Микроскопия сопротивления растекания поликристаллических и монокристаллических сегнетоэлектрических пленок

© Е.В. Гущина¹, А.В. Анкудинов^{1,2}, Л.А. Делимова¹, В.С. Юферев¹, И.В. Грехов¹

1 Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет информационных технологий, механики и оптики,

Санкт-Петербург, Россия

E-mail: katgushch@yandex.ru

Методами атомно-силовой микроскопии изучались тонкие пленки на основе цирконата титаната свинца со стехиометрическим составом вблизи морфотропной границы. На всех образцах, независимо от типа подложки, способа нанесения, а также толщины пленки, наблюдалась зависимость локальной проводимости от направления локальной поляризации. Показано, что отклик тока на приложенное напряжение демонстрирует длинную релаксацию тока порядка десятков секунд, что на два-три порядка больше, чем время релаксации тока во внешней цепи, связанное с переключением сегнетоэлектрического домена. Особенности проводимости объясняются перезарядкой глубоких уровней, локализованных на границах сегнетоэлектрических зерен вблизи электродов и участвующих в экранировании поляризационного заряда.

Работа поддержана грантом президента РФ "Ведущие научные школы" НШ-3306.2010.2, госконтрактом № 02.740.11.0051, а также программой президиума РАН "Основы фундаментальных исследований нанотехнологий и наноматериалов" и РФФИ (грант № 10-02-00562а).

1. Введение

Сегнетоэлектрические (СЭ) пленки представляют интерес для использования в энергонезависимой ячейке памяти нанометровых размеров, в которой записанная информация хранится в виде остаточной поляризации. Надежность работы такой ячейки зависит от транспортных свойств носителей заряда в пленке. Механизмы проводимости СЭ-пленок удобно изучать методами атомно-силовой микроскопии (АСМ) с проводящим зондом [1-3]. В работе [1] проводимость тонких пленок PbZr_{0.2}Ti_{0.8}O₃ связывалась с туннельным электрорезистивным эффектом. В работе [2] обнаружено, что в поликристаллической пленке Pb(Zr,Ti)O₂ проводимость по границам гранул выше, чем внутри гранул. С проникновением дефектов из подложки или наличием вторичных фаз связывались токи утечки в монокристаллической пленке PbZr_{0.07}Ti_{0.93}O₃ [3]. В настоящей работе продолжены АСМ-исследования возможных механизмов проводимости пленок Pb(Zr,Ti)O₃ (PZT), по составу близких к морфотропной границе.

2. Образцы и методы

Описание изученных образцов приведено в таблице. Для исследования рельефа образцов применялась полуконтактная (зонд стучит по поверхности) и контактная (зонд находится в непосредственном контакте с поверхностью) АСМ. Для реализации микроскопии сопротивления растекания мы использовали контактный метод АСМ, который позволяет одновременно получить и карту проводимости (локальных токов растекания) пленки, и рельеф поверхности. Использовались достаточно жесткие (k = 5-20 N/m) проводящие зонды со стойким к износу алмазным покрытием, которые не теряли своих проводящих свойств даже при подаче напряжений ± 10 V. Все АСМ-исследования проводились с помощью сканирующей зондовой лаборатории Интегра Аура производства НТ-МДТ как в обычных атмосферных условиях, так и в условиях атмосферы, откачанной до уровня ~ 1 Ра.

3. Результаты и их обсуждение

На частях *а* и *b* рисунка представлены токовые топографии монокристаллической пленки $PbZr_{0.48}Ti_{0.52}O_3$ толщиной 210 nm и поликристаллической пленки $PbZr_{0.45}Ti_{0.55}O_3$, соответственно. Внутренняя более светлая область повышенной проводимости монокристаллической пленки, (часть *a*), образовалась после сканирования образца при напряжении -10 V и силе давления

Исследуемые	образцы
-------------	---------

Образец	Метод осаждения	Подложка
Монокристаллическая пленка (210 nm) $PbZr_{0.48}Ti_{0.52}O_3$ Поликристаллическая пленка (100 nm) $PbZr_{0.47}Ti_{0.53}O_3$ Поликристаллическая пленка (100 nm) $PbZr_{0.45}Ti_{0.55}O_3$	Плазменное распыление при высоком давлении Золь-гель-процесс Химическое осаждение металлорганических соединений из газовой фазы (MOCVD)	SrRoO ₃ /SrTiO ₃ Pt/TiO ₂ /SiO ₂ /Si Ir/SiO ₂ /Si

Данные АСМ-исследований. *a*, *b* — карты проводимости монокристаллической и поликристаллической пленок соответственно. Внутренние более светлые области получены сканированием с подачей напряжения на зонд –10 V. *c* — АСМ-топография одиночных гранул поликристаллической пленки; *d* — ВАХ, записанные на одиночной грануле при различной поляризации; *e* — зависимость времени релаксации тока от приложенного напряжения.

 $\sim 1\,\mu{\rm N}.$ Менее явно такой же эффект наблюдается и в поляризованной области поликристаллической пленки, (часть b). Видно, что проводимость по границам зерен, этой пленки выше, чем проводимость самих зерен, что согласуется с результатами работы [2]. Это можно объяснить наличием сверхтонкой прослойки полупроводниковой фазы PbO на границах зерен, которые образуют проводящие каналы между электродами [4].

На рисунке (часть *c*) представлено АСМ-изображение одиночных гранул поликристаллической пленки PbZr_{0.45}Ti_{0.55}O₃. На грануле, отмеченной пунктирным овалом, были измерены вольт-амперные характеристики (BAX) при разном направлении поляризации в грануле,

показанные на части рисунка *d*. Зонд служил верхним электродом, внешнее смещение подавалось на нижний электрод структуры, скорость подачи напряжения составляла 1.2 V/s, а паразитная емкость между зондом и образцом — 0.5 pF. Все ВАХ имеют диодный характер, ток течет при положительном смещении. После поляризации зерна отрицательным напряжением проводимость возрастает и убывает после приложения положительного напряжения. Это свидетельствует о том, что величина тока зависит от направления поляризации. Важно добавить, что этот эффект наблюдался также и в условиях умеренного вакуума (~ 1 Ра), что исключает возможный вклад поверхностной воды в проводимость.

Рисунок (часть e) показывает, что отклик тока поликристаллической пленки PbZr_{0.45}Ti_{0.55}O₃ на прикладываемое смещение демонстрирует длинную релаксацию тока порядка десятков секунд. Для монокристаллических пленок это значение достигало сотен секунд. Эти значения на два-три порядка больше, чем время релаксации тока во внешней цепи, связанное с переключением сегнетоэлектрического домена, которое в измерительной схеме составляет доли микросекунд.

Результаты, представленные на частях d и e рисунка, полностью согласуются с вольт-амперными микроскопическими измерениями на этой же пленке PbZr_{0.45}Ti_{0.55}O₃ с верхним Pt-электродом диаметром 330 μ m и толщиной 100 nm [5].

4. Заключение

Показано, что во всех изученных поликристаллических PZT-пленках величина проводимости зависит от направления поляризации. Наблюдаемую длинную релаксацию тока и зависимость тока от поляризации на временах, много больших времени перезарядки СЭ-доменов, можно объяснить медленной перезарядкой глубоких уровней, локализованных на границах PZT-зерен вблизи электродов и участвующих в экранировании поляризационного заряда. Поляризационный заряд меняется с внешним смещением за короткое время, но отклик ловушечного заряда на изменение поляризационного заряда требует гораздо большего времени. Поэтому измеряемый транспортный ток демонстрирует черты емкостного тока, контролируемого зависимостью поляризации от смещения.

Список литературы

- P. Maksymovich, S. Jesse, Pu Yu, R. Ramesh, Ar.P. Baddorf, S. Kalinin. Science, **324**, 1421 (2009).
- [2] H. Fujisawa, M. Shimizu, T. Horiuchi, T. Shiosaki, K. Matsushige. Appl.Phys.Lett, 71, 416 (1997).
- [3] N. Izyumskaya, V. Avrutin, X. Gu, B. Xiao, S. Chevtchenko, J.-G. Yoon, H. Morkoc, L. Zhou, D.J. Smith, Appl. Phys. Lett., 91, 182 906 (2007).
- [4] J.K. Lee, J.-M. Ku, C.-R. Cho, Y.K. Lee, S. Shin, Y. Park. J. Semicond. Technol. Sci., 2, 3, 205 (2002).
- [5] L.A. Delimova, V.S. Yuferev, A.V. Ankudinov, E.V. Gushchina, I.V. Grekhov. MRS Proc. **1292**, mrsf10-1292-k03-31(2011).