01;03 Особенности течения пузырьковой электропроводной жидкости в поле электромагнитной силы

© А.П. Васильев

Оренбургский государственный университет, 460352 Оренбург, Россия e-mail: post@mail.osu.ru

(Поступило в Редакцию 7 февраля 2003 г. В окончательной редакции 20 апреля 2004 г.)

Рассматриваются физические процессы, сопровождающие течение пузырьковой электропроводной жидкости в скрещенных электрическом и магнитном полях. На основе общих уравнений механики неоднофазных сред построена одномерная модель течения и теплообмена сжимаемого пузырькового потока при наличии скоростной и температурной неравновестностей фаз и проведено ее численное исследование. Показано, что течение пузырькового потока вдоль электромагнитной силы сопровождается отставанием пузырьков от несущего потока, их сжатием и разогревом, возбуждением колебаний объема, что ведет к осцилляциям параметров не только дисперсной фазы, но и несущей. В частности, сжатие пузырьков сопровождается снижением объемного газосодержания, увеличением эффективной электропроводности потока и электромагнитной силы по потоку, что создает условия для кризиса электромагнитного выталкивания пузырьков против основного потока. На основе полученных решений проведен расчет эффективности устройства для сжатия газа.

Введение

Способы безмашинного сжатия газов и паров и осуществление на их основе обратных термодинамических циклов представляют интерес для многих отраслей техники, так как позволяют создать новое поколение компрессоров, холодильных машин и тепловых насосов для различных технических систем. В частности, в [1–3] было предложено осуществить сжатие газа в МГД (магнитогидродинамическом) насосе с низкотемпературным жидким металлом типа эвтектики галлий-индий-висмут, для чего газовая фаза вводилась в жидкий металл для образования пузырьковой структуры.

На газовые пузырьки в потоке, протекающем в поле электромагнитной силы, помимо инерционных сил действуют архимедовы силы в поле градиентов давления, направленные против течения, и силы сопротивления обтеканию пузырьков в их относительном перемещении, направленные по потоку. Если сила сопротивления будет больше электромагнитной выталкивающей силы, то пузырек будет переноситься потоком в область повышенного давления и, следовательно, сжиматься. В противном случае он будет либо заторможен внутри канала, что приведет к накапливанию пузырьков и потере устойчивости пузырьковой структуры, либо вытолкнут из области магнитного поля. На динамические процессы пузырькового течения накладываются процессы теплообмена между газовой и жидкой фазами, а также электромагнитные процессы, связанные с изменением эффективной электропроводности из-за изменения объемного газосодержания в потоке при сжатии пузырьков.

Расчет устройства для сжатия газа, его эффективности возможен лишь на основе решений системы уравнений движения и теплообмена пузырькового потока.

1. Постановка задачи

Требуется рассчитать распределение кинематических, динамических, термодинамических и электрических параметров при течении монодисперсного пузырькового потока в адиабатическом канале заданной геометрии кондукционного МГД насоса с постоянным поперечным сечением $l \times b = \text{const} (l - \text{расстояние между}$ электродами, b - между изоляционными стенками) в однородном магнитном поле **B**(0, 0, *B*), *B* = const, резко обрывающемся на краях канала длиной *L*, в условиях малых магнитных чисел Рейнольдса $\text{Re}_m \ll 1$. Напряжение на электродах канала *U*, индукция магнитного поля *B* и все параметры потока на входе в канал x = 0 считаются известными. Для решения данной задачи обратимся к уравнениям механики двухфазной среды.

Система уравнений неразрывности (Рэлея—Ламба) импульсов, притока теплоты и условия совместного деформирования фаз для бесстолкновительной монодисперсной пузырьковой среды, несущая фаза которой (i = 1) — вязкая несжимаемая электропроводная жидкость, а дисперсная (i = 2) — идеальный газ, приведенная в [4] и дополненная амперной силой и дифференциальным законом Ома, пофазно имеет вид

$$\frac{\partial \rho_1}{\partial t} + \nabla^k (\rho_1 v_1^k) = 0, \quad \frac{\partial \rho_2}{\partial t} + \nabla^k (\rho_2 v_2^k) = 0,$$
$$\frac{\partial n}{\partial t} + \nabla^k (n v_2^k) = 0, \tag{1}$$

$$\rho_1 = \alpha_1 \rho_1^{(0)}, \quad \rho_2 = \alpha_2 \rho_2^0, \quad \alpha_1 + \alpha_2 = 1,$$

$$\frac{4}{3} \pi a^3 n = \alpha_2, \quad \rho_2^0 = p_2 / (R_\mu T_2), \quad (2)$$

$$w_a = \frac{d_2 a}{dt},\tag{3}$$

$$(1 - \varphi_1)a \frac{d_2w_a}{dt} = \frac{p_2 - p_1}{\rho_1^0} - 2\frac{\Sigma}{\rho_1^0 a} - 4\mu_1 \frac{w_a}{\rho_1^0 a} - (1 - \varphi_2) \frac{3}{2} w_a^2 - \frac{2}{3} \sigma_{\text{eff}} \frac{B^2 a w_a}{\rho_1^0} + (1 - \varphi_3) \frac{1}{4} (\mathbf{v}_1 - \mathbf{v}_2)^2, \qquad (4)$$

$$\rho_1 \frac{d_1 \mathbf{v}_1}{dt} = -\alpha_1 \nabla P_{1*} + \alpha_1 \nabla^k \tau_{1*}^k - \alpha_1 n \mathbf{f}_* + \rho_1 \mathbf{g} + \mathbf{f}_1, \quad (5)$$

$$\rho_2 \frac{d_2 \mathbf{v}_2}{dt} = -\alpha_2 \nabla P_{1*} + \alpha_2 \nabla^k \tau_{1*}^k + \alpha_1 n \mathbf{f}_* + \rho_2 \mathbf{g}, \qquad (6)$$

$$\rho_1 \frac{d_1 u_1}{dt} = -\nabla^k q_{1*}^k + n q_{\Sigma_1} + \rho_1 A_1 + q_{jv} + q_{jr}, \qquad (7)$$

$$\rho_2 \frac{d_2 u_2}{dt} = \frac{\alpha_2 \rho_2}{\rho_2^0} \frac{d_2 \rho_2^0}{dt} + nq_{\Sigma_2}.$$
 (8)

$$\mathbf{f}_1 = \mathbf{j}_1 \times \mathbf{B}, \qquad \mathbf{j}_1^0 = \sigma_1^0(\mathbf{E} + \mathbf{v}_1 \times \mathbf{B}), \qquad (9, 10)$$

$$\mathbf{f}_* = \mathbf{f}_m + \mathbf{f}_\mu + \mathbf{f}_e, \quad \frac{d_i}{dt} = \frac{\partial}{dt} + (\mathbf{v}_i \cdot \nabla),$$
$$w_{12} = |\mathbf{v}_1 - \mathbf{v}_2|. \tag{11}$$

Здесь ρ_1 и ρ_1^0 — приведенная и истинная плотности *і*-й фазы; **v**_i — скорость; *n* — числовая концентрация пузырьков; *а* — радиус пузырька; α_i — объемное содержание *i*-й фазы; T_i — температура; p_i — давление; w_a — радиальная скорость межфазной границы; $\sigma_{\rm eff}$ — эффективная электропроводность пузырьковой среды; P_{1*} — сферическая составляющая тензора поверхностных напряжений в бесстолкновительном пузырьковом потоке; au_{1*}^{kl} — компоненты тензора вязких напряжений в несущем потоке; д — плотность силы тяжести; f₁ — плотность электромагнитной силы, действующей на несущую фазу в единице объема смеси; ${f f}_*$ — сила воздействия несущей фазы на дисперсную, обусловленная скоростной неравновесностью фаз; q_{1*} приведенная плотность теплового потока; q_{Σ_i} — поток теплоты на межфазной поверхности в *i*-й фазе; $\rho_1 A_1$ мощность вязких напряжений в несущем потоке в единице объема смеси; q_{iv} и q_{ir} — плотности объемных источников тепловыделения от кондуктивных и вихревых электрических токов; \mathbf{f}_m — сила инерции присоединенных масс, действующая на один пузырек; f_e сила выталкивания, обусловленная непотенциальностью электромагнитной силы вблизи пузырька; f_µ — сила сопротивления обтеканию сферы; j_1 и j_1^0 — приведенная и истинная плотности электрического тока; Е напряженность электрического поля; **Σ** — коэффициент поверхностного натяжения; φ_1 , φ_2 , φ_3 — функции, учитывающие неодиночность пузырька в потоке, равные $\varphi_1 = (1.1\alpha_2^{1/3} - \alpha_2)/\alpha_1, \ \varphi_2 = (1.5\alpha_2^{1/3} - 1.3\alpha_2)/\alpha_1,$ $\varphi_3 = \alpha_2 / \alpha_1$ [4]; коэффициент 2/3 в уравнении (4) обусловлен осреднением электромагнитной силы от вихревых токов по поверхности сферы [5].

Осредним дифференциальный закон Ома по представительному объему пузырькового потока, учитывая, что электропроводная фаза занимает α_1 часть объема смеси V, а электропроводность σ_2^0 дисперсной фазы равна нулю

$$\mathbf{j}_{1} = \langle \mathbf{j}_{1}^{0} \rangle = \frac{1}{V} \int_{V} \mathbf{j}_{1}^{0} dV = \frac{\alpha_{1}}{V_{1}} \int_{V_{1}} \sigma_{1}^{0} \mathbf{E} dV + \frac{\alpha_{1}}{V_{1}} \int_{V_{1}} \sigma_{1}^{0} \mathbf{v}_{1} \times \mathbf{B} dV$$
$$= \alpha_{1} \sigma_{1}^{0} \langle \mathbf{E} \rangle + \alpha_{1} \sigma_{1}^{0} \langle \mathbf{v}_{1} \rangle \times \mathbf{B} = \sigma_{\text{eff}} \left(\langle \mathbf{E} \rangle + \frac{\alpha_{1}}{\sigma_{*}} \langle \mathbf{v}_{1} \rangle \times \mathbf{B} \right),$$
(12)

где $\sigma_{\rm eff} = \alpha_1 \sigma_1^0 + \alpha_2 \sigma_2^0$ — эффективная электропроводность пузырьковой структуры; $\sigma_* = \sigma_{\rm eff} / \sigma_1^0$ — коэффициент эффективной проводимости, равный [6],

$$\sigma_* = \left(1 + \frac{3}{2} \frac{(1 - \sigma_2^0 / \sigma_1^0) \alpha_2}{1 - \left(1 - \frac{\sigma_2^0}{\sigma_1^0}\right) \sqrt[3]{\frac{9\pi}{16} \alpha_2^2}}\right)^{-1}$$
$$= \left(1 + \frac{3}{2} \frac{\alpha_2}{1 - \sqrt[3]{\frac{9\pi}{16} \alpha_2^2}}\right)_{\sigma_2^0 = 0}^{-1}.$$
(13)

Силы межфазного взаимодействия из-за скорости неравновесности фаз даются выражениями [4]:

$$\mathbf{f}_m = \frac{2\pi}{3} \rho_1^0 \left(\frac{d_1 \mathbf{v}_1}{dt} - \frac{d_2 \mathbf{v}_2}{dt} - (\mathbf{v}_2 - \mathbf{v}_1) \frac{3}{a} \frac{d_2 a}{dt} \right)$$
(14)

- сила инерции присоединенных масс,

$$\mathbf{f}_{\mu} = \pi a^2 C_D \rho_1^0 \, \frac{(\mathbf{v}_1 - \mathbf{v}_2)^2}{2} \, \frac{\mathbf{v}_1 - \mathbf{v}_2}{|\mathbf{v}_1 - \mathbf{v}_2|} \tag{15}$$

— сила сопротивления обтеканию пузырька, где

$$C_D = C\left(1 + \frac{9}{16}\operatorname{Ha}_a\right) \ [7],$$

а $C = C(\text{Re}_{12})$ равен [4,8]:

$$C = \begin{cases} \frac{24}{Re_{12}} \frac{1+(1/6)\sqrt[3]{Re_{12}}}{1-\alpha_2}, & Re_{12} < 15, \\ \frac{68}{Re_{12}(1-\alpha_2)}, & 15 < Re_{12} \le 500, \\ \left(\frac{1845}{Re_{12}} + \frac{192}{\sqrt{Re_{12}}} + 5.07\right) \frac{1}{1-\alpha_2}, & Re_{12} > 500. \end{cases}$$

Здесь Re₁₂ = $2a|\mathbf{v}_1 - \mathbf{v}_2|/\nu_1^0$, Ha_a = $aB\sqrt{\sigma_1^0/\mu_1^0}$. На пузырек в скрещенных электрическом и магнитном полях действует сила, обусловленная неоднородностью растекания тока вблизи сферы, равная [9],

$$\mathbf{f}_e = -rac{m}{2}\,\mathbf{j}_1^0 imes \mathbf{B}\,rac{4}{3}\,\pi a^3, \quad m = rac{\sigma_2^0 - \sigma_1^0}{\sigma_2^0 + 2\sigma_1^0} = rac{1}{2}igg|_{\sigma_2^0 = 0}.$$

Следует отметить, что выписанная система уравнений не замкнута, так как не указаны тепловые потоки на межфазной границе q_{σ_i} , приведенная плотность теплового потока \mathbf{q}_{1*} , касательные компоненты тензора напряжений σ_{1*}^{kl} , а также диссипативная функция.

В случае одномерного установившегося течения недостающие соотношения можно восполнить эмпирическими зависимостями и тогда систему уравнений удается привести к замкнутому виду.

2. Одномерная модель течения сжимаемого пузырькового потока

Для установившегося течения осредним выписанную систему уравнений методами гидравлической теории [10], считая все параметры однородными в сечениях, и преобразуем полученные уравнения.

Из уравнений неразрывности фаз, состояния газа и закона сохранения массы газа в пузырьке для приведенного газосодержания $\alpha_* = \alpha_2(\xi)/\alpha_2(0)$ в потоке следует зависимость

$$\alpha_*(\xi) = \frac{v_2(0)}{v_2(x)} \frac{T_{2*}}{p_{2*}},\tag{16}$$

где $\xi = x/L$ — приведенная продольная координата, а приведенные температура и давление дисперсной фазы определены выражениями

$$T_{2*} = T_2(\xi)/T_2(0), \quad p_{2*} = p_2(\xi)/p_2(0).$$

Условие совместного деформирования фаз (3) приводится к виду

$$\frac{da_*}{d\xi} = \Pi_1 \Pi_2 \frac{1 - \alpha_2(\xi)}{S(\xi)} w_*(\xi), \tag{17}$$

где $a_* = a(\xi)/a(0)$ — приведенный радиус пузырька, а числа задачи Π_1 , Π_2 , характерная скорость на радиальных мелкомасштабных перемещениях w_0 и коэффициент проскальзывания фаз *S* определены выражениями

$$\Pi_1 = rac{w_0}{v_1(0)}, \quad \Pi_2 = rac{L}{lpha_1(0)a_0}, \ w_0 = \sqrt{rac{p_2(0)}{
ho_1^0}}, \quad w_* = rac{w_a(\xi)}{w_0}, \quad S = rac{v_2(\xi)}{v_1(\xi)}.$$

Обобщенное уравнение Рэлея-Ламба (4) в приведенных переменных принимает вид

$$\frac{dw_*}{d\xi} = \frac{\alpha_1(\xi)\Pi_2}{(1-\varphi_1)S(\xi)} \left[\Pi_1 \left(p_{2*} - \frac{p_1(0)}{p_2(0)} p_{1*} \right) - \frac{2}{We_1} \frac{1}{\Pi_1 a_*(\xi)} - \frac{4}{Re_1} \frac{D}{a_0} \frac{w_*(\xi)}{a_*(\xi)} - (1-\varphi_2)\frac{3}{2}\Pi_1 w_*^2 - \frac{2}{3}\sigma_*(\xi) \frac{Ha^2}{Re_1} \frac{a_0}{D} a_*(\xi)w_*(\xi) + \frac{1-\varphi_3}{(1-\alpha_2(\xi))^2} \frac{\alpha_1^2(0)}{4\Pi_1} (1-S(\xi))^2 \right]$$
(18)

где числа Вебера, Рейнольдса и Гартмана определены по условиям на входе в МГД канал

We₁ =
$$\frac{\rho_1^0 v_1^2(0)}{\Sigma/a_0}$$
, Re₁ = $\frac{\rho_1^0 v_1(0)D}{\mu_1^0}$,
Ha = $BD \sqrt{\frac{\sigma_1^0}{\mu_1^0}}$, $D = 4 \frac{bl}{b+l}$,

D — гидравлический диаметр канала.

В уравнении притока теплоты дисперсной фазы (8) опишем тепловые потоки из несущей фазы к межфазной границе и от нее к дисперсной фазе законом теплоотдачи Ньютона—Рихмана, в котором коэффициенты теплоотдачи β_i найдем через числа Нуссельта. Для плавно изменяющихся течений критериальные уравнения теплоотдачи в фазах даются выражениями [4]

$$Nu_{2} \approx 2, \quad Nu_{1} = \begin{cases} 2 + \frac{9}{16} \operatorname{Pe}_{1v} + \frac{9}{16} \operatorname{Pe}_{1v}^{2}, & \operatorname{Re}_{1v} < 1, \\ 2 + \frac{3}{5} \operatorname{Pr}_{1v}^{1/3} \operatorname{Re}_{1v}^{1/2}, & \operatorname{Re}_{1v} > 1, \end{cases}$$

в которых числа Пекле, Рейнольдса и Прандтля определены равенствами

$$\begin{aligned} \operatorname{Re}_{1v}(a_*,S) &= \frac{2a_0\rho_1^0 v_1(0)\alpha_1(0)a_*(1-S)}{\mu_1^0\alpha_1}, \\ \operatorname{Pe}_{1v}(a_*,S) &= \frac{2a_0v_1(0)\alpha_1(0)a_*(1-S)}{a_1^{(T)}}, \\ a_1^{(T)} &= \frac{\lambda_1^0}{\rho_1^0c_1}, \quad \operatorname{Pr}_{1v} = \frac{\operatorname{Pe}_{1v}}{\operatorname{Re}_{1v}}, \end{aligned}$$

где λ_i и c_i — теплопроводность и удельная массовая теплоемкость *i*-й фазы.

Уравнение энергии (8) при таком описании межфазного теплообмена приводится к уравнению для давления газа в пузырьке

$$\frac{dp_{2*}}{d\xi} = 3 \frac{\alpha_1(\xi)\Pi_1\Pi_2}{a_*^2 S(\xi)} \left(-\gamma w_*(\xi) a_*(\xi) + \frac{1}{2} \frac{\mathrm{Nu}_2}{\Pi_1 \mathrm{Pe}_a} \frac{\alpha_1(0)}{\alpha_1(\xi)} T_{1*} \frac{1 + \frac{\lambda_2^0}{\lambda_1^0} \frac{\mathrm{Nu}_2}{\mathrm{Nu}_1} \frac{T_{2*}}{T_1*} \frac{T_2(0)}{T_1(0)}}{1 + \frac{\lambda_2^0}{\lambda_1^0} \frac{\mathrm{Nu}_2}{\mathrm{Nu}_1}} \right).$$
(19)

Для преобразования уравнения энергии несущей фазы (7) примем следующие допущения: стенки канала считаются адиабатическими, перенос теплоты вдоль потока за счет механизма теплопроводности много меньше конвективного теплопереноса. В правой части уравнения (7) учитываем вязкую диссипацию энергии в мелкомасштабном радиальном и поступательном перемещениях [4]. Работу вязких сил в макроскопическом поступательном перемещении учтем по гомогенной модели пузырькового потока через коэффициент гидравлического трения с учетом присутствия магнитного поля по формулам [11,12]. Джоулеву диссипацию от вихревых токов вокруг пузырьков рассчитаем по формулам [5], а джоулеву диссипацию от кондуктивных токов найдем, считая электроды канала эквипотенциальными поверхностями. Для такого канала из уравнения неразрывности несущей фазы следует, что произведение $\alpha_1(\xi)v_1(\xi) = \text{сопst}$ вдоль потока, тогда в канале с постоянным напряжением $U(\xi) = \text{const}$ отношение электродвижущей силы индукции $E = \alpha_1 v_1 B l$ к напряжению на электродах U = El также будет $E/U = \alpha_1 v_1 B/E = \text{const.}$ Представим эту постоянную в виде $(1 - \theta)\sigma_*(0)$, тогда закон Ома для эффективной плотности электрического тока в пузырьковой среде запишется так:

$$j_1(\xi) = \sigma_{\text{eff}}(\xi) \left(E - \frac{\alpha_1 v_1 B}{\sigma_*(\xi)} \right)$$
$$= \frac{1}{1 - \theta} \left(\theta + \frac{\sigma_*(\xi)}{\sigma_*(0)} - 1 \right) \sigma_1^0 \alpha_1 v_1 B$$

Следует отметить, что сжатие пузырьков вдоль канала сопровождается снижением объемного газосодержания в потоке и ростом эффективной электропроводности, что в канале постоянного напряжения приводит к увеличению плотности электрического тока и плотности электромагнитной силы по потоку.

Чтобы выяснить физический смысл введенного параметра θ , предположим, что поток является однофазным, тогда $\alpha_1 = 1$ и $\sigma_*(\xi)/\sigma_*(0) = 1$, $\xi \in [0; 1]$. Закон Ома в этих условиях имеет вид

$$j_1 = \frac{\theta}{1-\theta} \,\sigma_1^0 v_1 B.$$

В этой формуле параметр θ является величиной, дополняющей электрический КПД (коэффициент полезного действия) канала $\eta_e = v_1 B l/U$ до единицы. В дальнейшем параметр θ считается заданным. Закон Ома в приведенной форме позволяет рассчитать джоулеву диссипацию от кондуктивных токов $q_{jv} = j_1^2/\sigma_{\text{eff}}$. Уравнение энергии (7) с учетом сделанных замечаний сводится к уравнению для температуры несущей фазы

$$\begin{aligned} \frac{dT_{1*}}{d\xi} &= \frac{\Pi_1 \Pi_2}{\operatorname{Re}_a} \operatorname{Ec}_1 \left(12\Pi_1^2 \alpha_1 \alpha_2 \left(\frac{w_*}{a_*} \right)^2 + 2\Pi_1 \alpha_2 \left(\frac{a_0}{L} \right)^2 \operatorname{Ha}^2 \right. \\ &+ \left(\frac{Q+f_*}{1-\theta} \right)^2 \frac{L}{D} \frac{\operatorname{Ha}^2}{\operatorname{Re}_1} \frac{\operatorname{Re}_a}{\Pi_1 \Pi_2} \frac{\alpha_1^2(0)}{\sigma_*(\xi)} \alpha_1 \\ &+ \frac{3}{8} C_D \frac{\operatorname{Re}_a}{\Pi_1} \alpha_1^3(0) \frac{\alpha_2(1-S)^3}{a_* \alpha_1^3} + 9 \frac{\alpha_1^2(0)}{\Pi_1} \frac{\alpha_2}{\alpha_1^2} \left(\frac{1-S}{a_*} \right)^2 \\ &- \frac{3}{2} \frac{\operatorname{Re}_a}{\operatorname{Pe}_a} \frac{\operatorname{Nu}_1}{\Pi_1 \operatorname{Ec}_1} \alpha_2 \frac{T_{1*}}{a_*} \left(1 - \frac{1 + \frac{\lambda_0^2}{\lambda_1^0} \frac{\operatorname{Nu}_2}{\operatorname{Nu}_1} \frac{T_{2*}}{T_{1*}} \frac{T_2(0)}{\operatorname{Nu}_1}}{1 + \frac{\lambda_0^2}{\lambda_1^0} \frac{\operatorname{Nu}_2}{\operatorname{Nu}_1}} \right) \right), \end{aligned}$$

числа Эккерта, Рейнольдса Re_a и Пекле Pe_a определены выражениями

Ec₁ =
$$\frac{v_1^2(0)}{c_1 T_1(0)}$$
, Re_a = $\frac{\rho_1^0 a_0 v_1(0)}{\mu_1^0}$,
Pe_a = $\frac{a_0 v_1(0)}{a_2^{(T)}}$, $a_2^{(T)} = \frac{\lambda_2^0}{\rho_2^0(0) c_{2v}}$.

Температура дисперсной фазы T_{2*} однозначно определяется давлением газа в пузырьке p_{2*} и радиусом a_* по уравнению состояния

$$T_{2*} = p_{2*}(\xi)a_*^3(\xi). \tag{21}$$

Журнал технической физики, 2005, том 75, вып. 2

Для описания движения пузырькового потока удобнее вместо уравнений импульсов фаз использовать уравнение импульсов для смеси в целом (получается сложением уравнений (5) и (6)) и уравнение импульсов дисперсной фазы (6). После осреднения этих уравнений методами гидравлической теории с учетом выражения для сферической составляющей приведенного тензора напряжений для одномерного течения [4], пренебрежением всех массовых сил, связанных с плотностью газовой фазы, указанные уравнения сводятся к системе относительно коэффициента проскальзывания фаз и давления в несущем потоке

$$A_{1} \frac{dS}{d\xi} + A_{2} \frac{dp_{1*}}{d\xi} = -C_{1} \frac{dw_{*}}{d\xi} - C_{2} \frac{dp_{2*}}{d\xi}$$
$$-C_{3} + C_{4} - C_{5} + C_{6},$$
$$B_{1} \frac{dS}{d\xi} + B_{2} \frac{dp_{1*}}{d\xi} = D_{1} \frac{dw_{*}}{d\xi} - D_{2} \frac{dp_{2*}}{d\xi}$$
$$-D_{3} + D_{4} + D_{5} + D_{6}.$$

Обозначим правые части этих уравнений через F_1 и F_2 соответственно. Считая определитель системы $\Delta = A_1B_2 - A_2B_1 \neq 0$, разрешим систему относительно неизвестных производных, тогда получим

$$\frac{dS}{d\xi} = \frac{1}{\Delta} (F_1 B_2 - F_2 A_2), \quad \frac{dp_{1*}}{d\xi} = \frac{1}{\Delta} (F_2 A_1 - F_1 B_1).$$
(22), (23)

Коэффициенты и функции в правых частях этих уравнений определены выражениями

$$\begin{split} A_{1} &= -\frac{1}{2} \frac{\alpha_{2}}{\alpha_{1}} \left(1 - S(\xi) \right) - \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{1}{\left(1 + \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{s}{a_{*}^{3}} \right)^{2}} \frac{\mathcal{Q}_{1}}{a_{*}^{3}}, \\ A_{2} &= \frac{\alpha_{1}^{2}(\xi)}{\alpha_{1}^{2}(0)} \operatorname{Eu}_{1}, \quad C_{1} = 2 \frac{\alpha_{2}\alpha_{1}}{\alpha_{1}^{2}(0)} \Pi_{1}^{2}w_{*}, \quad C_{2} = \frac{\alpha_{2}\alpha_{1}}{\alpha_{1}^{2}(0)} \Pi_{1}^{2}, \\ C_{3} &= \Pi_{1}\Pi_{2} \frac{w_{*}}{S} \alpha_{1} \left(3 \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{\mathcal{Q}_{1}}{\left(1 + \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{s}{a_{*}^{3}} \right)^{2}} \frac{S}{a_{*}^{4}} \right. \\ &\quad + \frac{2}{\operatorname{We}_{1}} \frac{\alpha_{2}\alpha_{1}}{\alpha_{1}^{2}(0)} \frac{1}{a_{*}^{2}} \right), \\ C_{4} &= \frac{\theta + f_{*}}{1 - \theta} \frac{\alpha_{1}^{3}}{\alpha_{1}^{2}(0)} \frac{L}{D} \frac{\operatorname{Ha}^{2}}{\operatorname{Re}_{1}}, \\ C_{5} &= \alpha_{1} \frac{\lambda_{m}}{2} \frac{L}{D}, \qquad C_{6} &= \frac{\alpha_{1}^{2}}{\alpha_{1}^{2}(0)} \frac{g\delta L}{v_{1}^{2}(0)}, \\ \mathcal{Q}_{1} &= \frac{1}{\alpha_{1}} \left(1 + \frac{1}{2} \frac{\alpha_{2}}{\alpha_{1}} \left(1 - S \right)^{2} \right) + \frac{\alpha_{1}}{\alpha_{1}^{2}(0)} \left(\Pi_{1}^{2}p_{2*} - Eu_{1}p_{1*} \right) \\ &\quad - \frac{2}{\operatorname{We}_{1}} \frac{1}{a_{*}} + \Pi_{1}^{2}w_{*}^{2} \right) + \frac{1}{4} \frac{(1 - S)^{2}}{\alpha_{1}}, \end{split}$$

$$B_{1} = \frac{1}{2} \frac{S - \alpha_{2}}{\alpha_{1}} - \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{Q_{2}}{\left(1 + \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{S}{a_{*}^{3}}\right)^{2}} \frac{1}{a_{*}^{3}},$$

$$B_{2} = \frac{\alpha_{1}^{2}}{\alpha_{1}^{2}(0)} \operatorname{Eu}_{1}, \qquad D_{2} = \frac{\alpha_{2}\alpha_{1}}{\alpha_{1}^{2}(0)} \Pi_{1}^{2},$$

$$D_{1} = 2 \frac{\alpha_{2}\alpha_{1}}{\alpha_{1}^{2}(0)} \Pi_{1}^{2} w_{*},$$

$$D_{3} = \Pi_{1}\Pi_{2} \frac{w_{*}}{S} \alpha_{1} \left(3 \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{Q_{2}}{\left(1 + \frac{\alpha_{1}(0)}{\alpha_{2}(0)S_{0}} \frac{S}{a_{*}^{3}}\right)^{2}} \frac{S}{a_{*}^{4}}$$

$$+ \frac{2}{\operatorname{We}_{1}} \frac{\alpha_{1}^{2}}{\alpha_{1}^{2}(0)} \frac{1}{a_{*}}\right),$$

$$D_{4} = \frac{1}{4} \frac{\theta + f_{*}}{1 - \theta} \frac{\alpha_{1}}{\alpha_{1}(0)} \frac{L}{D} \frac{\operatorname{Ha}^{2}}{\operatorname{Re}_{1}}, \qquad D_{5} = \frac{3}{8} C_{D} \frac{L}{a_{0}} \frac{(1 - S)^{2}}{a_{*}}$$

$$D_{6} = \frac{3}{2} \alpha_{1}^{2} \Pi_{1} \Pi_{2} \frac{w_{*}}{a_{*}} (1 - S) - \frac{\lambda_{m}}{2} \frac{L}{D},$$

$$Q_{2} = \frac{\alpha_{1}}{\alpha_{1}} \left(\Pi_{1}^{2} p_{2*} - \operatorname{Eu}_{1} p_{1*} - \frac{2}{\alpha_{1}} \frac{1}{\alpha_{1}} + \Pi_{1}^{2} w_{*}^{2}\right)$$

$$\begin{array}{l} \alpha_1^2(0) \left(\begin{array}{c} 1 & 2 \\ 1 & 2 \end{array} \right)^2 \\ + \frac{1}{4} \frac{(1-S)^2}{\alpha_1} + \frac{1}{2\alpha_1} \left(\frac{\alpha_2}{\alpha_1} \left(1-S \right)^2 - (1-S^2) \right) \end{array}$$

где $\delta = \cos(\mathbf{g}, \mathbf{i}).$

Для рассматриваемого горизонтального потока $\delta = 0$, число Эйлера определено по условиям на входе в канал $Eu_1 = p_1(0)/\rho_1^0 v_1^2(0).$

Таким образом, получаем нормальную систему дифференциальных уравнений (17)–(20), (22), (23) и двух зависимостей (16) и (21) с неизвестными: a_* — радиус пузырька; w_* — радиальная скорость; p_{1*} , p_{2*} давления в фазах; T_{1*} , T_{2*} — температуры в фазах; S коэффициент проскальзывания фаз; $\alpha_* = \alpha_2(\xi)/\alpha_2(0)$ приведенное газосодержание.

Для неравновесного по скоростям и температурам на входе в канал пузырькового потока начальные условия для искомых функций зададим в виде

$$\xi = 0:$$
 $S = 1,$ $a_* = 1,$ $w_* = 0,$ $, p_{1*} = 1,$
 $p_{2*} = 1,$ $\alpha_* = 1,$ $T_{1*} = T_{2*} = 1,$ $T_1(0) = T_2(0).$
(24)

3. Численное исследование течения сжимаемого пузырькового потока

Система уравнений с начальными условиями (24) интегрировалась численно методом Рунге-Кутты четвертого порядка точности. Пространственный шаг $\delta\xi$ подбирался так, что при его уменьшении в два раза результаты численного интегрирования не изменялись бы. Задачей исследования было выяснение влияния параметров потока и электромагнитного поля на процесс

сжатия газа в пузырьках. Для этого в расчетах варьировались индукция магнитного поля *B*, нагрузочный параметр θ , скорость несущего потока на входе в МГД канал $v_1(0)$, начальный радиус пузырька a_0 и начальное газосодержание $\alpha_2(0)$ на входе в канал неизменной геометрии l = 50, b = 10 mm, L = 1 m. Несущей фазой в расчетах принимался галлий, а дисперсной — азот.

На рис. 1–3 приведены решения системы уравнений пузырькового потока для канала с постоянным напряжением при следующих параметрах: газосодержание на входе в канал $\alpha_2(0) = 20\%$, начальный радиус пузырька $a_0 = 0.25$ mm, индукция магнитного поля B = 0.25 T, скорость несущего потока на входе $v_1(0) = 3$ m/s, параметр нагрузки $\theta = 0.3$.

На рис. 1 приведены графики искомых функций по длине МГД канала: кривая $1 - S(\xi)$, кривая $2 - a_*(\xi)$,

Рис. 1. Графики приведенных параметров пузырькового потока по длине МГД канала.

Рис. 2. Зависимость приведенной радиальной скорости межфазной границы от длины (начальный участок канала).

Журнал технической физики, 2005, том 75, вып. 2

Рис. 3. Распределение приведенной температуры в фазах по длине МГД канала.

кривая $3 - \alpha_*(\xi)$, кривая $4 - p_{1*}$, кривая $5 - p_{2*}$; на рис. 2 - график функции $w_*(\xi)$ на осциллирующей фазе процесса; на рис. 3 - графики температур: кривая $1 - T_{1*}(\xi)$, кривая $2 - T_{2*}(\xi)$.

Кривые на рис. 1 показывают, что продвижение пузырьков газа по потоку сопровождается их отставанием от несущей фазы, причем чем меньше радиус пузырьков, тем незначительнее коэффициент проскальзывания фаз отличается от единицы (≈ 0.9 на кривой 1). Приведенный радиус пузырька уменьшается по потоку (кривая 2), что говорит о сжатии газа в пузырьке. Приведенное газосодержание в потоке при входе в канал сначала нарастает и превышает единицу, а затем по мере сжатия пузырьков уменьшается, достигая на выходе значения 0.5. Повышение приведенного газосодержания при входе потока в МГД канал объясняется торможением дисперсной фазы и увеличением вследствие этого их местной концентрации (кривая 3). Давления жидкой и газовой фаз растут по длине канала, причем давление в жидкой фазе (кривая 4) всюду больше давления в газовой (кривая 5).

Разность давлений в фазах приводит к радиальному мелкомасштабному течению жидкости вокруг пузырька со скоростью $w_*(\xi)$ на межфазной границе, причем при входе в канал радиальная скорость осциллирует (рис. 2), но под действием магнитного поля колебания быстро затухают и дальнейшее сжатие пузырьков происходит без характерных пульсаций радиуса и радиальной скорости. Температура в несущей фазе (кривая 1 на рис. 3) незначительно возрастает по длине МГД канала, так что несущая фаза ведет себя как термостат, аккумулируя теплоту, выделяющуюся при сжатии дисперсной фазы; температура дисперсной фазы (кривая 2 на рис. 3) вначале возрастает, а затем начинает убывать, оставаясь всюду больше температуры жидкости. Ее снижение можно объяснить интенсивным отводом теплоты с уменьшением радиуса пузырька при сжатии из-за возрастания коэффициента теплоотдачи.

На рис. 4 показаны зависимости давления в несущей фазе от длины канала ξ при различных начальных

газосодержаниях: кривая $1 - \alpha_2(0) = 1$, кривая 2 - 5, кривая 3 - 10, кривая 4 - 20%. Остальные параметры составляли: $a_0 = 0.25$ mm, $v_1(0) = 2m/s$, $\theta = 0.2$, B = 0.25 T. Кривые показывают, что при малых значениях газосодержания в потоке зависимость $p_{1*}(\xi)$ вырождается в линейную, что характерно для однофазных потоков. С увеличением газосодержания зависимость $p_{1*}(\xi)$ становится нелинейной, что говорит о нарастающем влиянии двухфазности на течение потока. В частности, происходит увеличение плотности электрического тока по длине канала: из-за сжатия пузырьков снижается объемное содержание в потоке газовой фазы, увеличивается эффективная проводимость потока и возрастает плотность электрического тока.

Влияние начального радиуса пузырька a_0 на характер сжатия поясняет рис. 5, на котором приведены зависимости радиуса пузырька от длины ξ при различных a_0 : кривая 1 - 1, кривая 2 - 0.8, кривая 3 - 1

Рис. 4. Зависимость приведенного давления в несущем потоке от длины при различных содержаниях газовой фазы.

Рис. 5. Изменение приведенного радиуса пузырька вдоль канала.

0.5, кривая 4 — 0.1 mm. Индукция магнитного поля B = 0.3 T, нагрузочный параметр $\theta = 0.1$, $\alpha_2(0) = 30\%$, $v_1(0) = 2 \,\mathrm{m/s}$. Кривые показывают, что более мелкие пузырьки подвергаются большему сжатию по сравнению с крупными. Причиной этому является, с одной стороны, большая плотность электрического тока в потоке с мелкими пузырьками при одинаковом параметре θ . Действительно, мелкие пузырьки перемещаются в МГД канале с большим коэффициентом проскальзывания фаз S, что приводит к меньшему локальному газосодержанию по сравнению с крупными пузырьками и, следовательно, к большей электропроводности пузырькового потока и плотности электрического тока, что и обусловливает течение мелкодисперсного пузырькового потока в поле большого градиента электромагнитного давления. С другой стороны, мелкие пузырьки испытывают большее лапласово давление $2\Sigma/a$ по сравнению с крупными. Следует также отметить, что с увеличением начального радиуса пузырька зависимость $a_*(\xi)$ становится осциллирующей. Увеличенный в масштабе график этой зависимости для кривой 2 показан в нижней части рисунка. Вместе с колебаниями объема пузырька начинают испытывать осцилляции и другие параметры потока, в частности коэффициент проскальзывания фаз, приведенное газосодержание и, как следствие, плотность электрического тока, причем увеличение индукции магнитного поля эффективно гасит эти колебания на начальном участке МГД канала. К возбуждению колебаний параметров потока приводит и увеличение скорости несущего потока. Так, переход на скорость $v_1(0) = 3 \text{ m/s}$ для кривой 3 приводит к незатухающим колебаниям параметров на всей длине МГД канала.

На рис. 6 показаны зависимости приведенного газосодержания по длине МГД канала при различных параметрах нагрузки θ : кривая 1 - 0.1, кривая 2 - 0.2, кривая 3 - 0.3. Остальные величины были: B = 0.25 T, $\alpha_2(0) = 20\%$, $v_1(0) = 2$ m/s, $a_0 = 0.5$ mm. Кривые показывают, что увеличение параметра θ (увеличение плот-

Рис. 6. Графики приведенного газосодержания при различных параметрах нагрузки.

Рис. 7. Распределение приведенной плотности электромагнитной силы в пузырьковом потоке в МГД канале при U = const.

ности электромагнитной силы) ведет к возбуждению незатухающих колебаний пузырьков.

На рис. 7 показана зависимость приведенной плотности электромагнитной силы $F_* = f_1(\xi)/f_1(0)$ по длине МГД канала при B = 0.3 Т, $\alpha_2(0) = 30\%$, $\theta = 0.1$, $v_1(0) = 2$ m/s, $a_0 = 0.8$ mm. Кривая указывает на осциллирующий характер электромагнитной силы, что вызвано в первую очередь колебаниями объема пузырьков.

Оценка эффективности сжатия газа в МГД компрессоре

Решения системы уравнений пузырькового потока позволяют произвести расчет энергетических характеристик МГД компрессора. Действительно, при найденной зависимости $\alpha_*(\xi)$ становятся известными скорость несущей фазы

$$v_1(\xi) = v_1(0) \frac{1 - \alpha_2(0)}{1 - \alpha_*(\xi)\alpha_2(0)}$$

плотность электрического тока и плотность электромагнитной силы

$$j_1(\xi) = \frac{\theta + f_*}{1 - \theta} \sigma_1^0 \alpha_1(\xi) v_1(\xi) B,$$

$$f_1(\xi) = j_1(\xi)B, \quad f_* = \sigma_*(\xi)/\sigma_*(0) - 1.$$

Мощность электромагнитной силы в активной зоне канала равна

$$egin{aligned} N_{EM} &= \int\limits_{V_1} (\mathbf{j}_1^0 imes \mathbf{B}) \cdot \mathbf{v}_1 dV \ &= blL rac{ heta}{1- heta} \, \sigma_1 (lpha_1(0) v_1(0) B)^2 \int\limits_{0}^{1} rac{1+f_*/ heta}{1-lpha_2(\xi)} \, d\xi, \end{aligned}$$

электрический ток в активной зоне канала определится интегралом

$$J = \int_{S_E} j_1 dS$$
$$= bL \frac{\theta}{1-\theta} \sigma_1 \alpha_1(0) v_1(0) v_1(0) B \int_0^1 \left(1 + \frac{f_*(\xi)}{\theta}\right) d\xi$$

Электрический ток через концевые зоны канала подсчитывается через геометрическую проводимость продольного эффекта *C* [10]

$$J_{k} = bL \frac{C}{1-\theta} \alpha_{1}(0) v_{1}(0)B \int_{0}^{1} (1+f_{*}(\xi)) d\xi,$$

а напряжение на электродах — через параметр нагрузки θ

$$U=rac{1}{1- heta}\,rac{lpha_1(0)v_1(0)Bl}{\sigma_*(0)}.$$

Джоулева диссипация в концевых и активной зонах МГД канала составит

$$N_{k} = blL \frac{C}{(1-\theta)^{2}} \frac{\left(\alpha_{1}(0)v_{1}(0)B\right)^{2}}{\sigma_{*}(0)} \int_{0}^{1} \left(1 + f_{*}(\xi)\right) d\xi,$$
$$N_{J} = blL \left(\frac{\theta}{1-\theta}\right)^{2} \left(\alpha_{1}(0)v_{1}(0)B\right)^{2} \int_{0}^{1} \frac{\left(1 + f_{*}(\xi)/\theta\right)^{2}}{1 + f_{*}(\xi)} d\xi$$

Электрическая мощность в активной зоне канала $N_e^0 = N_{EM} + N_J$, а подведенная к МГД каналу электрическая мощность равна $N_e = N_e^0 + N_k$.

Массовые расходы фаз рассчитываются по условиям на входе в МГД канал

$$\dot{m}_1 = \rho_1^0 \alpha_1(0) v_1(0) bl,$$

$$\dot{m}_2 = \frac{p_2(0)}{R_\mu T_2(0)} \alpha_2(0) S_0 v_1(0) bl$$

Удельная работа сил давления в расширенной термодинамической системе (работа сжатия и проталкивания)

$$l_{n} = \int_{p_{2}(0)}^{p_{2}(L)} \vartheta(p) dp = R_{\mu} T_{2}(0) \int_{1}^{p_{2*}} T_{2*}(\xi) \frac{dp_{2*}}{p_{2*}}$$
$$= R_{\mu} T_{2}(0) \int_{0}^{1} T_{2*}(\xi) \frac{dp_{2*}}{d\xi} \frac{d\xi}{p_{2*}(\xi)},$$

где $\vartheta(p)$ — удельный объем газа, температура T_{2*} известна из решения системы уравнений пузырькового потока.

Полезная мощность, переданная МГД компрессором газовому потоку, $N_2^0 = \dot{m}_2 l_n$, а полезная мощность несущего потока

$$N_1^0 = \dot{m}_1 \left[\frac{p_1(0)}{\rho_1^0} \left(p_{1*}(1) - 1 \right) + \frac{1}{2} v_1^2(0) \left(\left(\frac{\alpha_1(0)}{\alpha_1(1)} \right)^2 - 1 - \Delta p_{k*} \right) \right],$$

где Δp_{k*} — приведенные к динамическому давлению несущего потока на входе в канал потери давления в концевых зонах магнитного поля из-за поперечного эффекта.

Общая полезная мощность МГД компрессора составит $N = N_1^0 + N_2^0$, а затраченная N_e . Отношение этих мощностей дает полный КПД компрессора

$$\eta_0 = \frac{N}{N_e} = \left(\frac{N_2^0}{N_{EM}} + \frac{N_1^0}{N_{EM}}\right) \frac{N_{EM}}{N_e^0} \frac{N_e^0}{N_e}$$
$$= (\eta_{i2} + \eta_{i1})\eta_e \eta_k = \eta_i \eta_e \eta_k.$$

Здесь множитель η_i , равный отношению полезной мощности к электромагнитной, может быть назван внутренним КПД, а η_{i1} и η_{i2} — внутренние КПД по жидкой и газовой фазам соответственно, η_e — электрический КПД, η_k — "концевой" КПД. КПД собственно МГД компрессора равен $\eta_e = \eta_{i2}\eta_e\eta_k$.

Приведем результаты расчета МГД компрессора с постоянным напряжением при следующих параметрах: $b = 10 \text{ mm}, l = 50 \text{ mm}, L = 1000 \text{ mm}, B = 0.3 \text{ T}, \theta = 0.1,$ $a_0 = 0.8 \text{ mm}, v_1(0) = 2 \text{ m/s}, \alpha_2(0) = 30\%, C = 0.022,$ $p_1(0) = 10^5$ Ра. Удельная работа $l_n = 9.8 \cdot 10^4$ J/kg, массовый расход азота $\dot{m}_2 = 0.349$ g/s, полезная мощность по газовой фазе $N_2^0 = 34$ W, полезная мощность по жидкой фазе $N_1^0 = 12.8 \text{ W}$, общая полезная мощность компрессора N = 47 W, подведенная электрическая мощность $N_e = 85$ W, внутренние КПД $\eta_i = 0.83$, $\eta_{i1} = 0.225, \ \eta_{i2} = 0.6,$ электрический КПД $\eta_e = 0.853,$ "концевой" КПД $\eta_k = 0.783$, общий КПД по жидкой фазе $\eta_{o1} = \eta_{i1}\eta_e\eta_k = 0.15$, общий КПД по газовой фазе $\eta_{o2} = \eta_{i2}\eta_e\eta_k = 0.41$ и общий КПД МГД компрессора $\eta_o = \eta_i \eta_e \eta_k = 0.55$. Отметим, что с увеличением параметра нагрузки в при неизменных других параметрах МГД компрессора возрастает степень повышения давления, но снижается КПД. Так, при $\theta = 0.3 \ p_{1*}(1) = 5.83$, а при $\theta = 0.4$ степень повышения давления равна $p_{1*}(1) = 9.21.$

Для каждой совокупности параметров и геометрии МГД канала существует предельно допустимое значение параметра нагрузки θ_{max} , при котором электромагнитные выталкивающие силы начинают превышать силы сопротивления обтеканию сферы уже на входе в канал, течение пузырькового потока при этом становится невозможным — возникает кризис течения. Другой тип кризиса, как показало численное исследование, реализуется в канале с U = const, когда пузырьки задерживаются нарастающей электромагнитной силой выталкивания

внутри канала, вследствие чего местное газосодержание достигает предельно допустимого значения и пузырьковый поток теряет свою устойчивость.

Рассмотренный способ сжатия газа был подвергнут экспериментальной проверке [13], показавшей, что наряду с устойчивым течением пузырькового потока существуют и критические режимы работы МГД компрессора, обусловленные электромагнитным выталкиванием пузырьков против несущего потока.

Заключение

1. Получена система уравнений, описывающая течение и теплообмен сжимаемого пузырькового потока в поле электромагнитной силы канала кондукционного МГД насоса. Численными методами в гидравлическом приближении найдены ее решения, показывающие устойчивый процесс сжатия газа по потоку.

2. Показано, что увеличение начального газосодержания, скорости несущего потока, начального радиуса пузырька, индукции магнитного поля приводит к возбуждению колебаний всех параметров пузырькового потока в МГД канале.

3. Существует совокупность режимных параметров потока и МГД канала, вызывающая кризис течения пузырькового потока, обусловленный либо электромагнитным выталкиванием пузырьков против несущего потока, либо повышением местного газосодержания из-за торможения пузырьков электромагнитными выталкивающими силами.

4. Проведен анализ эффективности преобразования энергии и выяснено, что общий КПД МГД компрессора может составлять 40–45%.

Список литературы

- [1] Васильев А.П., Кирко И.М. А.С. (СССР). № 1549445. МКИ НО2К44/00. Способ сжатия газа и устройство для его осуществления.
- [2] Васильев А.П., Кирко И.М. А.С. (СССР). № 1663346. МКИ F25B1/00. Холодильная машина.
- [3] Васильев А.П., Пономарев Ю.А. и др. А.С. (СССР). № 1778459. МКИ F25B1/00. Холодильная машина.
- [4] Нигматулин Р.И. Основы механики гетерогенных сред. М.: Наука, 1978. 336 с.
- [5] Васильев А.П. // ЖТФ. 2003. Т. 73. Вып. 1. С. 35-41.
- [6] Васильев А.П., Иванов П.В. // ИФЖ. 1984. Т. 47. № 4. С. 693–694.
- [7] Лиелаусис О.А. Гидродинамика жидкометаллических МГД устройств. Рига: Зинатне, 1976. 196 с.
- [8] Федоровский А.Д., Никифорович Е.И., Приходько Н.А. Процессы переноса в системе газ-жидкость. Киев, 1988.
- [9] *Попов В.И.* // Магнитная гидродинамика. 1978. № 3. С. 33– 37.
- [10] Ватажин А.Б., Любимов Г.А., Регирер С.А. Магнитогидродинамические течения в каналах. М.: Наука, 1970. 672 с.
- [11] Тананаев А.В. Течения в каналах МГД устройств. М.: Атомиздат, 1979. 363 с.

- [12] Исследование турбулентных течений двухфазных сред / Под ред. С.С. Кутателадзе. Новосибирск, 1977. 315 с.
- [13] Васильев А.П., Бондаренко В.А. и др. // Холодильная техника. 1991. № 12. С. 22–24.