04:11:12

Эффективность импульсного кондиционирования электродов в вакууме

© А.А. Емельянов

Орловский государственный технический университет, 302020 Орел, Россия e-mail: emel@ostu.ru

(Поступило в Редакцию 27 февраля 2004 г. В окончательной редакции 8 сентября 2004 г.)

Рассмотрено импульсное кондиционирование электродов в вакууме. Показано, что эффективность оптимальных режимов, оцененная по состоянию поверхности катода, возрастает с уменьшением длительности кондиционирующих импульсов и может более чем на два порядка величины превосходить эффективность кондиционирования пробоя постоянного тока. Предложен критерий катодного механизма инициирования пробоя в стационарном режиме. Оптимальные режимы кондиционирования импульсами $t_p < 10^{-8}\,\mathrm{s}$ при напряженности $E_0 > 10^8\,\mathrm{V/m}$ позволяют достигать предельной электрической прочности, соответствующей катодному механизму инициирования вакуумного пробоя.

Введение

Состояние поверхности электродов оказывает существенное влияине на характеристики вакуумной изоляции. Присутствие на поверхности микровыступов, слабосвязанных частиц, оксидных пленок, загрязнений, диэлектрических и газовых включений определяет величину предпробойных токов и напряжения пробоя. Наиболее распространенным методом кондиционирования электродов является тренировка пробоями. Тренировка импульсами мили- и микросекундной длительности мало отличается по эффективности от кондиционирования пробоя в стационарном режиме [1]. Использование высоковольтных импульсов наносекундного диапазона длительности существенно сокращает число возможных механизмов инициирования вакуумного пробоя, оставляя в качестве основного катодный, когда инициирование вызвано взрывным разрушением эмиттера в результате джоулева разогрева протекающим автоэлектронным

Применение джоулева разогрева эмиттера позволяет представить время запаздывания пробоя t_d как функцию напряженности электрического поля Е и физических постоянных материала. Кондиционирование электродов высоковольтными импульсами, длительноть которых равна времени запаздывания пробоя $t_p = t_d$, соответствует оптимальному режиму. Оптимальный режим формирует поверхность катода с наименьшим значением коэффициента усиления поля β . Сопоставление при $t_d = \mathrm{const}$ расчетных зависимостей времени запаздывания от микронапряженности электрического поля на катоде $t_d = f(E)$ с экспериментальными кривыми $t_d = f(E_0)$ от макронапряженности позволяет оценивать эффективность оптимальных режимов импульсного кондиционирования по изменению состояния поверхности катода. Эффективность кондиционирования можно оценивать и по изменению электрических характеристик вакуумной изоляции.

Запаздывание пробоя в вакууме

Применение импульсов напряжения длительностью

$$t_r \ll t_p \ll h^2 \rho c / \lambda, \tag{1}$$

где t_r — время термической релаксации; h — высота эмиттера; ρ , c, λ — соответственно плотность, удельная теплоемкость и коэффициент теплопроводности материала эмиттера, позволяет привести краевую задачу о распределении температуры эмиттера [2] к виду [3]

$$\begin{cases}
\rho c \frac{dT}{dt} = j_0^2 \left(\frac{\pi T / 2T^*}{\sin(\pi T / 2T^*)} \right)^2 k_0 T, \\
T|_{t=0} = T_0, \ T|_{t=t_d} = T_{cr},
\end{cases}$$
(2)

где j_0 — плотность тока автоэлектронной эмиссии; k_0 — коэффициент пропорциональности в зависимости удельного сопротивления материала эмиттера от температуры $k(T)=k_0T$; T^* — температура инверсии, равная $T^*=5.67\cdot 10^{-7} \varphi^{-1/2}$; φ — работа выхода.

Запись уравнения (2) в интегральной форме [4]

$$\int_{0}^{t_{d}} j_{0}^{2}(t)dt = a \frac{\rho c}{k_{0}}, \tag{3}$$

где

$$a = \left[Ci(x) - \frac{\sin x}{x} - \frac{1}{2} \frac{\sin^2(x/2)}{(x/2)^2} \right] \Big|_{x = \pi T_0/T^*}^{x = \pi T_a/T^*},$$

$$Ci(x) = -\int_0^\infty \frac{\cos y}{y} \, dy$$

представляет собой критерий инициирования вакуумного пробоя, согласно которому за время, равное времени запаздывания пробоя $t_p = t_d$, в эмиттере выделяется энергия, необходимая для его разрушения. Величина

8 113

114 А.А. Емельянов

 $a\rho c/k_0$ определяет удельную энергию разрушения эмиттера и является величиной постоянной для данного металла.

В случае прямоугольного импульса напряжения из (3) легко выразить время запаздывания как функцию удельной энергии разрушения материала эмиттера, работы выхода и микронапряженности электрического поля

$$t_d = 4.2 \cdot 10^{11} \frac{a\rho c}{k_0} \varphi^2 \exp\{-21.6\varphi^{-1/2}\}$$

$$\times \frac{\exp\{1.32 \cdot 10^{10} \varphi^{3/2} E^{-1}\}}{E^4}.$$
 (4)

Критерий оптимальности импульсного кондиционирования

Кондиционирование в предпробойном режиме при $t_p < t_d$ неэффективно, так как энергии импульса недостаточно для разрушения эмиттера. Эффективность кондиционирования возрастает с увеличением длительности импульса напряжения и по мере приближения к критическому состоянию, инициирующему пробой и характеризуемому равенством $t_p = t_d$, достигает максимума. Кондиционированию импульсами $t_p = t_d$ соответствует сглаживание микрорельефа катода вплоть до полировки поверхности при $t_p \le 1$ ns [5].

В режиме возникновения взрывной эмиссии электронов при $t_p > t_d$ энергия импульса идет не только на разрушение эмиттера, но и на развитие коммутационных процессов в промежутке. Эффективность кондиционирования возрастает с уменьшением длительности импульса тока взрывной эмиссии, и по мере приближения длительности воздействующего импульса напряжения к критической величине $t_p = t_d$ достигает максимума, когда при $t_p \approx 1$ пѕ наблюдают полировку поверхности катода [6,7].

Оптимальный режим импульсного кондиционирования соответствует критическому состоянию, достигаемому при $t_p=t_d$, когда энергии импульса достаточно лишь для разрушения эмиттера и инициирования пробоя, но не хватает на дальнейшее развитие коммутационных процессов. Обработка катода импульсами $t_p=t_d$ разрушает микровыступы без образования новых центров эмиссии. Оптимальный режим кондиционирования обеспечивает максимальное сглаживание неоднородностей поверхности катода, при этом критерий оптимальности принимает вид [8]

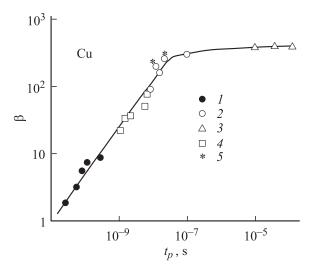
$$\int_{0}^{t_{p}} j_{0}^{2}(t)dt = a \frac{\rho c}{k_{0}}.$$
 (5)

Согласно (5), энергия, выделяемая в эмиттере за время действия импульса $t_p = t_d$, остается постоянной и равной энергии его разрушения. Рост мощности импульсов оптимального режима сопровождается уменьшением длительности $t_p = t_d$. С уменьшением длительности импульсов уменьшаются расстояние, на которое

распространяется тепловая волна, и объем разрушений эмиттера, что ведет к повышению эффективности кондиционирования вплоть до полировки поверхности.

Эксперименты по времени запаздывания пробоя в вакууме сопровождаются обработкой катода импульсами $t_p \approx t_d$, соответствуют реализации оптимальных режимов кондиционирования и позволяют оценивать эффективность оптимальных режимов импульсного кондиционирования.

Поверхность катода


Состояние поверхности катода характеризуют коэффициентом усиления напряженности электрического поля β . Коэффициент β обычно определяют по крутизне вольт-амперной характеристики, построенной в координатах Фаулера—Нордгейма. Применение импульсов $t_p = t_d$ позволяет оценивать параметр β , используя расчетную зависимость $t_d = f(E)$ времени запаздывания пробоя от микронапряженности электрического поля (4) и экспериментальную зависимость $t_d = f(E_0)$ от макронапряженности.

Экспериментальные результаты по времени запаздывания вакуумного пробоя [9–14] получены на электродах с развитой рабочей поверхностью, выполненных из меди, алюминия, никеля, молибдена и железа, и соответствуют диапазону длительностей от мили- до субнаносекундного. Сопоставление при $t_d = \text{const}$ экспериментальных кривых $t_d = f(E_0)$ с расчетными $t_d = f(E)$ соответственно от макро- E_0 и микронапряженности E позволило для названных материалов оценить коэффициент усиления поля

$$\beta = E/E_0, \tag{6}$$

достигаемый в результате кондиционирования импульсами $t_p \approx t_d$, и построить зависимости $\beta = f(t_p)$ от длительности и $\beta = f(E_0)$ от интенсивности оптимального воздействия.

Зависимость коэффициента усиления поля от длительности импульсов $t_p \approx t_d$, использованных при обработке медных электродов, приведена на рис. 1. Кривая $\beta = f(t_p)$ характеризует изменение качества поверхности катода с изменением длительности $t_p \approx t_d$ кондиционирующих импульсов. Из кривой $\beta = f(t_p)$ следует, что при $t_p < 10^{-7}$ s уменьшение длительности и соответствующее ему увеличение мощности импульсов сопровождаются снижением коэффициента усиления β и повышением качества поверхности катода. При $t_p \sim 10^{-7}\,\mathrm{s}$ характер зависимости изменяется. При $t_p > 10^{-7}\,\mathrm{s}$ изменение длительности не влияет на коэффициент усиления поля и качество поверхности катода, а эффективность тренировки в мили- и микросекундном диапазонах мало отличается от эффективности кондиционирования пробоями постоянного тока, что соответствует результатам [1] и может быть объяснено охлаждением эмиттера вследствие теплопроводности.

Рис. 1. Коэффициент усиления поля как функция длительности кондиционирующих импульсов $t_p \approx t_d$; экспериментальные результаты: I = [5], 2 = [9], 3 = [10], 4 = [11], 5 = [12].

Считая коэффициент усиления β_0 , полученный при $t_p > 10^{-7}$ s, соответствующим тренировке пробоями постоянного тока, можно оценить эффективность импульсных режимов кондиционирования по относительному изменению качества поверхности катода

$$K_{\beta} = \beta_0/\beta_p,\tag{7}$$

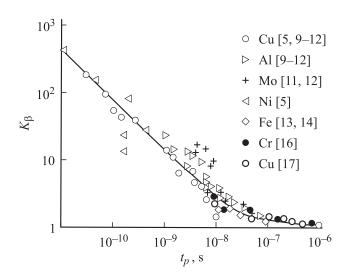
где β_p — коэффициент усиления, полученный после импульсного кондиционирования.

Введение коэффициента K_{β} позволяет на основании кривой $\beta=f\left(t_{p}\right)$ построить зависимость $K_{\beta}=f\left(t_{p}\right)$ эффективности импульной обработки поверхности катода от длительности $t_{p}\approx t_{d}$ оптимального режима.

Экспериментальные данные по времени запаздывания для электродов из алюминия [9–12], молибдена [11,12], никеля [5] и железа [13,14] также были обработаны с помощью кривых $t_d = f(E)$, рассчитанных с позиций инициирования взрывной эмиссии для данных материалов. Это позволило оценить коэффициент β , полученный в результате различных режимов тренировки импульсами $t_p \approx t_d$, и построить зависимости $K_\beta = f(t_p)$ для названных материалов. Относительное изменение коэффициента усиления K_β в результате оптимальных режимов кондиционирования как функция длительности воздействия и экспериментальные данные по времени запаздывания для Cu, Al, Mo, Ni и Fe (значки), приведены на рис. 2.

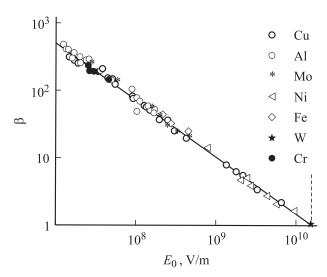
Из кривой $K_{\beta}=f(t_p)$, обобщающей известные экспериментальные результаты по времени запаздывания пробоя, следует, что эффективность оптимальных режимов кондиционирования возрастает с уменьшением длительности и ростом мощности импульсов. При $t_p<10^{-8}\,\mathrm{s}$ эффективность возрастает в 3 и более раз, а при $t_p<10^{-10}\,\mathrm{s}$ превышает эффективность кондиционирования пробоями постоянного тока более чем на

2 порядка величины, приводя в пределе к идеальной поверхности с коэффициентом усиления $\beta=1$. При $t_p>10^{-7}\,\mathrm{s}$ изменение длительности импульсов не влияет на эффективность тренировки, которая мало отличается от эффективности кондиционирования в режиме постоянного тока.


Получение предельных результатов при обработке поверхности катода требует не только уменьшения длительности импульсов до субнаносекундной, но и достижения высокой напряженности электрического поля. Напряженность E_0 , соответствующая оптимальному режиму кондиционирования $t_p \approx t_d$, оценена из сопставления экспериментальных $t_d = f(E_0)$ и расчетных $t_d = f(E)$ кривых при $t_d = \text{const.}$ Зависимость коэффициента усиления $\beta = f(E_0)$ от макронапряженности, обеспечивавшей оптимальность импульсной обработки электродов из Cu, Al, Mo, Ni, Fe, W и Cr [9–16], представлена одним графиком на рис. 3.

Экспериментальные результаты по обработке электродов из разных материалов импульсами $t_p \approx t_d$ удовлетворяют единой зависимости $\beta = f(E_0)$. Следовательно, коэффициент усиления поля, достигаемый в результате оптимальных режимов кондиционирования, не зависит от материала электродов и определяется лишь макронапряженностью E_0 электрического поля, инициирующей пробой. Из кривой $\beta = f(E_0)$ следует, что коэффициент β аппроксимируется степенной зависимостью.

$$\beta = \left(\frac{E_{\rm cr}}{E_0}\right)^{0.9} \bigg|_{t_p = t_d},\tag{8}$$


где $E_{\rm cr} = 1.32 \cdot 10^{10} \, {\rm V/m}$.

Кривая $\beta = f(E_0)$ построена на основании экспериментальных данных, полученных на электродах с

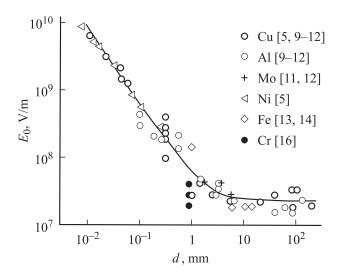
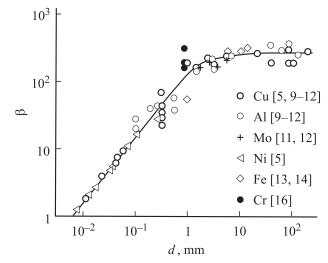


Рис. 2. Эффективность обработки поверхности катода как функция длительности импульсов $t_p \approx t_d$; эффективность повышения электрической прочности промежутков с цельнометаллическими электродами (\circ) [17] и напряжения возникновения локальных свечений промежутков с напыленными электродами (\bullet) [16].

116 А.А. Емельянов

Рис. 3. Коэффициент усиления поля после кондиционирования импульсами $t_p \approx t_d$ как функция макронапряженности электрического поля, инициирующей пробой: Cu [5,9-12]; Al [9-12]; Mo [11,12]; Ni [5]; Fe [13,14]; Cr [16]; W [15].


Рис. 4. Макронапряженность электрического поля при кондиционировании импульсами $t_p \approx t_d$ как функция использованного межэлектродного зазора.

развитой рабочей поверхностью при межэлектродных промежутках от $3\,\mu\mathrm{m}$ до $20\,\mathrm{cm}$. Изменение на три порядка напряженности электрического поля $1.5\cdot 10^7 \le E_0 \le 1.3\cdot 10^{10}\,\mathrm{V/m}$ и соответствующее ему изменение на три порядка коэффициента β обеспечено в экспериментах прежде всего за счет изменения величины d промежутка на пять порядков. Зависимость макронапряженности электрического поля E_0 , обеспечивавшей оптимальность режима, от межэлектродного зазора d, применявшегося при кондиционировании импульсами $t_p \approx t_d$, приведена на рис. 4.

Из кривой $E_0=f(d)$ следует, что при $d>1\,\mathrm{mm}$ напряженность изменяется незначительно и составляет $E_0\approx 2\cdot 10^7\,\mathrm{V/m}$. Напряженности $E_0\approx 2\cdot 10^7\,\mathrm{V/m}$ соответствуют длительности импульсов $t_p>10^{-7}\,\mathrm{s}$ и коэффициент усиления $\beta_0\approx 270$, получаемый при кондиционировании широких электродов на постоянном токе. При $d<1\,\mathrm{mm}$ и длительности $t_p<10^{-10}\,\mathrm{s}$ увеличение напряженности до $E_0\approx 10^{10}\,\mathrm{V/m}$, сопровождаемой уменьшением коэффициента усиления до минимального $\beta\approx 1$ и повышением эффективности импульсного кондиционирования боле чем на два порядка, достигалось за счет сокращения межэлектродного зазора до микронных размеров.

На рис. 5 приведена зависимость коэффициента усиления β , полученного в результате оптимальных режимов кондиционирования, от межэлектродного зазора, использованного в экспериментах [5,9–17]. Из кривой $\beta=f(d)$ следует, что с уменьшением промежутка эффективность кондиционирования импульсами $t_p\approx t_d$ возрастает, приводя к минимальным значениям β в микронных зазорах.

Таким образом, эффективность оптимальных режимов импульсной обработки поверхности катода возрастает с уменьшением длительности и повышением интенсивности воздействия, при этом напряженность E_0 повышают, уменьшая межэлектродный зазор. Наиболее эффективно кондиционирование импульсами $t_p < 10^{-8}\,\mathrm{s}$ при напряженности $E_0 > 10^8\,\mathrm{V/m}$, достигаемой в промежутках $d < 1\,\mathrm{mm}$. В микронных зазорах при $E_0 \approx 10^{10}\,\mathrm{V/m}$ воздействие импульсов $t_p < 10^{-10}\,\mathrm{s}$ формирует идеально гладкую поверхность катода с коэффициентом усиления $\beta \approx 1$. Однако достижение идеальной поверхности катода не означает достижения предельной электрической прочности вакуумной изоляции, так как при длительно воздействующем напряжении возможна смена механизма инициирования.

Рис. 5. Коэффициент усиления поля после кондиционирования импульсами $t_p \approx t_d$ как функция использованного межэлектродного зазора.

Электрическая прочность

В стационарном режиме катодное инициирование пробоя между электродами с протяженной поверхностью определяется достижением микронапряженностью электрического поля некоторого критического значения [18]

$$E = \beta E_0 = \text{const.} \tag{9}$$

Любое воздействие, изменяющее состояние поверхности катода, приводит к изменению коэффициента усиления поля β и при катодном инициировании сопровождается соответствующими изменениями электрической прочности E_0 и напряжения первого пробоя

$$U \sim E_0 \sim 1/\beta. \tag{10}$$

Оптимальные режимы импульсного кондиционирования являются инструментом, позволяющим получать катод с поверхностью требуемого качества. При катодном инициировании, согласно (10), уменьшение коэффициента β в результате импульсной обработки приводит к соответствующему повышению электрической прочности и напряжения первого пробоя в стационарном режиме. Следовательно, коэффициенту K_{β} , характеризующему относительное изменение состояния поверхности катода, будет равен коэффициент относительного изменения электрической прочности

$$K_U = U_p/U_0, (11)$$

где $U_p,\,U_0$ — напряжения пробоя постоянного тока, соответственно первого после окончания импульсной обработки и установившегося значения перед ее началом

Критерий катодного инициирования можно представить в виде

$$\frac{K_{\beta}}{K_{II}} = 1. \tag{12}$$

Сопоставление относительных величин изменений качества поверхности и электрической прочности вакуумной изоляции исключает постоянную погрешность измерений и повышает точность оценки катодного механизма по сравнению с критерием (9). Если $K_{\beta}/K_{U} \neq 1$, то инициирование пробоя вызвано процессами, не связанными с катодным механизмом.

Предложенный критерий (12)проверен реализации оптимальных режимов кондиционирования прямоугольными импульсами $800 \ge t_p \ge 10 \, \text{ns};$ $1.5 \cdot 10^7 \le E_0 \le 10^8 \, \text{V/m}$, на вакуумных промежутках цельнометаллическими медными электродами $(C \approx 110 \, \pi F, \quad d = 0.5 \, \text{mm})$ [19] напыленными И электродами микроканальная пластина (Ст) — катодолюминесцентный экран ($C \approx 10 \, \pi F$, $d = 0.9 \, \text{mm}$) [16].

Эффективность оптимальных режимов импульсного кондиционирования оценена на постоянном токе по относительному изменению напряжения первого пробоя K_U в случае цельнометаллических электродов, а в

случае напыленных электродов — по относительному изменению напряжения возникновения локальных свечений экрана

$$K^* = U_p^* / U_0^*, (13)$$

где U_p^*, U_0^* — напряжения возникновения локальных свечений соответственно после и до импульсного кондиционирования.

Возникновение свечений экрана обусловлено автоэлектронной эмиссией с выходной поверхности микроканальной пластины (МКП), т.е. связано с катодным
механизмом, тогда как пробой промежутка МКП —
экран инициирован другими процессами, что приводило
к постоянству электрической прочности $E_0 \approx 10^7 \, \text{V/m}$
независимо от режима кондиционирования импульсами $t_p \approx t_d$.

Кривые изменения электрической прочности $K_U =$ $= f(t_p)$ и напряжения возникновения локальных свечений $K^* = f(t_p)$ как функции длительности оптимального режима кондиционирования представлены экспериментальными значками для меди и хрома (рис. 2). Как в случае с цельнометаллическими, так и с напыленными электродами уменьшение длительности кондиционирующих импульсов $t_p \approx t_d$ сопровождается улучшением параметров вакуумной изоляции, изменение которых обусловлено катодными процессами. Экспериментальные кривые $K_U = f(t_p)$ и $K^* = f(t_p)$, отражающие изменение электрической прочности и напряжения возникновения засветок экрана в результате кондиционирования импульсами $10 \le t_p \le 800 \,\mathrm{ns}, \ 10^8 \ge E_0 \ge 1.5 \cdot 10^7 \,\mathrm{V/m}$ совпадают с кривой $K_{\beta} = f(t_p)$, характеризующей изменение состояния поверхности катода после оптимальных режимов обработки. Двукратному уменьшению коэффициента усиления поля в результате обработки катода импульсами $t_p \approx 10^{-8} \, \mathrm{s}; \, E_0 \approx 10^8 \, \mathrm{V/m}$ соответствуют двукратное повышение электрической прочности промежутков с цельнометаллическими электродами и двукратное повышение напряжения возникновения локальных свечений промежутков с напыленными электродами. Это совпадение указывает на ответственность катодных процессов за инициирование пробоя (цельнометаллические электроды) и возникновение локальных засветок экрана (напыленные электроды), подтверждая справедливость предложенного критерия (12). Независимость электрической прочности вакуумных промежутков с напыленными электродами от режимов импульсной обработки, наоборот, указывает на механизм инициирования, не связанный с автоэлектронной эмиссией.

Кондиционирование электродов Роговского ($S=100~{\rm mm^2}$; $d=0.12~{\rm mm}$), изготовленных из нержавеющей стали, импульсами $t_d\approx t_p=10~{\rm ns}$ позволило электрической прочности $E_0=2.1\cdot 10^8~{\rm V/m}$, близкой к предельным результатам, полученным на электродах из молибдена после продолжительного прогрева и кондиционирования тлеющим разрядом в аргоне [20].

Ход зависимости $K_{\beta} = f(t_p)$, отражающей улучшение качества поверхности катода с уменьшением длитель-

118 А.А. Емельянов

ности кондиционирующих импульсов $t_p \approx t_d$, дает основание полагать, что при катодном механизме инициирования следует ожидать повышения электрической прочности более чем на порядок величины по сравнению с кондиционированием в стационарном режиме. Однако при достижении предельной прочности в стационарном режиме возможна смена механизма инициирования пробоя. В этом случае, когда $K_\beta/K_U \neq 1$, предложенный критерий дает основание для оценки величины предельной электрической прочности, достигаемой при катодном инициировании.

Заключение

Рассмотрены оптимальыне режимы импульсного кондиционирования электродов в вакууме и получены результаты по их эффективности. Эффективность обработки поверхности катода импульсами $t_p \approx t_d$, оцененная из экспериментов по времени запаздывания пробоя по относительному изменению качества катодной поверхности $K_{\beta} = f(t_p)$, возрастает с уменьшением длительности импульсов и может более чем на два порядка превосходить эффективность кондиционирования пробоями постоянного тока. Оптимальные режимы кондиционирования импульсами $t_p < 10^{-10}\,\mathrm{s}$ при $E_0 > 10^{10}\,\mathrm{V/m}$ приводят к идеально гладкой поверхности катода с коэффициентом усиления $\beta = 1$. Для достижения напряженности электрического поля $E_0 \sim 10^{10}\,\mathrm{V/m}$ следует использовать вакуумные промежутки с микронными зазорами.

В случае катодного механизма инициирования пробоя изменению состояния поверхности катода соответствует изменение электрической прочности изоляции, что было использовано для получения новой формы критерия катодного инициирования. Справедливость предложенного критерия подтверждена экспериментально в наносекундном диапазоне длительностей на цельнометаллических и напыленных электродах с большими поверхностями. Применение для обработки электродов вакуумного промежутка импульсов $t_p < 10^{-8}\,\mathrm{s}$ при $E_0 > 10^8\,\mathrm{V/m}$ дает основание для оценки предельной электрической прочности, достигаемой при катодном инициировании пробоя.

Список литературы

- [1] Черепнин Н.В. Сорбционные явления в вакуумной технике. М.: Сов. радио, 1973. 383 с.
- [2] *Литвинов Е.А., Месяц Г.А., Шубин А.Ф.* // Изв. вузов Физика. 1970. № 4. С. 149–151.
- [3] *Емельянов А.А., Кассиров Г.М., Смирнов Г.В.* // Изв. вузов. Физика. 1976. № 4. С. 142–145.
- [4] Емельянов А.А., Кассиров Г.М. // Изв. вузов. Физика. 1976.№ 9. С. 105–110.
- [5] Jüttner B., Rohrbeck W., Wolff H. // Proc. IX Intern. Conf. Phen. Ion. Gas Bucharest. 1969. P. 140.

[6] Mesyats G.A., Proskourovsky D.I., Yankelevitch E.B. // Proc. VII Intern. Symposium Disch. Electr. Insul. Vac. (IS DEIV). Novosibirsk, 1976. P. 230–233.

- [7] Месяц Г.А., Проскуровский Д.И., Янкелевич Е.Б. и др. // ДАН СССР. 1976. Т. 227. № 6. С. 1335–1337.
- [8] Емельянов А.А. // ЖТФ. 2003. Т. 73. Вып. 9. С. 113–119.
- [9] Кассиров Г.М. // ЖТФ. 1966. Т. 36. Вып. 10. С. 1883–1885.
- [10] Каляцкий И.И., Кассиров Г.М., Смирнов Г.В. и др. // ЖТФ. 1975. Т. 45. Вып. 7. С. 1547–1550.
- [11] Месяц Г.А., Бугаев С.П., Проскуровский Д.И. и др. // РиЭ. 1969. Т. 14. № 12. С. 2222–2230.
- [12] Вавилов С.П., Месяц Г.А. // Изв. вузов. Физика. 1970. № 8. С. 90–94.
- [13] Олендзская Н.Ф., Сальман М.А. // ЖТФ. 1970. Т. 40. Вып. 2. С. 333–337.
- [14] Chalmers I.D., Phukan B.D. // Vacuum. 1982. Vol. 32. N 3. P. 145–150.
- [15] *Карцев Г.К., Месяц Г.А., Проскуровский Д.И.* и др. // ДАН СССР. 1970. Т. 192. № 2. С. 309–312.
- [16] Емельянов А.А. // ПТЭ. 1998. № 6. С. 90-91.
- [17] Yemelyanov A.A., Kalyatskiy I.I., Kassirov G.M. // Proc. VII IS DEIV. Novosibirsk, 1976. P. 130–133.
- [18] Alpert D., Lee D.A., Lyman F.M. et al. // J. Vac. Sci. Tech. 1964. Vol. 1. N 2. P. 35–50.
- [19] Буц В.П., Емельянов А.А., Кассиров Г.М. и др. // Электронная техника. Сер. 4. Электровакуумные и газоразрядные приборы. 1978. Вып. 7. С. 115–117.
- [20] Чистяков П.Н., Дубинин Н.П. // Изв. вузов. Радиофизика. 1979. Т. 22. № 8. С. 1020–1025.