Особенности поведения поляризации в сегнетоэлектрике PbFe_{1/2}Nb_{1/2}O₃

© С.А. Гриднев, А.А. Камынин

Воронежский государственный технический университет, Воронеж, Россия

E-mail: silentcurve@gmail.com

На частотах 25, 500 и 10^4 Hz изучены температурные зависимости комплексной диэлектрической проницаемости в сегнетоэлектрике PbFe_{1/2}Nb_{1/2}O₃. Установлено, что фазовый переход размыт в интервале температур ~ 90 К. В области размытия наблюдается отклонение от закона Кюри–Вейсса, который начинает выполняться лишь выше температуры Бернса. Построена температурная зависимость локального параметра порядка, свидетельствующая о том, что поляризация в PbFe_{1/2}Nb_{1/2}O₃ возникает при температуре Бернса.

Работа выполнена при финансовой поддержке РФФИ (грант № 10-02-00336).

Многие материалы можно считать в той или иной степени неупорядоченными, поэтому изучение неупорядоченных систем представляет собой актуальную задачу физики твердого тела. Одной из таких систем являются релаксоры — тип неупорядоченных систем, возникающих при определенных условиях в сегнетоэлектрических кристаллах. Сегнетоэлектрики с размытым фазовым переходом, обладающие релаксорными свойствами, были открыты Смоленским, Исуповым и др. в начале 50-х годов XX века [1]. Было предложено несколько моделей, объясняющих возникновение локальных полярных областей, а также характерные диэлектрические свойства релаксоров как функции температуры и частоты: модель флуктуаций состава [1], композиционного разупорядочения [2], случайных полей [3], случайных полей-случайных связей [4] и др.

В системах с размытым переходом возникают локальные полярные области при температуре более высокой, чем температура, соответствующая максимальному значению диэлектрической проницаемости, поэтому целью настоящей работы является определение температурной зависимости поляризации в керамике феррониобата свинца PbFe_{1/2}Nb_{1/2}O₃ в области размытого фазового перехода.

Исследуемый сегнетоэлектрик $PbFe_{1/2}Nb_{1/2}O_3$ (PFN) был изготовлен по стандартной керамической технологии. Для измерений использовались плоские прямоугольные образцы размером 4.64×1.88 mm с толщиной 0.62 mm. В поверхности пластин вжигались серебряные электроды при температуре 700 K.

Температурные зависимости действительной (ε') и мнимой (ε'') частей диэлектрической проницаемости, измеренные на разных частотах, приведены на рис. 1. Видно, что пики на кривых $\varepsilon'(T)$ и $\varepsilon''(T)$ занимают область температур около 90 K, т.е. фазовый переход является размытым [5]. При этом в отличие от релаксоров не наблюдается смещения пиков по температурной шкале при изменении частоты измерительного поля, хотя в области пиков обнаруживается частотная дисперсия.

Для описания зависимости диэлектрической проницаемости от температуры в настоящей работе использовалась модель [1], согласно которой ε в области размытого фазового перехода может быть записана в виде

$$\varepsilon \approx \frac{\varepsilon_m}{1 + (T - T_m)^2 / 2\sigma},$$
 (1)

где ε_m — максимальное значение диэлектрической проницаемости; T_m — температура соответствующая ε_m ; σ — гауссовский коэффициент размытия. Вставка на рис. 2 подтверждает, что в области температур ниже температуры Бернса T_d , где не выполняется линейный закон Кюри-Вейсса, выражение (1) является достаточно хорошей аппроксимацией. Оценка параметра размытия на основе экспериментальных данных приводит к величине $\sigma \approx 21.76$ К при измерениях на частоте 25 Hz.

На рис. 2 показано, что вдали от области размытия (выше T_d) выполняется линейный закон Кюри-Вейсса $\varepsilon = \varepsilon_{\infty} + C_w (T - T_0)^{-1}$ с параметрами $C_w = 2 \cdot 10^5$ К и $T_0 \approx 379$ К. Полученное значение постоянной Кюри-Вейсса C_w типично для фазового перехода первого рода. Следует отметить, что

Рис. 1. Температурные зависимости действительной и мнимой частей диэлектрической проницаемости для различных частот. *f*, Hz: *1*, *4* — 25, *2*, *5* — 500, *3* — 10 000.

Рис. 2. Зависимость обратной диэлектрической проницаемости от температуры на частоте 25 Hz. На вставке — зависимость обратной проницаемости от $(T - T_0)^2$, где T_0 — температура Кюри-Вейсса.

Рис. 3. Зависимость локального параметра порядка от температуры на частоте 25 Hz в сравнении с температурными зависимостями ε' и $(\varepsilon')^{-1}$.

 $T_0 > T_m \approx 375$ К. Чтобы понять, где начинает происходить зарождение поляризации, в настоящей работе изучалась температурная зависимость локального параметра порядка q(T).

Для получения зависимости q(T) в области размытого фазового перехода использовался подход [6], в котором диэлектрическая проницаемость в слабом поле рассчитывается с помощью термодинамического соотношения

$$F = \frac{1}{2} N \alpha(T) P^{2} + \frac{1}{2} n_{i} \alpha_{i}(T) P_{i}^{2} + \frac{1}{4} N \beta P^{4} + \frac{1}{4} \beta' n_{i} P_{i}^{4} + \frac{1}{2} \gamma P^{2} n_{i} P_{i}^{2} + \dots$$
(2)

Здесь n_i — номер позиции в решетке нанополярной области, N — общее число позиций в решетке, P_i — проекция индуцированной макроскопической поляриза-

ции, γ — термодинамический коэффициент, $\alpha(T)$ и $\alpha_i(T)$ — параметры теории Ландау, связанные с обшей и локальной температурами перехода в законе Кюри-Вейсса соотношениями $\alpha(T) = (T - T_0)/(\varepsilon_0 C_w)$ и $\alpha_i(T) = (T - T_{0i})/(\varepsilon_0 C_{wi})$, где $\varepsilon_0 = 8.85 \, \text{pF/m}$, C_w и C_{wi} — константы Кюри-Вейсса. Используя этот подход, можно записать температурную зависимость обратной диэлектрической проницаемости следующим образом:

$$\varepsilon^{-1}(T) = (T - T_0)/C_w + f(T),$$
 (3)

где $f(T) = \varepsilon_0 \gamma q(T)$. Из (3) следует, что отклонение от закона Кюри-Вейсса обусловлено существованием отличного от нуля локального параметра порядка q. Поскольку невозможно оценить γ из диэлектрических экспериментов, мы поступали следующим образом. Рассчитанные значения величины f(T) экстраполировались к 0 К, а отношение величины f(T) при какой-либо температуре к значению при 0 К рассматривалось как мера локального параметра порядка [7].

Построенная таким образом температурная зависимость локального параметра порядка приведена на рис. 3 в сравнении с температурными зависимостями ε' и $(\varepsilon')^{-1}$. Хорошо видно, что среднеквадратичная поляризация начинает возникать не при температуре максимума ε_m , а при температуре Бернса $T_d \approx 403$ К. Следует отметить, что в некоторых работах, выполненных на монокристаллах и высокоомных керамиках PFN [8-10], наблюдалась более сложная зависимость $\varepsilon'(T)$ в области размытого фазового перехода. При этом излом на низкотемпературном склоне пика $\varepsilon'(T)$ при 360 К интерпретировался как фазовый переход между двумя сегнетоэлектрическими фазами, наличие которого подтверждалось также пироэлектрическими и поляризационными исследованиями. Кроме того, для области высоких температур в [11] на основе рентгеноструктурных измерений вводится некоторая одинаковая для всех релаксоров температура $T^* \approx 500 \,\mathrm{K}$, промежуточная между T_m и T_d, которая рассматривается как температура фазового перехода типа порядок-беспорядок. В то же время в [12-14], а также в настоящей работе никаких аномалий $\varepsilon'(T)$ или других свойств вблизи 360 К обнаружено не было. Таким образом, информация о фазовых переходах, диэлектрических и поляризационных свойствах PFN весьма противоречива. По-видимому, это в значительной степени связано с разным качеством образцов, на которых проводились исследования. В частности, довольно высокая проводимость керамических образцов PFN может приводить к тому, что диэлектрический отклик маскируется большим вкладом проводимости в диэлектрические параметры.

Список литературы

- [1] Физика сегнетоэлектрических явлений / Под ред. Г.А. Смоленского. Наука, Л. (1985). 396 с.
- [2] A.A. Bokov. Ferroelectrics. **131**, 49 (1992).

- [3] M.D. Glinchuk, V.A. Stephanovich. J. Korean. Phys. Soc. 32, S1100 (1998).
- [4] R. Pirc, R. Blinc. Phys. Rev. B 60, 19, 13470 (1999).
- [5] С.А. Гриднев, Л.Н. Коротков. Введение в физику неупорядоченных полярных диэлектриков. ВГТУ, Воронеж (2003). 199 с.
- [6] L. Mitoseriu, A. Stancu, C. Fedor, P.M. Vilarinho. J. Appl. Phys. 94, 1918 (2003).
- [7] S.A. Gridnev, A.A. Glazunov, A.N. Tsotsorin. Phys. Status. Solidi A 202, R122 (2005).
- [8] I.P. Raevsky. Ferroelectrics 192, 1139 (1992).
- [9] И.П. Раевский, С.Т. Кириллов, М.А. Малицкая, В.П. Филиппенко, С.М. Зайцев, Л.Г. Коломин. Неорган. материалы 24, 2, 286 (1988).
- [10] Yu.N. Zakharov, I.P. Raevski, E.I. Eknadiosians, A.N. Pinskaya, L.E. Pustovaya, V.Z. Borodin. Ferroelectrics 247, 47 (2000).
- [11] B. Dkhil, P. Gemeiner, A. Al-Barakaty, L. Bellaiche, E. Dul'kin, E. Mojaev, M. Roth. Phys. Rev. B 80, 6, 064 103 (2009).
- [12] Ю.Н. Веневцев, В.В. Гагулин, В.Н. Любимов. Сегнетомагнетики. Наука, М. (1982). 224 с.
- [13] О.В. Малышкина, Е.В. Барабанова, Н.Д. Гаврилова, А.М. Лотонов. Письма в ЖТФ 33, 18, 70 (2007).
- [14] M.H. Lente, J.D.S. Guerra, G.K.S. de Souza, B.M. Fraygola, C.F.V. Raigoza, D. Garcia, J.A. Eiras. Phys. Rev. B 78. 5, 054 109 (2008).