Теоретическое изучение процессов перезарядки и возбуждения при столкновениях между He⁺ и C⁵⁺, N⁶⁺, O⁷⁺ водородоподобными ионами

© В.К. Никулин, Н.А. Гущина

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: nikulin@astro.ioffe.ru

(Поступило в Редакцию 23 декабря 2003 г. В окончательной редакции 27 апреля 2004 г.)

Впервые получены данные о сечениях электронной перезарядки и возбуждения при столкновениях $He^+ - C^{5+}$, N^{6+} , O^{7+} в диапазоне энергий ионов He^+ от 0.2 до 3 MeV. Вычислены сечения электронной перезарядки в синглетные и триплетные 1snl состояния ионов C^{4+} , N^{5+} , O^{6+} ($2 \le n \le 5$) и электронного возбуждения $1s \rightarrow 2p_{0,\pm 1}$ ионов $He^+(1s)$. Расчет сечений выполнен в рамках метода уравнений сильной связи на базисе 10 двухэлектронных квазимолекулярных состояний.

Введение

01:02

В центральной области плазмы в установках УТС представляют интерес [1] реакции при столкновении ионов He⁺ с водородоподобными примесными ионами C⁵⁺, N⁶⁺, O⁷⁺ (A^{(Z_{A-1})+}) в MeV диапазоне энергий столкновения

$$\begin{aligned} \mathrm{He}^{+}(1s) + \mathrm{A}^{(Z_{\mathrm{A}}-1)+}(1s) \\ & \to \begin{cases} \mathrm{He}^{2+} + \mathrm{A}^{(Z_{\mathrm{A}}-2)+}(1snl), & n = 2-5, \\ \mathrm{He}^{+}(2p_{0}, 2p_{\pm 1}) + \mathrm{A}^{(Z_{\mathrm{A}}-1)+}(1s). \end{cases} \end{aligned}$$

Данные о сечениях реакций (1) необходимы как для моделирования поведения альфа-частиц в плазме, так и для спектроскопической диагностики высокотемпературной плазмы. Излучение из возбужденных примесных ионов и ионов гелия, образовавашихся после столкновения, представляет интерес для диагностики кора плазмы. Реакции (1) не изучались теоретически до настоящего времени, прямое же экспериментальное исследование ион-ионных столкновений с сильным кулоновским отталкиванием между ионами затруднительно.

Расчет сечений реакций (1) выполнен в интервале энергий столкновения 0.2-3 MeV в рамках метода уравнений сильной связи на базисе двухэлектронных состояний квазимолекул (HeA)^{Z_A+}. Двухэлектронные состояния рассчитаны в одноконфигурационном приближении, реализованном на диабатических одноэлектронных экранированных двухатомных молекулярных орбиталях (ЭДМО) [2].

Методы расчета

Расчет сечений одноэлектронного захвата и возбуждения в реакциях (1) выполнен в приближении параметра удара в рамках метода уравнений сильной связи. В рассматриваемом приближении задача сводится к определению электронной волновой функции $\Psi(r_1, r_2, t)$, удовле-

творяющей нестационарному уравнению Шредингера,

$$i \frac{\partial \Psi(r_1, r_2, t)}{\partial t} = H'(r_1, r_2, \mathbf{R}(t)) \Psi(r_1, r_2, t), \quad (2)$$

где H' — полный электронный гамильтониан, параметрически зависящий от времени через межъядерное расстояние R(t),

$$H' = \sum_{k=1,2} \left(-\frac{\nabla_k^2}{2} - \frac{Z_A}{r_{ak}} - \frac{Z_B}{r_{bk}} \right) + \frac{1}{r_{12}} + \frac{Z_A Z_B}{R}$$
$$\equiv H + \frac{Z_A Z_B}{R}.$$
(3)

В (2), (3) r_1, r_2 — координаты электронов; r_{ak}, r_{bk} — расстояния k-го электрона до ядер с зарядами Z_A и Z_B ($Z_B = Z_{He}$); r_{12} — расстояние между электронами.

Волновая функция $\Psi(r_1, r_2, t)$ раскладывается в ряд по базисному набору двухэлектронных одноконфигурационных состояний

$$\phi_{j}(r_{1}, r_{2}; \mathbf{R}) = \frac{1}{\sqrt{2(1 + S_{0j}^{2})}} \left(\psi_{0}(r_{1}; \mathbf{R})\psi_{j}(r_{2}; \mathbf{R}) + \psi_{0}(r_{2}; \mathbf{R})\psi_{j}(r_{1}; \mathbf{R})\right) \equiv [\psi_{0}, \psi_{j}], \quad (4)$$

построенных с использованием одноэлектронных волновых функций ЭДМО ψ_j (знаки "+", "-" в (4) соответствуют синглетным и триплетным двухэлектронным состояниям квазимолекулы):

$$\Psi(r_1, r_2, t) = \sum_{j=1}^{n} a_j(t)\phi_j(r_1, r_2, \mathbf{R}) \\ \times \exp\left(-i\int_0^t \left[E_j(\mathbf{R}) + \frac{Z_A Z_B}{\mathbf{R}}\right] dt'\right), \quad (5)$$

где

$$E_j(\mathbf{R}) = \left\langle \phi_j(r_1, r_2; \mathbf{R}) | H | \phi_j(r_1, r_2; \mathbf{R}) \right\rangle. \tag{6}$$

ЭДМО ψ_j [2] есть решения стационарного одноэлектронного уравнения Шредингера с эффективным потенциалом, оптимально учитывающим экранировку зарядов ядер электронами и допускающим одновременно разде-

ление переменных в вытянутой сфероидальной системе координат,

$$V_{\text{eff}}^{j}(r_{k};\mathbf{R}) = -\frac{Z_{\text{A}}}{r_{ak}} - \frac{Z_{\text{B}}}{r_{bk}} + \Delta V_{\text{eff}}^{j}(r_{k};\mathbf{R}),$$

$$\Delta V_{\text{eff}}^{j} = \frac{1}{2} \left[\frac{a_{1}^{j} - b_{1}^{j}}{r_{ak}} + \frac{a_{1}^{j} + b_{1}^{j}}{r_{bk}} + \frac{\tilde{a}_{1}^{j} + \mathbf{R}a_{0}^{j}}{r_{ak}r_{bk}} + \frac{b_{2}^{j}(r_{ak} - r_{bk})^{2}}{\mathbf{R}r_{ak}r_{bk}} \right], \quad (7)$$

что позволяет получать диабатические орбитали, сохраняющие симметрию орбиталей задачи H_2^+ . ЭДМО ψ_0 , входящая в выражение (4), описывает в пределе разведенных атомов ($\mathbf{R} \to \infty$) 1*s*-состояние электрона у ядра Z_A .

Если первоначально при $t \to -\infty$ $(\mathbf{R} \to \infty)$ система находилась в состоянии $\phi_1(r_1, r_2) =$ $= \lim_{\mathbf{R} \to \infty} \phi_1(r_1, r_2; \mathbf{R})$ (с энергией $E_1(\infty)$), то

$$\Psi(r_1, r_2, t)\big|_{t \to -\infty} \to \phi_1(r_1, r_2) \exp\left(-iE_1(\infty)t\right).$$
(8)

Подстановка (5) в (2) с учетом (8) приводит к системе линейных дифференциальных уравнений для определения коэффициентов a_j , которая для ортогонального набора двухэлектронных базисных функций и кулоновской траектории движения ядер с зарядами Z_A и Z_B преобразуется к следующему виду [3]:

$$\frac{da_{j}(\tau)}{d\tau} = -\sum_{k \neq j} a_{k}(\tau) \\
\times \left\{ \frac{\tau}{\mathbf{R} - \gamma} R_{jk} + \frac{\rho}{\mathbf{R}(\mathbf{R} - \gamma)} L_{jk} + \frac{i}{v} \frac{\mathbf{R}}{\mathbf{R} - \gamma} H_{jk} \right\} \\
\times \exp\left(-\frac{i}{v} \int_{0}^{\tau} (E_{k} - E_{j}) \frac{\mathbf{R}}{\mathbf{R} - \gamma} d\tau\right) \tag{9}$$

$$\left(\mathbf{R}(\tau) = (\tau^2 + \gamma^2 + \rho^2)^{1/2} + \gamma; \quad -\infty < \tau < \infty\right)$$

с начальными условиями

$$a_j(-\infty) = \delta_{1j} \exp(-i\nu_1), \qquad (10)$$

где

$$\nu_1 = \exp\left(\frac{1}{v}\int_0^\infty \left[E_1(\mathbf{R}) - E_1(\infty) + \frac{Z_{\mathbf{A}}Z_{\mathbf{B}}}{\mathbf{R}}\right]\frac{\mathbf{R}}{\mathbf{R} - \gamma}\,d\tau\right).$$

В (9) ρ — параметр удара, v — относительная скорость движения ядер, $\gamma = Z_A Z_B / \mu v^2$, μ — приведенная масса. Матричные элементы динамических (радиальных и вращательных) $R_{jk} = \langle \phi_j | d/d\mathbf{R} | \phi_k \rangle$, $L_{jk} = \langle \phi_j | iL_y | \phi_k \rangle$ и потенциальных $H_{ik} = \langle \phi_j | H | \phi_k \rangle$ связей вычисляются на двухэлектронных состояниях (4). При записи уравнений сильной связи (9) полагалось, что система координат, в которой описывается движение ядер, выбрана так, что ось *y* перпендикулярна плоскости столкновений (*xoz*), а ось *z* совпадает с направлением начальной скорости движения иона He⁺.

При квазимолекулярном описании атомных столкновений (решении уравнений сильной связи) возникает проблема переноса импульса электрона при перезарядке, которая до сих пор со времени пионерской работы [4] не имеет строгого решения даже при описании одноэлектронных квазимолекулярных процессов. В работе [4] было показано, что из-за пренебрежения трансляцией электрона при движении ядер базисные функции (электронные состояния) в разложении типа (5) будут связаны между собой при любых положениях ядер. Поэтому при конечном числе членов *n* в базисном наборе результаты расчета сильно зависят от его размера. Для устранения нефизической связи между состояниями в работе [4] было предложено использовать в разложени типа (5) базисные молекулярные функции (4), умноженные на "факторы трансляции" в виде плоской волны. К настоящему времени предложено большое количество различных форм факторов трансляции как для квазимолекулярных, так и для атомных базисов, а также как для одноэлектронных, так и двухэлектронных сталкивающихся систем и как для гетероядерных, так и гомоядерных квазимолекул.

В настоящей работе мы используем для учета переноса импульса альтернативный подход, предложенный в [5] для одноэлектронных квазимолекул, связанный с выбором специальной системы координат для электронов при расчете матричных элементов динамической связи состояний. Было показано [5], что для гетероядерных квазимолекул $He^{2+}-H(1s)$ при выборе начала координат в "центре масс" зарядов на межъядерной оси (или точке "одинакового потенциала", естественной границе, разделяющей электроны, связанные с одним ядром, от электронов, связанных с другим ядром) результаты расчета вероятностей перехода в зависимости от параметра удара и полных сечений близки к результатам расчета с учетом фактора трансляции в виде плоской волны.

Для двухэлектронных квазимолекул, рассматриваемых в данной работе, этот подход тестировался при расчете процессов, обратных по времени по отношению к реакции (1), в нашей недавней публикации [6]. Было показано, что наши результаты расчетов близки к имевшимся квазимолекулярным расчетам при малых энергиях с учетом факторов трансляции и к расчетам в приближении больших энергий, полученным с использованием атомного базиса. Кроме того, эти наши расчеты [6] лучше всего соответствуют имеющимся экспериментальным данным в широком интервале энергий.

Амплитуда перехода из начального состояния $\phi_1(r_1,r_2)$ в конечное состояние $\phi_j(r_1,r_2)=\lim_{\mathrm{R}\to\infty}\phi_j(r_1,r_2;\mathrm{R})$ для заданных значений параметра удара ρ и скорости столкновения vравна

$$b_j(\rho, v) = \lim_{t \to \infty} \left\langle \phi_j(r_1, r_2) | \Psi(r_1, r_2, t) \right\rangle \exp\left(iE_j(\infty)t\right)$$
$$= a_j(\infty) \exp(-iv_j), \tag{11}$$

где

$$\nu_j = \frac{1}{v} \int_0^\infty \left[E_j(\mathbf{R}) - E_j(\infty) + \frac{Z_A Z_B}{\mathbf{R}} \right] \frac{\mathbf{R}}{\mathbf{R} - \gamma} \, d\tau. \quad (12)$$

При расчете реакций (1), поскольку матричные элементы динамических и потенциальных связей между синглетными и триплетными состояниями квазимолекулы равны нулю, система уравнений сильной связи (9) распадается на две независимые системы уравнений для синглетного и триплетного входного канала.

Все расчеты ЭДМО, двухэлектронных состояний и матричных элементов динамического и потенциального взаимодействия между ними выполнены при использовании разработанного нами ранее комплекса программ [7].

Расчет энергий одноэлектронных и двухэлектронных состояний квазимолекул (HeC)⁶⁺, (HeN)⁷⁺ и (HeO)⁸⁺

Энергии $\varepsilon_i(\mathbf{R})$ и волновые функции $\psi_i(r; \mathbf{R})$ одноэлектронных ЭДМО находились из решения одноэлектронного уравнения Шредингера с эффективным потенциалом (7). Неортогональность ЭДМО, вычисляемых для различных эффективных потенциалов, значительно усложняет решение системы уравнений сильной связи. Поэтому для всех рассчитываемых орбиталей, за исключением ψ_0 , описывающей в пределе разведенных атомов сильно отщепленное по энергии 1s-состояние электрона у ядра А, использовался один и тот же эффективный потенциал V¹_{eff}, наиболее оптимально описывающий ближайший по энергии к входному каналу канал одноэлектронного захвата в 3*d*-состояния иона $A^{(Z_A-2)+}(1snl)$. Схема определения параметров этого потенциала описана в [8]. Для их определения использовались энергии 3p- и 3d-уровней объединенных атомов (предел R = 0) и энергии 3*d*-уровней ионов A^{(Z_A-2)+}(1s3*d*) [9] и 1s-уровня иона Не⁺. Получены следующие значения параметров эффективных потенциалов (в а.u.) для расчета орбиталей ψ_i $(j \neq 0)$ в квазимолекулах (HeA)^{Z_A+}:

$$(\text{HeC})^{6+} - \tilde{a}_1^1 = -0.066, \quad a_1^1 = 1.023, \quad a_0^1 = -0.037, \\ b_1^1 = 0.997, \quad b_2^1 = 0.010; \\ (\text{HeN})^{7+} - \tilde{a}_1^1 = -0.187, \quad a_1^1 = 1.096, \quad a_0^1 = -0.014, \\ b_1^1 = 0.997, \quad b_2^1 = -0.016; \\ (\text{HeO})^{8+} - \tilde{a}_1^1 = 0.214, \quad a_1^1 = 1.124, \quad a_1^1 = 0.107.$$

$$(\text{HeO})^{8+}$$
 — $\tilde{a}_1^1 = -0.214$, $a_1^1 = 1.124$, $a_0^1 = -0.107$,
 $b_1^1 = 0.996$, $b_2^1 = -0.022$.

При расчете молекулярной орбитали ψ_0 , описывающей состояние 1s электрона в ионах $A^{(Z_A-1)+}(1s)$ ($\psi_0 = 1s\sigma$) или в ионах $A^{(Z_A-2)+}(1snl)$ ($\psi_0 = 1s\sigma'$), использовались различные эффективные потенциалы V_{eff}^0 Схема определения параметров этих потенциалов описана в [10]. Необходимые для их расчета атомные энергии 1s-состояний объединенных атомов и ионов $A^{(Z_A-1)+}(1s)$ или $A^{(Z_A-2)+}(1snl)$ [9] и среднее значение эффективного потенциала V_{eff}^0 в пределе объединенного атома

$$\bar{V}_{\text{eff}}^{0} = -\frac{Z^{*2}}{n^{*2}} + \frac{\tilde{a}_{1}Z^{*2}}{2n^{*3}(s+1/2)},$$
(13)

полученное из атомных расчетов [9], выписаны в табл. 1.

Таблица 1. Энергии E_{1s}^{u} и средние значения эффективных потенциалов \bar{V}_{eff}^{0} для $1s\sigma$ и $1s\sigma'$ ЭДМО в пределе объединенных атомов; энергии E_{1s}^{s} $1s\sigma$ или $1s\sigma'$ ЭДМО в пределе разведенных атомов (все величины даны в атомных единицах)

	МО	$ E_{1s}^{u} ,$	$ ar{V}_{ ext{eff}}^{0} $	$ E_{1s}^s $
(HeC) ⁶⁺	$\frac{1s\sigma}{1s\sigma'}$	29.66 28.82	61.747 60.529	18.00 16.30
$(\mathrm{HeN})^{7+}$	$\frac{1s\sigma}{1s\sigma'}$	37.87 40.91	78.502 78.930	24.50 22.46
$(\mathrm{HeO})^{8+}$	$\frac{1s\sigma}{1s\sigma'}$	47.51 47.08	97.764 97.281	32.00 29.66

Таблица 2. Параметры эффективных потенциалов (в а.u.) для расчета $1s\sigma$ и $1s\sigma'$ ЭДМО квазимолекул (HeA)^{Z_{A+}}

	MO	\tilde{a}_1^0	a_{1}^{0}	a_{0}^{0}	b_1^0
$(\mathrm{HeC})^{6+}$	$\frac{1s\sigma}{1s\sigma'}$	$-0.036 \\ -0.032$	0.585 0.511	1.045 1.740	$-1.630 \\ -1.627$
$(\mathrm{HeN})^{7+}$	$\frac{1s\sigma}{1s\sigma'}$	$-0.033 \\ -0.030$	0.593 0.515	$1.044 \\ -0.240$	$-1.637 \\ 0.321$
$(\mathrm{HeO})^{8+}$	$\frac{1s\sigma}{1s\sigma'}$	$-0.026 \\ -0.030$	0.519 0.597	$1.172 \\ -0.368$	-1.694 0.366

В (13) $Z^* = Z_A + Z_B - a_1^0$; $n^* = n - (l + 1/2) + +[(l + 1/2)^2 + \tilde{a}_1^0]^{1/2}$; n, l — главное и орбитальное квантовые числа состояния объединенного атома; s — эффективный орбитальный момент, связанный с l соотношением $s(s + 1) = l(l + 1) + \tilde{a}_1^0$. Значения параметров эффективных потенциалов для расчета $1s\sigma$ и $1s\sigma'$ ЭДМО приведены в табл. 2 ($b_2^0 \equiv 0$).

Энергии двухэлектронных синглетных и триплетных состояний, определяемые выражением (6), вычислялись в первом порядке теории возмущений по остаточному взаимодействию $W = 1/r_{12} - (V_{\text{eff}}^0 + V_{\text{eff}}^1)$:

$$E_{j}(\mathbf{R}) = \varepsilon_{0} + \varepsilon_{j} + \frac{1}{1 \pm S_{0j}^{2}} \left(J_{j} \pm Q_{j} \mp S_{0j} (V_{0j}^{1} + V_{j0}^{0}) - (V^{0} + V^{1}) \right), \quad (14)$$

где $S_{0j} = \langle \psi_0 | \psi_j \rangle$, $J_j = \langle \psi_0(r_1)\psi_j(r_2) | 1/r_{12} | \psi_0(r_1)\psi_j(r_2) \rangle$ и $Q_j = \langle \psi_0(r_1)\psi_j(r_2) | 1/r_{12} | \psi_0(r_2)\psi_j(r_1) \rangle$ — кулоновский и обменный интегралы, $V^l = \langle \psi_l | V_{\text{eff}}^l | \psi_l \rangle$ (l = 0, 1) и $V_{lk}^k = \langle \psi_l | V_{\text{eff}}^k | \psi_k \rangle$ — диагональные и недиагональные матричные элементы эффективных потенциалов.

В число одноэлектронных орбиталей ψ_j $(j \neq 0)$ для расчета реакций (1) были включены ЭДМО, описывающие в пределе разведенных атомов состояния 1s и $2p_{0,\pm 1}$ электронов в ионе He⁺ и $2p_0$, $3d_{0,\pm 1}$, $4f_{0,\pm 1}$ и $5g_{0,\pm 1}$ электронов в ионах $A^{(Z_A-2)+}(1snl)$. Базис двухэлектронных диабатических состояний $\phi_j(r_1, r_2; \mathbf{R}) = [\psi_0, \psi_j]$ для расчета реакций (1) выписан в табл. 3 (для одноэлектронных ЭДМО используется их классификация по сферическим квантовым

Таблица З	Базис 10	двухэлектронных	диабатических	состоя-
ний $\phi_i(r_1, r_1)$	r ₂ ; R) для р	расчета реакций (1)	

$He^+ - C^{5+}$, N^{6+}	${\rm He}^{+} - {\rm O}^{7+}$	Атомные пределы при $R \to \infty$		
Входные каналы $\text{He}^+(1s) + A^{(Z_A-1)+}(1s)$				
$\phi_1 = [1s\sigma, 3d\sigma]$	$\phi_1 = [1s\sigma, 4f\sigma]$			
Каналы перезарядки $\mathrm{He}^{2+} + \mathrm{A}^{(Z_\mathrm{A}-2)+}(1snl)$				
$ \phi_2 = [1s\sigma', 2p\sigma] \\ \phi_3 = [1s\sigma', 4f\sigma] \\ \phi_4 = [1s\sigma', 5g\sigma] \\ \phi_6 = [1s\sigma', 7i\sigma] \\ \phi_7 = [1s\sigma', 3d\pi] \\ \phi_8 = [1s\sigma', 4f\pi] \\ \phi_{10} = [1s\sigma', 6h\pi] $	$\phi_2 = [1s\sigma', 2p\sigma]$ $\phi_3 = [1s\sigma', 3d\sigma]$ $\phi_4 = [1s\sigma', 5g\sigma]$ $\phi_5 = [1s\sigma', 6h\sigma]$ $\phi_7 = [1s\sigma', 3d\pi]$ $\phi_8 = [1s\sigma', 4f\pi]$ $\phi_9 = [1s\sigma', 5g\pi]$	$(nl) \ 2p_0 \ 3d_0 \ 4f_0 \ 5g_0 \ 3d_{\pm 1} \ 4f_{\pm 1} \ 5g_{\pm 1}$		
Каналы возбуждения $\text{He}^+(2l) + A^{(Z_A-1)+}(1s)$				
$\phi_5 = [1s\sigma', 6h\sigma]$ $\phi_9 = [1s\sigma', 5g\pi]$	$\phi_6 = [1s\sigma', 7i\sigma]$ $\phi_{10} = [1s\sigma', 6h\pi]$	$(2l) \\ 2p_0 \\ 2p_{\pm 1}$		

числам (nlm) состояния объединенного атома). Анализ характера волновых функций ЭДМО показал, что при переходе от $Z_A = 7$ к $Z_A = 8$ происходит смена состояний, описывающих в пределе разведенных атомов входной канал и канал одноэлектронного захвата в $3d_0$ -состояние иона $A^{(Z_A-2)+}$, а при переходе от $Z_A = 6$ к $Z_A = 7$ — смена состояний, описывающих при $R \to \infty$ каналы $1s \to 2p_{0,\pm 1}$ возбуждения иона He^+ и каналы одноэлектронного захвата в $5g_{0,\pm 1}$

Рис. 1. Энергии E_j синглетных $({}^1\Sigma_j$ — сплошные кривые, ${}^1\Pi_j$ — штриховые) и триплетных $({}^3\Sigma_j$ — •) двухэлектронных состояний ϕ_j квазимолекулы (OHe)⁸⁺: входной канал — $\phi_1 = [1s\sigma, 4f\sigma]$; каналы одноэлектронного захвата — $\phi_2 = [1s\sigma', 2p\sigma], \quad \phi_3 = [1s\sigma', 3d\sigma], \quad \phi_7 = [1s\sigma', 3d\pi], \quad \phi_4 = [1s\sigma', 5g\sigma], \quad \phi_8 = [1s\sigma', 4f\pi], \quad \phi_5 = [1s\sigma', 6h\sigma], \quad \phi_9 = [1s\sigma', 5g\pi]$; каналы возбужденного иона He^+ — $\phi_6 = [1s\sigma', 7i\sigma], \phi_{10} = [1s\sigma', 6h\pi].$

состояния иона $A^{(Z_A-2)+}$. В табл. З атомные пределы двухэлектронных состояний выписаны с учетом того, что при рассматриваемых скоростях столкновений имеющиеся в квазимолекуле $(NHe)^{7+}$ далекие квазипересечения состояний $[1s\sigma', 6h\sigma]-[1s\sigma', 7i\sigma]$ (при $R \sim 18$ а.u.) и $[1s\sigma', 5g\pi]-[1s\sigma', 6h\pi]$ (при $R \sim 16$ а.u.) проходятся диабатически в процессе столкновения, в результате чего для квазимолекулы $(NHe)^{7+}$ сохраняется та же корреляционная диаграмма, что и для квазимолекулы (CHe)⁶⁺.

Проведенные расчеты показали, что во всех рассматриваемых системах энергии синглетных (E_j^s) и триплетных (E_j^{tr}) состояний различаются несущественно из-за малости обменного взаимодействия между нижним (ψ_0) и возбужденными (ψ_j) электронными состояниями. На рис. 1 приведены энергии двухэлектронных состояний квазимолекулы $(OHe)^{8+}$ (корреляционные диаграммы для квазимолекул (CHe)⁶⁺ и (NHe)⁷⁺ имеются в предварительной публикации [11]).

Матричные элементы динамических и потенциальных связей

Матричные элементы динамической связи между синглетными (d_{ij}^s) и триплетными (d_{ij}^{tr}) двухэлектронными состояниями (4) совпадают и выражаются через матричные элементы радиальной или вращательной связи между одноэлектронными ЭДМО ψ_i и ψ_i

$$\begin{aligned} d_{ij}^{s} = d_{ij}^{tr} \equiv d_{ij} = \begin{cases} R_{ij} = \langle \psi_i | d/d\mathbf{R} | \psi_j \rangle, & \text{если } m_i - m_j = 0; \\ L_{ij} = \langle \psi_i | iL_y | \psi_j \rangle, & \text{если } |m_i - m_j| = 1 \end{cases} \\ (i, j \neq 0). \end{aligned}$$

Выражения (15) записаны без учета малой неортогональности между нижними (ψ_0) и возбужденными (ψ_i, ψ_i) ЭДМО.

В результате проведенных исследований в уравнениях сильной связи, расписанных на базисе 10 двухэлектронных состояний, перечисленных в табл. 3, были оставлены следующие наиболее существенные матричные элементы динамических связей для столкновительных систем $\text{He}^+-\text{C}^{5+}$, N^{6+} :

$$\begin{split} R_{12} &= \langle 3d\sigma | d/d\mathbf{R} | 2p\sigma \rangle, \qquad R_{13} &= \langle 3d\sigma | d/d\mathbf{R} | 4f\sigma \rangle, \\ R_{14} &= \langle 3d\sigma | d/d\mathbf{R} | 5g\sigma \rangle, \qquad R_{15} &= \langle 3d\sigma | d/d\mathbf{R} | 6h\sigma \rangle, \\ R_{34} &= \langle 4f\sigma | d/d\mathbf{R} | 5g\sigma \rangle, \qquad R_{35} &= \langle 4f\sigma | d/d\mathbf{R} | 6h\sigma \rangle, \\ R_{36} &= \langle 4f\sigma | d/d\mathbf{R} | 7i\sigma \rangle, \qquad R_{45} &= \langle 5g\sigma | d/d\mathbf{R} | 6h\sigma \rangle, \\ R_{46}^{N} &= \langle 5g\sigma | d/d\mathbf{R} | 7i\sigma \rangle, \qquad R_{56} &= \langle 6h\sigma | d/d\mathbf{R} | 7i\sigma \rangle, \\ R_{89} &= \langle 4f\pi | d/d\mathbf{R} | 5g\pi \rangle, \qquad R_{9,10} &= \langle 5g\pi | d/d\mathbf{R} | 6h\pi \rangle \end{split}$$

$$\begin{split} L_{17} &= \langle 3d\sigma | iL_y | 3d\pi \rangle, \qquad L_{38} &= \langle 4f\sigma | iL_y | 4f\pi \rangle, \\ L_{48} &= \langle 5g\sigma | iL_y | 4f\pi \rangle, \qquad L_{49} &= \langle 5g\sigma | iL_y | 5g\pi \rangle, \\ L_{5,10} &= \langle 6h\sigma | iL_y | 6h\pi \rangle, \qquad L_{6,10} &= \langle 7i\sigma | iL_y | 6h\pi \rangle \end{split}$$

и для столкновительной системы He⁺-O⁷⁺:

$$\begin{split} R_{13} &= -\langle 3d\sigma | d/d\mathbf{R} | 4f\sigma \rangle, \qquad R_{14} &= \langle 4f\sigma | d/d\mathbf{R} | 5g\sigma \rangle, \\ R_{15} &= \langle 4f\sigma | d/d\mathbf{R} | 6h\sigma \rangle, \qquad R_{16} &= \langle 4f\sigma | d/d\mathbf{R} | 7i\sigma \rangle, \\ R_{23} &= -\langle 3d\sigma | d/d\mathbf{R} | 2p\sigma \rangle, \qquad R_{34} &= \langle 3d\sigma | d/d\mathbf{R} | 5g\sigma \rangle, \\ R_{35} &= \langle 3d\sigma | d/d\mathbf{R} | 6h\sigma \rangle, \qquad R_{45} &= \langle 5g\sigma | d/d\mathbf{R} | 6h\sigma \rangle, \\ R_{46} &= \langle 5g\sigma | d/d\mathbf{R} | 7i\sigma \rangle, \qquad R_{56} &= \langle 6h\sigma | d/d\mathbf{R} | 7i\sigma \rangle, \\ R_{89} &= \langle 4f\pi | d/d\mathbf{R} | 5g\pi \rangle, \qquad R_{9,10} &= \langle 5g\pi | d/d\mathbf{R} | 6h\pi \rangle \end{split}$$

И

$$\begin{split} L_{37} &= \langle 3d\sigma | iL_{y} | 3d\pi \rangle, \qquad L_{18} &= \langle 4f\sigma | iL_{y} | 4f\pi \rangle, \\ L_{48} &= \langle 5g\sigma | iL_{y} | 4f\pi \rangle, \qquad L_{49} &= \langle 5g\sigma | iL_{y} | 5g\pi \rangle, \\ L_{59} &= \langle 6h\sigma | iL_{y} | 5g\pi \rangle, \qquad L_{5,10} &= \langle 6h\sigma | iL_{y} | 6h\pi \rangle, \\ L_{6,10} &= \langle 7i\sigma | iL_{y} | 6h\pi \rangle. \end{split}$$

При вычислении матричных элементов динамической связи начало электронной системы координат помещалось в центре зарядов ядер квазимолекулы.

Матричные элементы потенциальных связей $H_{ij} = \langle \phi_i | H | \phi_j \rangle \ (i < j)$ между двухэлектронными состояниями квазимолекул равны

$$H_{ij} = \frac{1}{\left[(1 \pm S_{0i}^2)(1 \pm S_{0j}^2)\right]^{1/2}} \times \left[(\varepsilon_0 + \varepsilon_j)(S_{ij} \pm S_{0j}S_{i0}) + (I_{0j0i} \pm I_{j00i} - V_{ij}^1 - S_{ij}V^0 \mp S_{i0}V_{0j}^1 \mp S_{0j}V_{i0}^0)\right]\delta(m_i - m_j), \quad (16)$$

где $I_{klmn} = \langle \psi_k(r_1)\psi_l(r_2)|1/r_{12}|\psi_m(r_1)\psi_n(r_2)\rangle$ — интегралы межэлектронного взаимодействия.

Подробная информация о матричных элементах динамических и потенциальных связей для квазимолекул (CHe)⁶⁺ и (NHe)⁷⁺ имеется в [11]. Отличительной особенностью для квазимолекулы (OHe)⁸⁺ является резкое изменение матричных элементов d_{ij} и H_{ij} , содержащих $3d\sigma$ или $4f\sigma$ ЭДМО, в окрестности квазипересечения этих орбиталей при межъядерном расстоянии $R \simeq 6.4$ а.u.

Расчет сечений одноэлектронного захвата и возбуждения при столкновении ионов He⁺ с водородоподобными ионами C⁵⁺, N⁶⁺ и O⁷⁺

Расчет сечений одноэлектронного захвата и возбуждения при столкновениях $\text{He}^+ - \text{C}^{5+}$, N^{6+} , O^{7+} выполнен в рамках метода уравнений сильной в интервале энергий налетающего иона He^+ от 0.2 до 3.0 MeV.

Парциальные сечения заселения двухэлектронных синглетных и триплетных состояний $\phi_j(r_1, r_2) = \lim_{R\to\infty} \phi_j(r_1, r_2; R)$ для заданной скорости столкновения v рассчитывались по формулам

$$\sigma_j(v) = 2\pi \int_0^\infty d\rho \left| b_j(\rho, v) \right|^2, \tag{17}$$

где $b_j(\rho, v)$ — амплитуды перехода (11) из начального состояния $\phi_1(r_1, r_2)$ в конечное состояние $\phi_j(r_1, r_2)$, вычисленные для синглетного и триплетного входного канала (малая неортогональность используемого базиса двухэлектронных состояний ($\langle \phi_i | \phi_j \rangle < 10^{-3}$) не учитывается при записи уравнений сильной связи).

Для расчета $b_j(\rho, v)$ использовалась программа "TANGO" [12], любезно предоставленная нам Антойне Салином.

В уравнениях сильной связи использовались обрезанные по экспоненте при больших R не исчезающие при R — ∞ радиальные связи между входным каналом (ϕ_1) и каналом возбуждения (ϕ_i) в 2 p_0 -состояние иона He⁺:

$$R_{1j}(\mathbf{R}) = \begin{cases} R_{1j}(\mathbf{R}) & \text{при } \mathbf{R} \le \mathbf{R}_c, \\ R_{1j}(\mathbf{R}_c) \exp[-\beta(\mathbf{R} - \mathbf{R}_c)] & \text{при } \mathbf{R} > \mathbf{R}_c \end{cases}$$

(j = 5 для столкновительных систем $\text{He}^+ - \text{C}^{5+}$, N^{6+} и j = 6 для столкновительной системы $\text{He}^+ - \text{O}^{7+}$), R_c полагалось равным порядка 7 а.u. для всех рассчитываемых систем, константа β полагалась равной $\simeq 0.3$ а.u. (в пределе больших R эти связи во всех трех системах описывают одну и ту же радиальную связь между 1s и $2p_0$ состояниями иона He^+).

а) Сечения одноэлектронного захвата и возбуждения для столкновения $He^+(1s)-C^{5+}(1s)$. Для квазимолекулы He^+-C^{5+} решение уравнения сильной связи проводилось для синглетного и триплетного входного канала. Полные σ_{sec} и парциальные $\sigma_{sec}(n)$ сечения одноэлектронного захвата в синглетные и триплетные 1snl состояния иона C^{4+} для n = 2-5 рассчитывались по формулам

$$\sigma_{\rm sec} = \sum_{n=2-5} \sigma_{\rm sec}(n), \tag{18}$$

где

$$\begin{split} \sigma_{\rm sec}(2) &= \sigma_2(2p_0), \quad \sigma_{\rm sec}(3) = \sigma_3(3d_0) + \sigma_7(3d_{\pm 1}), \\ \sigma_{\rm sec}(4) &= \sigma_4(4f_0) + \sigma_8(4f_{\pm 1}), \\ \sigma_{\rm sec}(5) &= \sigma_6(5g_0) + \sigma_{10}(5g_{\pm 1}); \end{split}$$

полные $\sigma_{\rm exc}$ и парциальные $\sigma_{\rm exc}(2p_{0,\pm 1})$ сечения возбуждения иона He⁺ — по формулам

$$\sigma_{\rm exc} = \sigma_{\rm exc}(2p_0) + \sigma_{\rm exc}(2p_{\pm 1}), \tag{19}$$

где

$$\sigma_{\rm exc}(2p_0) = \sigma_5(2p_0), \quad \sigma_{\rm exc}(2p_{\pm 1}) = \sigma_9(2p_{\pm 1})$$

Журнал технической физики, 2004, том 74, вып. 12

Рис. 2. Сечения одноэлектронного захвата и возбуждения при столкновении $\text{He}^+ - \text{C}^{5+}$ (штриховые кривые и кружки — полные сечения одноэлектронного захвата и возбуждения, вычисленные на базисе синглетных и триплетных состояний квазимолекулы без учета каналов перезарядки в 1s5g состояния иона C^{4+}). a — полное Σ_{sec} и парциальные $\sigma_{\text{sec}}(n)$ сечения одноэлектронного захвата в 1snl состояния иона C^{4+} : $\Sigma_{\text{sec}} = \sum_{n=2-5} \sigma_{\text{sec}}(n)$; $\sigma_{\text{sec}}(2) = \sigma_2(2p_0)$, $\sigma_{\text{sec}}(3) = \sigma_3(3d_0) + \sigma_7(3d_{\pm 1})$, $\sigma_{\text{sec}}(4) = \sigma_4(4f_0) + \sigma_8(4f_{\pm 1})$, $\sigma_{\text{sec}}(5) = \sigma_6(5g_0) + \sigma_{10}(5g_{\pm 1})$; b — полное Σ_{exc} и парциальные $\sigma_{\text{exc}}(2p_l)$ сечения $1s \rightarrow 2p_l$ электронного возбуждения иона He^+ : $\Sigma_{\text{exc}} = \sigma_{\text{exc}}(2p_0) + \sigma_{\text{exc}}(2p_{\pm 1})$; $\sigma_{\text{exc}}(2p_0) = \sigma_5(2p_0)$, $\sigma_{\text{exc}}(2p_{\pm 1}) = \sigma_9(2p_{\pm 1})$.

Проведенные расчеты показали, что парциальные сечения одноэлектронного захвата и возбуждения, вычисленные на базисе синглетных и триплетных состояний квазимолекулы (HeC)⁶⁺, различаются несущественно (на рис. 2 нанесены для сравнения полные сечения процессов перезарядки и возбуждения, вычисленные на базисе синглетных и триплетных состояний без учета канала одноэлектронного захвата в 1s5g-состояния иона C⁴⁺). Это связано с тем, что энергии синглетных и триплетных состояний различаются очень слабо из-за малости обменного взаимодействия, а матричные элементы динамического взаимодействия (дающего основной вклад в сечения рассматриваемых процессов) между синглетными (d_{ij}^s) и триплетными (d_{ij}^r) состояниями полностью совпадают. Поэтому с хорошей степенью точности можно полагать, что полные сечения одноэлектронного захвата ($\Sigma_{\rm sec}$) и возбужденния ($\Sigma_{\rm exc}$) при столкновении He⁺(1s) – C⁵⁺(1s) равны

И

$$\Sigma_{\rm exc}(2p_l) = 0.25\sigma_{\rm exc}^s + 0.75\sigma_{\rm exc}^{tr}$$

 $\Sigma_{\rm sec} = 0.25\sigma_{\rm sec}^s + 0.75\sigma_{\rm sec}^{tr}$

где σ_{sec}^{s} , σ_{exc}^{s} и σ_{sec}^{tr} , σ_{exc}^{tr} — полные сечения перезарядки и возбуждения, вычисленные соответственно на базисе синглетных и триплетных двухэлектронных состояний квазимолекулы.

Результаты расчетов полных сечений процессов перезарядки и возбуждения представлены на рис. 2. При малых энергиях столкновения ($E_c < 0.9 \,\mathrm{MeV}$) основным является процесс одноэлектронного захвата. Полное сечение одноэлектронного захвата растет с ростом E_c во всем рассмотренном интервале энергии столкновений (от $7.9 \cdot 10^{-16}$ до $27.98 \cdot 10^{-16} \text{ cm}^2$), слабо завися от энергии столкновения при $E_c > 1.6$ MeV. При энергиях столкновения E_c < 0.65 MeV одноэлектронный захват идет в основном в 3*l*-состояния иона $C^{4+}(1snl)$, в интервале энергий $0.65 < E_c < 1.0 \,\mathrm{MeV}$ — в 5*l*-состояния и при $E_c > 1.0 \,\mathrm{MeV}$ — в 4*l*-состояния иона C⁴⁺. Полное сечение возбуждения имеет слабо выраженный максимум $(39.53 \cdot 10^{-16} \,\mathrm{cm}^2)$ при $E_c = 2.33$ MeV. Парциальное сечение $\sigma_{\rm exc}(2p_0)$ растет с ростом энергии столкновения во всем рассмотренном интервале изменения E_c , парциальное сечение $\sigma_{\rm exc}(2p_{\pm 1})$ имеет максимум $(17.50 \cdot 10^{-16} \,\mathrm{cm}^2)$ при $E_c = 2.0 \,\mathrm{MeV}$. В интервале E_c от 0.5 до 1.3 MeV оба парциальных сечения возбуждения практически совпадают; при бо́льших Е_с разница в сечениях начинает нарастать и при $E_c = 3.0 \,\mathrm{MeV}$ $\sigma_{\rm exc}(2p_0)$ превосходит $\sigma_{\rm exc}(2p_{\pm 1})$ примерно в 1.5 раза (при $E_c = 3.0 \,{\rm MeV}$ $\sigma_{\rm exc}(2p_0) = 23.52 \cdot 10^{-16} \,{\rm cm}^2$ и $\sigma_{\rm exc}(2p_{\pm 1}) = 15.62 \cdot 10^{-16} \,{\rm cm}^2$).

б) Сечения одноэлектронного захвата и возбуждения при столкновениях ионов $He^+(1s)$ с ионами $N^{6+}(1s)$, $O^{7+}(1s)$. Учитывая результаты детального исследования столкновения $He^+ - C^{5+}$, расчеты сечений одноэлектронного захвата и возбуждения для столкновений ионов He^+ с ионами N^{6+} , O^{7+} выполнялись только на базисе синглетных двухэлектронных состояний, и полагалось, что вычисленные при этом сечения с хорошей точностью описывают статистически взвешенные полные сечения перезарядки и возбуждения для столкновений $He^+ - N^{6+}$, O^{7+} .

Полные и парциальные сечения одноэлектронного захвата и возбуждения для столкновения ионов He⁺ с

Рис. 3. Сечения одноэлектронного захвата и возбуждения при столкновении $\text{He}^+ - \text{N}^{6+}$. a — полное Σ_{sec} и парциальные $\sigma_{\text{sec}}(n)$ сечения одноэлектронного захвата в 1snl состояния иона N^{5+} : $\Sigma_{\text{sec}} = \sum_{n=2-5} \sigma_{\text{sec}}(n)$; $\sigma_{\text{sec}}(2) = \sigma_2(2p_0)$, $\sigma_{\text{sec}}(3) = \sigma_3(3d_0) + \sigma_7(3d_{\pm 1})$, $\sigma_{\text{sec}}(4) = \sigma_4(4f_0) + \sigma_8(4f_{\pm 1})$, $\sigma_{\text{sec}}(5) = \sigma_6(5g_0) + \sigma_{10}(5g_{\pm 1})$; b — полное Σ_{exc} и парциальные $\sigma_{\text{exc}}(2p_l)$ сечения $1s \rightarrow 2p_l$ электронного возбуждения иона He^+ : $\Sigma_{\text{exc}} = \sigma_{\text{exc}}(2p_0) + \sigma_{\text{exc}}(2p_{\pm 1})$; $\sigma_{\text{exc}}(2p_0) = \sigma_5(2p_0)$, $\sigma_{\text{exc}}(2p_{\pm 1}) = \sigma_9(2p_{\pm 1})$.

ионами N⁶⁺ рассчитывались по формулам (18), (19). Результаты расчетов приведены на рис. 3. Полное сечение одноэлектронного захвата $\sigma_{\rm sec}^{\rm N}$ имеет максимум (27.3 · 10⁻¹⁶ cm²) при энергии столкновения E_c порядка 1.0 MeV. При малых энергиях столкновения ($E_c < 0.4$ MeV) одноэлектронный захват идет в основном в состояния иона N⁵⁺(1*snl*) с n = 3, при 0.4 MeV < $E_c < 1.1$ MeV — в состояния с n = 4 и при $E_c > 1.1$ MeV — в состояния иона N⁵⁺ с n = 5. Сечение возбуждения иона He⁺(1*s*) в состояния 2 $p_{0,\pm1}$ при столкновении с ионами N⁶⁺(1*s*) во всем интервале

рассмотренных энергий столкновений остается меньше сечения одноэлектронного захвата (максимальное значение $\Sigma_{\rm exc}^{\rm N}$ равно $14.5 \cdot 10^{-16}$ cm² при $E_c \simeq 1.0$ MeV). Основной вклад в сечение возбуждения вносит канал возбуждения в $2p_0$ -состояние иона He⁺. Однако в отличие от столкновения He⁺+C⁵⁺ вклад его в полное сечение возбуждения менее существен. Оба сечения возбуждения $\sigma_{\rm exc}^{\rm N}(2p_0)$ и $\sigma_{\rm exc}^{\rm N}(2p_{\pm 1})$ имеют ярко выраженный максимум при энергиях столкновений 1.0 и 1.2 MeV соответственно; максимальные значения се-

Рис. 4. Сечения одноэлектронного захвата и возбуждения при столкновении $\operatorname{He}^+ - \operatorname{O}^{7+}$. *а* — полное $\Sigma_{\operatorname{sec}}$ и парциальные $\sigma_{\operatorname{sec}}(n)$ сечения одноэлектронного захвата в 1snl состояния иона O^{6+} : $\Sigma_{\operatorname{sec}} = \sum_{n=2-5} \sigma_{\operatorname{sec}}(n)$; $\sigma_{\operatorname{sec}}(2) = \sigma_2(2p_0)$, $\sigma_{\operatorname{sec}}(3) = \sigma_3(3d_0) + \sigma_7(3d_{\pm 1})$, $\sigma_{\operatorname{sec}}(4) = \sigma_4(4f_0) + \sigma_8(4f_{\pm 1})$, $\sigma_{\operatorname{sec}}(5) = \sigma_5(5g_0) + \sigma_9(5g_{\pm 1})$; *b* — полное $\Sigma_{\operatorname{exc}}$ и парциальные $\sigma_{\operatorname{exc}}(2p_l)$ сечения $1s \to 2p_l$ электронного возбуждения иона He^+ : $\Sigma_{\operatorname{exc}} = \sigma_{\operatorname{exc}}(2p_0) + \sigma_{\operatorname{exc}}(2p_{\pm 1})$, $\sigma_{\operatorname{exc}}(2p_0) = \sigma_6(2p_0)$, $\sigma_{\operatorname{exc}}(2p_{\pm 1}) = \sigma_{10}(2p_{\pm 1})$.

чений равны: $\sigma_{\text{exc}}^{\text{N}}(2p_0)\big|_{E_c=1.0 \text{ MeV}} = 10.92 \cdot 10^{-16} \text{ cm}^2$ и $\sigma_{\text{exc}}^{\text{N}}(2p_{\pm 1})\big|_{E_c=1.2 \text{ MeV}} = 3.60 \cdot 10^{-16} \text{ cm}^2.$

При расчете сечений одноэлектронного захвата и возбуждения для столкновения ионов He⁺ с ионами O⁷⁺ в формулах (18), (19) выражения для парциальных сечений $\sigma_{sec}(5)$ и $\sigma_{exc}(2p)$ были заменены на следующие:

$$\sigma_{\rm sec}(5) = \sigma_5(5g_0) + \sigma_9(5g_{\pm 1})$$

И

$$\sigma_{\rm exc}(2p_0) = \sigma_6(2p_0), \quad \sigma_{\rm exc}(2p_{\pm 1}) = \sigma_{10}(2p_{\pm 1}).$$

Результаты расчетов приведены на рис. 4. Полное сечение одноэлектронного захвата Σ_{sec}^{O} имеет максимум $(40.95 \cdot 10^{-16} \text{ cm}^2)$ при энергии столкновения $E_c \simeq 1.75 \,\text{MeV}$. При малых энергиях столкновения ($E_c \leq 0.4 \,\text{MeV}$) электрон захватывается в основном в состояния n = 3 иона $O^{6+}(1snl)$, в интервале энергий E_c от 0.4 до 0.7 MeV захват электрона идет в основном в состояния n = 4 и в интервале энергий E_c от 0.7 до 2.6 MeV — в состояния n = 5. При $E_c > 2.6 \,\text{MeV}$ основным снова становится захват электрона в состояния n = 4 иона $O^{6+}(1snl)$. Полное сечение возбуждения $\Sigma_{\rm exc}^{\rm O}$, растет с ростом E_c во всем интервале рассмотренных энергий столкновения, оставаясь меньше полного сечения одноэлектронного захвата. При $E_c > 1.0 \,\text{MeV}$ возбуждение иона He^+ идет в основном в состояние $2p_0$ и при $E_c = 3.0 \,\mathrm{MeV}$ $\sigma^{\mathrm{O}}_{\mathrm{exc}}(2p_0)$ превосходит $\sigma^{\mathrm{O}}_{\mathrm{exc}}(2p_{\pm 1})$ примерно в 4 раза (при $E_c = 3.0 \,\mathrm{MeV} \, \sigma_{\mathrm{exc}}^{\mathrm{O}}(2p_0) = 21.84 \cdot 10^{-16} \,\mathrm{cm}^2$ и $\sigma_{\mathrm{exc}}^{\mathrm{O}}(2p_{\pm 1}) = 5.05 \cdot 10^{-16} \,\mathrm{cm}^2$).

Заключение

Получены новые данные о полных и парциальных сечениях одноэлектронного захвата и возбуждения снаряда при столкновениях ионов He^+ с водородоподобными ионами C^{5+} , N^{6+} , O^{7+} в интервале энергий столкновений от 0.2 до 3.0 MeV.

Наибольшее значение полного сечения одноэлектронного захвата (40.95 $\cdot 10^{-16}$ cm²) получено для столкновения He⁺ – O⁷⁺ при $E_c = 1.75$ MeV, а наибольшее значение полного сечения возбуждения иона He⁺ (39.53 $\cdot 10^{-16}$ cm²) — для столкновения He⁺ – C⁵⁺ при $E_c = 2.33$ MeV. В столкновениях He⁺ – N⁶⁺, O⁷⁺ сечение одноэлектронного захвата остается больше сечения возбужденного во всем интервале рассмотренных энергий столкновения, а в столкновениях He⁺ + C⁵⁺ — только при $E_c < 0.9$ MeV.

Во всех рассмотренных системах при малых энергиях столкновений основной захват идет в 1s3l-состояния ионов $A^{(Z_A-2)+}$. При увеличении E_c в столкновении $He^+ - C^{5+}$ основным становится одноэлектронный захват в 1s5l и затем в 1s4l-состояние ионов C^{4+} , в столкновениях $He^+ - N^{6+}$ — одноэлектронный захват в 1s4l- и затем в 1s5l-состояние ионов N^{5+} и в столкновении $He^+ - O^{7+}$ — одноэлектронный захват в 1s4l-

затем в 1*s*5*l*- и снова в 1*s*4*l*-состояние иона O⁶⁺. Ниже мы приводим для каждой столкновительной системы интервалы E_c (в MeV), в которых одноэлектронный захват происходит преимущественно в *n* состояния ионов $A^{(Z_A-2)+}(1snl)$ (в скобках приводятся максимальные значения сечений $\sigma_{sec}(n)$ (в 10⁻¹⁶ cm²) в каждом из интервалов)

$$\begin{split} n &= 3 \qquad n = 4 \\ \mathrm{C^{4+}(1snl):} \ E_c < 0.7 \ (7.79); \ E_c > 1.0 \ (12.58); \\ \mathrm{N^{5+}(1snl):} \ E_c < 0.4 \ (7.02); \ 0.4 < E_c < 1.1 \ (13.25); \\ \mathrm{O^{6+}(1snl):} \ E_c < 0.4 \ (7.05); \ 0.4 < E_c < 0.71 \ (10.69); \\ E_c > 2.6 \ (20.30) \end{split}$$

$$\begin{split} n &= 5 \\ \mathrm{C}^{4+}(1snl): \ 0.7 < E_c < 1.0 \, (8.72); \\ \mathrm{N}^{5+}(1snl): \ E_c > 1.1 \, (12.63); \\ \mathrm{O}^{6+}(1snl): \ 0.7 < E_c < 2.6 \, (23.28) \end{split}$$

(парциальные сечения одноэлектронного захвата в 1*s*2*p*-состояния ионов $A^{(Z_A-2)+}$ во всех рассмотренных системах малы: $\sigma_{sec}^{C}(2) < 2.0 \cdot 10^{-16} \text{ cm}^2$, $\sigma_{sec}^{N}(2) < 1.0 \cdot 10^{-16} \text{ cm}^2$ и $\sigma_{sec}^{O}(2) < 0.3 \cdot 10^{-16} \text{ cm}^2$).

Возбуждение иона He^+ во всех рассмотренных системах происходит в основном в состояние $2p_0$.

Работа поддержана РФФИ (проект № 02-02-17590) и International Atomic Energy Agency (Research Contract # RUS11720/R2).

Список литературы

- Tawara H. Roles of Atomic and Molecular Processes in Fusion Plasma Researches. NIFS-DATA-25. Nagoya (Japan), May 1995. 47 p.
- [2] Nikulin V.K., Guschina N.A. // J. Phys. B. 1978. Vol. 11. N 20.
 P. 3553–3562.
- [3] Гущина Н.А., Никулин В.К. // Опт. и спектр. 1992. Т. 73. С. 458–468.
- Bates D.R., McCarroll R. // Proc. R. Soc. A. 1958. Vol. 245.
 P. 175–183.
- [5] Hatton G.J., Lane N.F., Winter T.G. // J. Phys. B. 1979. Vol. 12. N 18. P. L571.
- [6] Nikulin V.K., Guschina N.A. // Atomic Plasma and Material Interaction Data for Fusion. 2002. Vol. 10. P. 95–102.
- [7] Гущина Н.А., Никулин В.К. Препринт ФТИ им. А.Ф. Иоффе. № 1717. СПб.,1998. 66 с.
- [8] Никулин В.К., Гущина Н.А. // ЖТФ. 1999. Т. 69. Вып. 1. С. 15–28.
- [9] Банд И.М., Тржасковская М.Б., Фомичев В.И. Препринт Ленинградского института ядерной физики им. Б.П. Константинова АН СССР. № 299. Л., 1977. 46 с.
- [10] Гущина Н.А., Никулин В.К., Самойлов А.В. и др. Препринт ФТИ им. А.Ф. Иоффе. № 811. Л., 1983. 26 с.
- [11] Никулин В.К., Гущина Н.А. Препринт ФТИ им. А.Ф. Иоффе. № 1764. СПб., 2003. 42 с.
- [12] Piacentini R.D., Salin A. // Computer Phys. Comm. 1976. Vol. 12. P. 199.