07;12 Безаберрационная голографическая интерферометрия бокового сдвига

© А.М. Ляликов

Гродненский государственный университет им. Я. Купалы, 230023 Гродно, Белоруссия e-mail: lyalikov@inbox.ru

(Поступило в Редакцию 10 сентября 2003 г. В окончательной редакции 27 декабря 2004 г.)

Рассмотрена возможность устранения оптических аберраций при исследовании волновых фронтов, восстановленных с одно- двухэкспозиционной голограмм, методом интерферометрии бокового сдвига. Исключение оптических аберраций происходит в муаровой картине при наложении двух интерферограмм бокового сдвига, полученных с использованием определенных волн, дифрагированных на исходных голограммах. Показано, что при использовании одноэкспозиционной голограммы исключаются только оптические неоднородности подложки, а двухэкспозиционной — дополнительно и аберрации системы регистрации голограмм. Приведены экспериментальные результаты, подтверждающие работоспособность методики при использовании низкокачественных подложек голограмм.

Введение

Волновой фронт, восстановленный с голограммы, может быть исследован различными оптическими методами [1,2]. Это позволяет с одной голограммы исследуемого объекта получать двухлучевые интерферограммы и интерферограммы сдвига с любыми настройками опорных полос, а также различные теневые картины, что в конечном счете значительно увеличивает объем получаемой информации. Если при получении двухлучевых интерферограмм компенсация аберраций системы регистрации голограмм и неоднородностей подложек голограмм не вызывает особых сложностей [1], то для метода интерферометрии сдвига и теневых способов приходится сталкиваться со значительными затруднениями. Это связано с тем, что обычно интерферограмма сдвига или теневая картина образуется при использовании только одной волны, восстановленной с голограммы. При получении теневых картин для компенсации аберраций системы регистрации голограмм и их подложек ранее были предложены способы, позволяющие частично [3-5] или полностью [6,7] решить данную проблему. При получении интерферограмм сдвига для полной компенсации оптических искажений необходимо использовать как минимум пару голограмм и систему оптического сопряжения [6,8], что значительно усложняет эксперимент.

Интерферометрия сдвига в настоящее время находит довольно широкое распространение в различных областях науки и техники, причем используются как классические, так и голографические варианты интерферометров сдвига [9–13].

В настоящей работе предложены способы устранения оптических искажений подложек голограмм, а также аберраций системы регистрации голограмм при получении интерферограмм бокового сдвига с использованием волновых фронтов, восстановленных с голограмм. Данные способы значительно расширяют возможности голографической интерферометрии бокового сдвига при использовании низкокачественных подложек для регистрируемых голограмм, а также снижают требования к аберрационным характеристикам оптических систем.

Предположим, что волновой фронт, прошедший исследуемый фазовый объект, зарегистрирован голографическим способом. Рассмотрим случаи получения интерферограмм сдвига с исключением оптических искажений при использовании одно- и двухэкспозиционной голограмм.

Схема эксперимента

На рис. 1 приведена оптическая схема получения безаберрационных интерферограмм бокового сдвига, общая для случая одно- и двухэкспозиционной голограмм. Последние устанавливались в положение 1 и освещались коллимированным пучком света от гелий-неонового лазера. В задней фокальной плоскости объектива 2 диафрагмой 3 выделялась восстановленная волна. Объективом 4 восстановленная волна коллимировалась и направлялась в четырехзеркальный интерферометра позволяла регулировать частоту опорных полос и величину бокового сдвига в сдвиговых интерферограммах, регистрируемых в плоскости 6. Плоскость регистрации сдвиговых интерферограммой 2, 4 с голограммой 1.

Рис. 1. Оптическая схема получения безаберрационных интерферограмм бокового сдвига.

Одноэкспозиционная голограмма

Амплитудное пропускание одноэкспозиционной голограммы, зарегистрированной в линейных условиях [2] для случая ориентации полос перпендикулярно оси *x*,

$$\tau_1 \sim 1 + \cos[2\pi\xi_n x + \varepsilon + \varphi]. \tag{1}$$

Здесь ξ_n — несущая частота голографических полос, равная $\xi_n = 1/T$, где T — период голографических полос; ε — искажения фазы аберрациями системы регистрации; φ — изменения фазы, вызванные исследуемым объектом.

Предполжим, что одноэкспозиционная голограмма (1) освещается коллимированным пучком света так, что по нормали к голограмме восстанавливается в первом порядке дифракции волна вида

$$A_1 = a_1 \exp[i(\chi + \varepsilon + \varphi)], \qquad (2)$$

где χ — искажения фазы оптическими неоднородностями подложки носителя голограммы.

Из (2) видно, что кроме полезного сигнала, описываемого функцией φ , волновой фронт имеет искажения фазы ($\chi + \varepsilon$) вследствие неоднородностей подложки носителя голограммы и аберраций системы регистрации. Волна вида (2) выделяется диафрагмой 3 (рис. 1) и вводится в интерферометр бокового сдвига 5. Для реализации рассматриваемого способа исключения оптических аберраций необходимо, чтобы регистрируемая интерферограмма в плоскости 6 была настроена на конечные опорные полосы. Это достигается тем, что кроме относительного сдвига между интерферирующими пучками еще задается и угол, который определяет несущую частоту опорных полос. В этом случае распределение интенсивности в интерферограмме бокового сдвига

$$I_1 \sim 1 + \cos[2\pi\xi_1 x + \Delta\chi + \Delta\varepsilon + \Delta\varphi], \qquad (3)$$

где ξ_1 — несущая частота опорных полос, $\Delta \chi = \chi - \chi'$, $\Delta \varepsilon = \varepsilon - \varepsilon', \Delta \varphi = \varphi - \varphi'$.

Штрихом отмечены функции, описывающие изменения волнового фронта, одной волны, сдвинутой относительно другой при получении интерферограммы бокового сдвига. Измеряемый сигнал искажен неоднородностями подложки голограммы $\Delta \chi$ и аберрациями системы регистрации голограммы $\Delta \varepsilon$.

Для случая одноэкспозиционной голограммы можно исключить только оптические искажения, вносимые подложкой голограммы. Для этого дополнительно к интерферограмме (3) регистрируется в том же интерферометре с такой же величиной сдвига и с настройкой на конечные опорные полосы еще одна интерферограмма сдвига, но с использованием прямопрошедшей (дифрагированной в нулевой порядок) голограмму (1) волны. Волновой фронт такой волны деформирован только неоднородностями подложки голограммы и его комплексная амплитуда

$$A_0 = a_0 \exp(i\chi),\tag{4}$$

где a_0 — действительная амплитуда прямопрошедшей волны.

Распределение интенсивности в интерферограмме сдвига

$$I_0 \sim 1 + \cos[2\pi\xi_1 x + \Delta\chi]. \tag{5}$$

Исключение оптических искажений вследствие неоднородностей подложки голограммы (1) достигается двумя путями: при регистрации поочередно двух интерферограмм бокового сдвига (3) и (5) на один общий носитель или на два раздельных носителя. Во втором случае после химической обработки раздельные носители точно совмещаются.

Несмотря на то что в первом случае муаровая картина получается сложением, а во втором — умножением амплитудных пропусканий высокочастотных структур опорных полос интерферограмм сдвига, рисунок муаровой картины в двух случаях одинаков [14,15]. Для повышения видности муаровой картины может быть дополнительно использована фильтрация пространственных частот. Обычно при освещении совмещенных интерферограмм сдвига отверстием в диафрагме, установленной в задней фокальной плоскости объектива, выделяется первый порядок дифракции. Можно показать [14,15], что в двух возможных случаях муаровая картина будет описываться выражением

$$I_{10} \sim 1 + \cos[\Delta \varepsilon + \Delta \varphi]. \tag{6}$$

Искажения подложек голограммы (1) в муаровой картине (6) устранено. Как видно из (6), при использовании одноэкспозиционной голограммы исключить влияние аберраций системы регистрации голограмм не удается.

Двухэкспозиционная голограмма

Для исключения оптических искажений, связанных с аберрациями системы регистрации голограммы на один общий носитель, голограмма экспонируется дважды: с исследуемым объектом и без объекта. При второй экспозиции изменяют несущую частоту голографических полос на величины ξ_m , отличающуюся от несущей частоты голографических полос первой экспозиции ξ_n настолько, чтобы при последующем восстановлении волновых фронтов было удобно отделять друг от друга световые пучки диафрагмой 3 (рис. 1). Амплитудное пропускание такой двухэкспозиционной голограммы при выполнении линейных условий регистрации

$$\tau_2 \sim 2 + \cos[2\pi\xi_n x + \varepsilon + \varphi] + \cos[2\pi\xi_m x + \varepsilon].$$
(7)

При исключении оптических искажений вследствие неоднородностей подложки носителя двухэкспозиционной голограммы (7) и оптической системы регистрации голограмм в отличие от ранее рассмотренного случая одноэкспозиционной голограммы при регистрации второй интерферограммы сдвига используется волна, дифрагированная в первом порядке на второй голографической структуре двухэкспозиционной голограммы (7). Комплексная амплитуда этой волны

$$A_2 = a_2 \exp[i(\chi + \varepsilon)], \qquad (8)$$

где *а*₂ — действительная амплитуда.

Распределение интенсивности в интерферограмме бо-кового сдвига

$$I_2 \sim 1 + \cos[2\pi\xi_1 x + \Delta\chi + \Delta\varepsilon]. \tag{9}$$

Исключение оптических аберраций осуществляется аналогично случаю одноэкспозиционной голограммы при регистрации интерферограмм бокового сдвига на раздельные носители с последующим их совмещением или при регистрации двухэкспозиционного снимка. Однако в отличие от (6) муаровая картина будет описываться несколько другим выражением

$$I_{12} \sim 1 + \cos[\Delta \varphi], \tag{10}$$

где кроме неоднородностей подложки также исключены и аберрации системы регистрации голограмм.

Использование двухэкспозиционных голограмм позволяет получать интерферограммы бокового сдвига исследуемого объекта с полной компенсацией аберраций как системы регистрации голограмм, так и неоднородностей подложки ее носителя. Однако этот вариант голографической интерферометрии бокового сдвига за счет использования двухэкспозиционной регистрации голограммы с изменением несущей частоты полос в общей сложности более трудоемок в реализации, чем с использованием одноэкспозиционной регистрации, и, следовательно, отдавать ему предпочтение следует в случаях аберраций системы регистрации голограмм, соизмеримых с величиной полезного измеряемого сигнала.

Экспериментальные результаты

Рассмотренная методика исключения аберраций была экспериментально апробирована при исследовании зон плавления плоских образцов полиметилметакрилата, подвергающихся термической обработке. Регистрировалась двухэкспозиционная голограмма (первая экспозиция до термической обработки, а вторая после) в интерферометре Маха-Цендера на голографическую пленку ФГ-690. Диаметр наблюдаемого поля составлял 26 mm. Волновые аберрации системы регистрации голограмм ~ 0.3 λ . Для изменения несущей частоты полос при регистрации двухэкспозиционной голограммы между экспозициями опорный пучок разворачивался.

Интерферограмма бокового сдвига регистрировалась при восстановлении волновых фронтов с двухэкспозиционной голограммы и экспонировании интерферограмм бокового сдвига на общий носитель по вышерассмотренной методике. При регистрации интерферограмм бокового сдвига в четырехзеркальном сдвиговом интерферометре задавался боковой сдвиг интерферирующих волновых фронтов 3.0 mm. На рис. 2 приведена интерферограмма бокового свдига с настройкой на бесконечно широкую полосу, визуализирующая оптические неоднородности подложки носителя исходной двухэкспозиционной голограммы (боковой сдвиг 3.0 mm). Данная интерферограмма подтверждает низкое качество

Рис. 2. Интерферограмма бокового сдвига с настройкой на бесконечно широкую полосу, визуализирующая оптические неоднородности подложки носителя исходной двухэкспозици-онной голограммы.

Рис. 3. Муаровая картина интерферограммы бокового сдвига исследуемого образца полиметилметакрилата с исключением как неоднородностей подложки носителя голограммы, так и аберраций оптической системы ее регистрации.

пленки. На рис. З приведена муаровая картина, полученная при освещении двухэкспозиционного снимка, с компенсацией оптических искажений как подложки носителя исходной двухэкспозиционной голограммы, так и системы ее регистрации. Для повышения видности полос муаровой картины использовалась фильтрация пространственных частот (выделялся первый порядок дифракции). Приведенная муаровая картина (рис. 3) визуализирует поведение функции $\Delta \phi$ при исключении как неоднородностей подложки носителя голограммы, так и аберраций оптической системы ее регистрации.

Заключение

Таким образом, применение рассмотренной безаберрационной голографической интерферометрии бокового сдвига может обеспечить более высокую точность измерений при исследовании фазовых объектов в случае использования низкокачественных подложек носителей голограмм и оптических систем их регистрации с дешевой оптикой.

Список литературы

- [1] Вьенто Ж.-Ш., Смиглинский П., Руайе А. Оптическая голография. Развитие и применение. М.: Мир, 1073. 212 с.
- [2] Бекетова А.К., Белозеров А.Ф., Березкин А.Н. и др. Голографическая интерферометрия фазовых объектов. Л.: Наука, 1979. 232 с.
- [3] Гудмен Дж. Введение в фурье-оптику. М.: Мир, 1970. 364 с.
- [4] Спорник Н.М. // ОМП. 1976. № 1. С. 74–75.
- [5] Зейликович И.С., Ляликов А.М. // Опт. и спектр. 1990. Т. 68. № 1. С. 197–199.
- [6] Спорник Н.М., Белозеров А.Ф., Бывальцев А.И. // А.с. СССР. № 39654. БИ. 1973. № 36.
- [7] Ляликов А.М. // Опт. и спектр. 1993. Т. 75. № 1. С. 161–165.
- [8] Туев А.Ф. // Оптич. журнал. 1993. № 4. С. 75–77.
- [9] Иванов П.В., Корябин А.В., Шмальгаузен В.И. // Квантовая электрон. 1999. Т. 27. № 1. С. 78-80.
- [10] Schwider J. // Optik. 1998. Vol. 108. N 4. P. 181-196.
- [11] Соколов В.И. // Квантовая электрон. 2001. Т. 31. № 10. С. 891–896.
- [12] Гусев В.Г. // Оптич. журнал. 1992. № 4. С. 3–7.
- [13] Гусев В.Г. // Оптич. журнал. 1997. Т. 64. № 11. С. 48–54.
- [14] Голографические неразрушающие исследования / Под ред. Р.К. Эрфа. М.: Машиностроение, 1979. 446 с.
- [15] Вест Ч. Голографическая интерферометрия. М.: Мир, 1982. 504 с.