангаситовых резонаторов или монолитных фильтров на объемных волнах не требует дополнительных элементов, поэтому LGS-устойства на ОАВ по стоимости незначительно отличаются от устройств на кварце.

Стоимость больших, до 10 ст в диаметре, подложек LGS для изготовления по групповой технологии фильтров на ПАВ пока выше, чем кварцевых. В последние годы в России и США для снижения стоимости кристаллов семейства LGS начата разработка кристаллов CNGS и CTGS, подобных по свойствам LGS, но содержащих меньшее количество дорогого галлия, необходимого полупроводниковой промышленности. Огромный интерес во всем мире к кристаллам семейства LGS можно объяснить тем, что впервые за всю историю акустоэлектроники у кристаллического кварца появился реальный конкурент.

Тенденции

В последние годы развиваются следующие направления в разработке LGS и изоморфных ему материалов:

— получение свободных от макродефектов монокристаллов LGS диаметром 7.5–10 cm [26] для изготовления устройств на поверхностных волнах с частотой до 2 GHz по групповой технологии;

— получение кристаллических ориентированных пленок LGS, LGN и LGT толщиной до $8\,\mu$ m методом жидкофазной эпитаксии на подложках шпинели [27,28] для создания тонкопленочных CBЧ-резонаторов и фильтров на объемных волнах в диапазоне частот 2–10 GHz;

— получение монокристаллов с упорядоченной структурой Ca₃NbGa₃Si₂O₁₄ и Ca₃TaGa₃Si₂O₁₄ [29] — сложных оксидных соединений с малым содержанием галлия, имеющих нулевой ТКЧ первого порядка, максимальную акустическую добротность ($Q \cdot f = 5 \cdot 10^{13}$ Hz), высокий коэффициент электромеханической связи ПАВ до 0.4–0.5% и повторяемость параметров;

— уточнение структуры и установление кристаллохимических закономерностей между строением и свойствами соединений семейства лангасита. Общий подход первоначально сформулировал Уатмор [30] дя поиска новых "полярных" материалов, способных заменить кварц и ниобат лития в устройствах ОАВ и ПАВ. На основе классического подхода [31] к объяснению структурной природы наведенной электрической поляризации под действием приложенного механического напряжения, в работе [32] показана роль лантана, катиона с большим радиусом, определяющего значительный пьезоэффект лангаситоподобных соединений. Однако связь между особенностью структуры кристаллов и существованием температурных коэффициентов упругих модулей разного знака пока не установлена.

Заключение

Лангасит и изоморфные ему кристаллы — первые отечественные соединения, превосходящие высокостабильный и высокодобротный кристалличекий кварц основу современной акустоэлектроники. Большой вклад в созданеие и исследования этой уникальной группы кристаллов внесли В.Б. Милль, М.Ф. Дубовик, И.М. Сильвестрова, Ю.В. Писаревский, Г.Д. Мансфельд и другие ученые. В последние 20 лет получение, исследование и применение кристаллов семейства лангасита наиболее динамично развивающееся направление в акустоэлектронике.

Монокристаллы семейства лангасита обладают редким сочетанием удивительных и полезных свойств для практического использования в акустоэлектронике. Такие же стабильные, как кварц, но более сильные пьезоэлектрики с низкой скоростью сдвиговых объемных и поверхностных волн и редкой для кристаллов высокой акустической добротностью, не имеющие сегнетоэлектрических или структурных фазовых переходов вплоть до темпетатуры плавления, кристаллы семейства лангасита несомненно будут основой акустоэлектронной компонентной базы XXI века.

Список литературы

- Андреев И.А., Дубовик М.Ф. // Письма в ЖТФ. 1984. Т. 10. Вып. 8. С. 487–491.
- 2 Андреев И.А. // ЖТФ. 2004. Т. 74. Вып. 9. С. 1–3.
- [3] Каминский А.А., Миль Б.В., Сильвестрова И.М. н др. // Изв. АН СССР. Сер. физ. 1983. Т. 47. № 10. С. 1903–1908.
- [4] Сильвестрова И.М., Писаревский Ю.В., Сенющенков П.А. и др. // ФТТ. 1986. Т. 28. № 9. С. 2875–2878.
- [5] Ilyaev A.B., Dubovik M.F., Umarov L.A. et al. // Phys. Stat. Sol. (a). 1986. Vol. 98. P. k109–k114.
- [6] Kosinski J.A., Pastore R.A., Bigler E. et al. // Proc. IEEE Int. Freq. Contr. Symp. 2001. P. 278–286.
- [7] Андреев И.А., Дубовик М.Ф. // Тез. докл. XIV Всесоюзн. конф. по акустоэлектронике и физической акустике твердого тела. Ч. 2. Кишинев, 1989. С. 67.
- [8] Дубовик М.Ф., Андреев И.А., Коршикова Т.И. А.с. № 1506951. 1989. № 45. С. 177.
- [9] Smythe R.C. // Proc. IEEE Int. Freq. Contr. Symp. 1998. P. 761–764.
- [10] Johnson W.L., Kim S.A., Uda S. // Proc. IEEE Int. Freq. Contr. Symp. 2003. P. 646–649.
- [11] Андреев И.А., Дубовик М.Ф. А.С. № 1230317. 1985.

- [12] Андреев И.А., Дубовик М.Ф., Рассветаев В.Л. А.с. № 258111. 1987.
- [13] Андреев И.А., Дубовик М.Ф., Рассветаев В.Л. А.с. № 258101. 1987.
- [14] Андреев И.А., Дубовик М.Ф. А.с. № 1373278. 1987.
- [15] Андреев И.А., Дубовик М.Ф. А.с. № 1382368. 1987.
- [16] Бронникова Е.Г., Ларионов И.М., Исаев В.А. и др. // Электронная техника. Сер. 5. Радиодетали и радиокомпоненты. 1986. № 2. С. 83–84.
- [17] Сахаров С.А., Ларионов И.М., Медведев Ф.В. и др. // Зарубежная радиоэлектроника. 1994. № 9/10. С. 12–18.
- [18] Андреев И.А., Дубовик М.Ф. // А.с. № 1222170. 01.12.1985. Приоритет 07.03.1984.
- [19] Блистанов А.А., Бондаренко В.С., Переломов А.А. // Тез. докл. 11-й Всесоюз. конф. "Актуальные проблемы получения и применения сегнето- и пьезоэлектрических материалов". М.: НИИТЭХИМ, 1984. С. 419.
- [20] *Гайвянис Р.Ю.* // Радиоэлектроника. 1990. Т. 26. № 1. С. 117–127.
- [21] Науменко Н.Ф. // Тез. докл. Всесоюз. конф. "Акустоэлектронные устройства обработки информации". Черкассы, 1990. С. 18–19.
- [22] Bungo A., Jian C., Yamaguchi K. et al. // Jap. J. Appl. Phys. 1999. Vol. 38. P. 3239–3243.
- [23] Двоешерстов М.Ю., Петров С.Г., Чередник В.И. и др. // ЖТФ. 2001. Т. 71. Вып. 3. С. 76–77.
- [24] Двоешерстов М.Ю., Петров С.Г., Чередник В.И. и др. // ЖТФ. 2001. Т. 71. Вып. 4. С. 89–94.
- [25] Двоешерстов М.Ю., Петров С.Г., Чередник В.И. и др. // ЖТФ. 2002. Т. 72. Вып. 8. С. 103–108.
- [26] Uda S., Wang S.Q., Konishi N. et al. // J. Cryst. Growth. 2002. Vol. 237–239. P. 707–713.
- [27] Klemenz C.J. // J. Cryst. Growth. 2002. Vol. 237–239. P. 714– 719.
- [28] Zhang H., Sigh N.B., Berghmans A. et al. // J. Cryst. Growth. 2002. Vol. 234. P. 660–665.
- [29] Jen S., Teng B., Chou M. et al. // Proc. IEEE Freg. Contr. Symp. 2002. P. 307–310.
- [30] Whatmore R.W. // J. Cryst. Growth. 1980. Vol. 48. P. 530– 547.
- [31] Abrahams S.C. // Acta Cryst. 1994. Vol. A50. P. 658–663.
- [32] Белоконева Е.Л., Стефанович С.Ю., Писаревский Ю.В. и др. // Журнал неорганической химии. 2000. Т. 45. № 11. С. 1786–1796.