01;03 Нелинейные периодические волны на заряженной поверхности вязкой жидкости, покрытой пленкой поверхностно-активного вещества

© Д.Ф. Белоножко, А.И. Григорьев

Ярославский государственный университет им. П.Г. Демидова, 150000 Ярославль, Россия e-mail: grig@uniyar.ac.ru

(Поступило в Редакцию 6 апреля 2004 г.)

Во втором приближении по амплитуде начальной деформации решена задача определения профиля периодической капиллярно-гравитационной волны, распространяющейся по поверхности жидкости, покрытой пленкой поверхностно-активного вещества. Показано, что наличие пленки поверхностно-активного вещества существенно сказывается на интенсивности нелинейного взаимодействия гармоник, составляющих нелинейную волну.

В последние годы в научной литературе появился цикл работ, посвященный асимптотическому исследованию нелинейных периодических капиллярно-гравитационных волн на поверхности заряженной жидкости, обладающей конечной вязкостью [1-4]. Аппарат, развитый в этих работах, позволяет строго учитывать вязкость при решении задач о нелинейном волновом движении. В результате появилась возможность исследования релаксационных явлений, связанных с нелинейным волновым движением. Говоря иными словами, появилась возможность корректно работать с условием баланса вязких и релаксационных напряжений на свободной поверхности жидкости в нелинейных задачах. Настоящая работа посвяшена исследованию влияния нерастворимой пленки поверхностно-активного вещества (ПАВ) на интенсивность нелинейного взаимодействия гармоник, составляющих нелинейную периодическую бегущую волну, распространяющуюся по заряженной поверхности жидкости, покрытой пленкой ПАВ.

Исследование влияния ПАВ на распространение волн по поверхности жидкости — вопрос, лежащий на стыке классической механики жидкости и физической химии [5], и представляет интерес для различных академических, технических и технологических приложений [6-11]. На настоящий момент все исследования по данному вопросу выполнены в приближении волн бесконечно малой амплитуды и касаются главным образом исследования вопроса определения оптимальной концентрации ПАВ, обеспечивающей эффективное затухание капиллярно-гравитационных волн. Существование такой оптимальной концентрации доказано экспериментально (см., например, [6] и цитируемую там литературу), и существуют моделирующие это явление теории [6,7,9,11]. Однако из-за отсутствия в объяснении явления полной физической ясности данный вопрос постоянно вновь и вновь поднимается [9,11]. В настоящей работе сделано отступление от этой традиции и поставлена цель выявить другие стороны влияния ПАВ на капиллярное волновое движение, не связанные с затуханием волн.

1. Формулировка задачи

Пусть в декартовой системе координат Oxyz с осью Oz, направленной против направления действия силы тяжести, вязкая несжимаемая идеально проводящая жидкость заполняет полупространство z < 0. Жидкость имеет плотность ρ и кинематическую вязкость v. На ее свободной поверхности равномерно распределены электрический заряд с поверхностной плотностью κ_0 и ПАВ с поверхностной плотностью Γ_0 . Коэффициент поверхностной диффузии ПАВ обозначим D. Примем, что по свободной поверхности жидкости в положительном направлении оси Ox в начальный момент времени t = 0 начинает распространяться бегущая периодическая волна длины λ . Требуется найти ее профиль при t > 0.

Периодический профиль волны может быть однозначно восстановлен по амплитудам гармоник его разложения в ряд Фурье на пространственном периоде λ . Будем считать, что амплитуда главной гармоники η известна. В дальнейшем изложении в качестве параметра, характеризующего длину волны, будем использовать волновое число $k = 2\pi/\lambda$. Движение жидкости для простоты будем считать независящим от координаты *у*.

В процессе распространения волны будет иметь место перераспределение ПАВ по свободной поверхности, так что концентрация ПАВ оказывается функцией времени и горизонтальной координаты $\Gamma = \Gamma(t, x)$. Локальные изменения в концентрации ПАВ вызывают локальные изменения величины коэффициента поверхностного натяжения γ . В качестве модели зависимости $\gamma = \gamma(\Gamma)$ примем допущение о локальном термодинамическом равновесии между поверхностной фазой ПАВ и жидкостью. Это означает, что изменение локального значения коэффициента поверхностного натяжения в соответствии с изотермой $\gamma = \gamma(\Gamma)$, считающейся известной.

Математическая формулировка задачи определения профиля волны имеет вид

$$\begin{split} \partial_t \mathbf{U} + (\mathbf{U} \cdot \nabla) \mathbf{U} &= -\frac{1}{\rho} \, \nabla p + \nu \Delta \mathbf{U} + \mathbf{g}; \\ \mathbf{U} &= u \mathbf{e}_x + \nu \mathbf{e}_z; \\ \nabla \cdot \mathbf{U} &= 0; \qquad \Delta \Phi = 0; \\ z &= \xi: \qquad \partial_t \xi + u \partial_x \xi = \nu; \\ p - 2\rho\nu \left(\mathbf{n} (\mathbf{n} \cdot \nabla) \mathbf{U} \right) + \frac{(\nabla \Phi)^2}{8\pi} = -\frac{\gamma \partial_{xx} \xi}{(1 + (\partial_x \xi)^2)^{3/2}}; \\ -\rho\nu \left[\left(\boldsymbol{\tau} \left(\mathbf{n} \cdot \nabla \right) \mathbf{U} \right) + \left(\mathbf{n} (\boldsymbol{\tau} \cdot \nabla) \mathbf{U} \right) \right] \\ &+ \frac{\partial_x \gamma}{\sqrt{1 + (\partial_x \xi)^2}} = 0; \quad \Phi = 0; \\ \partial_1 \Gamma + \frac{1}{1 + (\partial_x \xi)^2} \left[\partial_x (\Gamma u) + \partial_x \xi (\Gamma \partial_z u + \partial_x (\Gamma v)) + (\partial_x \xi)^2 \Gamma \partial_z v \right] \\ &- D \left(\frac{\partial_{xx} \Gamma}{1 + (\partial_x \xi)^2} - \frac{\partial_x \xi \partial_{xx} \xi \partial_x \Gamma}{(1 + (\partial_x \xi)^2)^2} \right) = 0; \\ z \to -\infty: \quad u \to 0; \quad v \to 0; \end{split}$$

$$z \to \infty; \quad \nabla \Phi \to E_0 \mathbf{e}_z; \quad E_0 = 4\pi\kappa_0.$$

Здесь **e**_x и **e**_z — орты осей; **n** и τ — орты внешней нормали и касательной к возмущенной волновым движением свободной поверхности жидкости $z = \xi \equiv \xi(t, x, z)$ (аналитические выражения для **n** и τ приведены в приложении). Начальные условия задачи будем определять в процессе решения таким образом, чтобы получить в результате наименее громоздкое и наиболее удобное для качественного анализа профиля волны выражение, как это обычно делается в задачах о нелинейных периодических волнах [1–4,12,13].

В строгой постановке исходные данные представлены набором величин η , k, ρ , g, v, κ_0 , Γ_0 , D и изотермой $\gamma = \gamma(\Gamma)$, а неизвестными считаются функции: $\xi = \xi(t, x, z)$ — профиль свободной поверхности; u = u(t, x, z) — горизонтальная и v = v(t, x, z) — вертикальная компоненты поля скоростей U в жидкости; p = p(t, x, z) — распределение давления в ней; $\Gamma = \Gamma(t, x)$ — поверхностная концентрация ПАВ; $\Phi = \Phi(t, x, z)$ — потенциал электрического поля над жидкостью.

2. Принцип построения асимптотического решения

Согласно методике [3,4], использованной ранее при решении задачи о расчете нелинейных волн в вязкой несжимаемой жидкости в отсутствие ПАВ, решение ищется в виде

$$\begin{pmatrix} \xi \\ u \\ v \\ p \\ \Phi \\ \Gamma \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -\rho g z - \frac{E_0^2}{8\pi} \\ E_0 z \\ \Gamma_0 \end{pmatrix} + \begin{pmatrix} \xi_1 \\ u_1 \\ v_1 \\ p_1 \\ \Phi_1 \\ \Gamma_1 \end{pmatrix} + \begin{pmatrix} \xi_2 \\ u_2 \\ v_2 \\ p_2 \\ \Phi_2 \\ \Gamma_2 \end{pmatrix} + \begin{pmatrix} O(\xi_1^3) \\ O(u_1^3) \\ O(p_1^3) \\ O(\Phi_1^3) \\ O(\Phi_1^3) \\ O(\Phi_1^3) \end{pmatrix};$$

$$\begin{pmatrix} \xi_2 \\ u_2 \\ v_2 \\ p_2 \\ \Phi_2 \\ \Gamma_2 \end{pmatrix} = \begin{pmatrix} O(\xi_1^2) \\ O(u_1^2) \\ O(v_1^2) \\ O(v_1^2) \\ O(p_1^2) \\ O(\Phi_1^2) \\ O(\Phi_1^2) \\ O(\Phi_1^2) \end{pmatrix};$$

$$\xi_1 = \eta f(t) \cos(kx - \omega t); \quad f(0) = 1,$$

где величины с индексом 1 определяют линейное по амплитуде приближение, а величины с индексом 2 дают поправки второго порядка малости.

В полную формулировку задачи входит коэффициент поверхностного натяжения $\gamma = \gamma(\Gamma)$ и его частотные производные по *x*. Из степенных разложений

$$\begin{split} \gamma &= \gamma(\Gamma) = \gamma_0 + (\Gamma_1 + \Gamma_2 + \ldots)(\partial_{\Gamma}\gamma)_0 \\ &+ (\Gamma_1 + \Gamma_2 + \ldots)^2 (\partial_{\Gamma\Gamma}\gamma)_0 + \ldots; \\ \partial_x \gamma &= (\partial_{\Gamma}\gamma)(\partial_x \Gamma) \\ &= \left((\partial_{\Gamma}\gamma)_0 + (\Gamma_1 + \Gamma_2 + \ldots)(\partial_{\Gamma\Gamma}\gamma)_0 + \ldots \right) (\partial_x \Gamma), \end{split}$$

в которых индекс нуль указывает на то, что значения функции вычисляются на невозмущенной плоской поверхности жидкости, при $\Gamma = \Gamma_0$ с точностью до величин второго порядка малости имеем, полагая $\chi \equiv (\partial_{\Gamma} \gamma)_0$, $\beta \equiv (\partial_{\gamma \gamma} \gamma)_0$,

$$\gamma \partial_{xx} \xi \approx \gamma_0 \partial_{xx} \xi_1 + \gamma_0 \partial_{xx} \xi_2 + \chi \Gamma_1 \partial_{xx} \xi_1;$$

 $\partial_x \gamma \approx \chi \partial_x \Gamma_1 + \chi \partial_x \Gamma_2 + \beta \Gamma_1 \partial_x \Gamma_1.$

Используя эти приближенные выражения и асимптотические соотношения для ξ , u, v, p, Φ , Γ , несложно построить задачи первого и второго порядков малости методом, описанным в [3,4]. Полная математическая формулировка задач первого и второго порядков малости имеет вид

$$\partial_{1}\mathbf{U}_{m} + \frac{1}{\rho}\boldsymbol{\nabla}p_{m} - \nu\Delta\mathbf{U}_{m} = \mathbf{V}_{m};$$

$$\boldsymbol{\nabla}\cdot\mathbf{U}_{m} = \mathbf{0}; \qquad \Delta\Phi_{m} = \mathbf{0};$$

$$z = \xi: \qquad \partial_{t}\xi_{m} - v_{m} = f_{1m};$$

$$p_{m} - 2\rho\nu\partial_{z}v_{m} - \frac{E_{0}}{4\pi}\partial_{z}\Phi_{m} + \gamma_{0}\partial_{xx}\xi_{m} = f_{2m};$$

$$-\rho\nu(\partial_{z}u_{m} + \partial_{x}v_{m}) + \chi\partial_{x}\Gamma_{m} = f_{3m}; \quad \Phi_{m} - E_{0}\xi_{m} = f_{4m};$$

$$\partial_{1}\Gamma_{m} + \Gamma_{0}\partial_{x}u_{m} - D\partial_{xx}\Gamma_{m} = f_{5m};$$

$$z \to -\infty: u_{m} \to 0; \quad v_{m} \to 0; \quad z \to \infty: |\boldsymbol{\nabla}\Phi_{m}| \to 0.$$

Журнал технической физики, 2004, том 74, вып. 11

При m = 1 выписанные соотношения представляют собой формулировку задачи первого порядка малости. Для нее $V_1 = 0$; $f_{n1} = 0$ (n = 1, 2, 3, 4, 5). При m = 2 получим задачу второго порядка малости. Величины V_2 и $f_{n2} = 0$ (n = 1, 2, 3, 4, 5) выражаются через решения задачи первого порядка по формулам, приведенным в приложении.

3. Решение задачи в квадратичном приближении по амплитуде периодической бегущей волны

Последовательно решая задачи первого и второго порядков малости стандартными методами [3,4], несложно найти во втором приближении по амплитуде η выражение для формы профиля периодической бегущей капиллярно-гравитационной волны

$$\xi = \eta \cos \theta \exp(rt) + 2\eta^2 \Big[\operatorname{Re}(\xi) \cos(2\theta) - \operatorname{Im}(\xi) \sin(2\theta) \Big] \exp(2rt);$$

$$\theta = \omega t - kx; \quad \omega = \operatorname{Im}(S); \quad r = \operatorname{Re}(S); \quad \xi = \frac{M_1}{M_0}. \quad (1)$$

Здесь S — комплексная частота, вычисляемая на этапе решения задачи первого порядка малости; M_0 и M_1 вычисляются в процессе решения задачи второго порядка малости (см. Приложение). Из-за большого количества исходных данных и промежуточных переменных важно выделить структуру функциональной зависимости величин S, M_0 , M_1 от исходных параметров задачи. С помощью функции $\gamma = \gamma(\Gamma)$ построим численные параметры

$$\Pi_{0} = \gamma(\Gamma_{0}); \quad \Pi_{1} = \Gamma_{0} \left(\frac{d\gamma}{d\Gamma}\right)_{\Gamma = \Gamma_{0}};$$
$$\Pi_{2} = \Gamma_{0}^{2} \left(\frac{d^{2}\gamma}{d\Gamma^{2}}\right)_{\Gamma = \Gamma_{0}}.$$
(2)

Параметр Π_0 , имеющий смысл коэффициента поверхностного натяжения на равновесной плоской свободной поверхности жидкости, можно использовать для перехода от параметра κ_0 к безразмерному параметру Тонкса– Френкеля [8,14]

$$W = 4\pi\kappa_0^2/\sqrt{\rho g \Pi_0}.$$

Теперь можно показать, что величины $S = S(\rho, g, v, k, W, D, \Pi_0, \Pi_1), M_0 = M_0(\rho, g, v, k, W, D, \Pi_0, \Pi_1)$ и $M_1 = M_1(\rho, g, v, k, W, D, \Pi_0, \Pi_1, \Pi_2)$ выражаются непосредственно через значения параметров $\rho, g, v, k, W, D, \Pi_0, \Pi_1, \Pi_2$, причем от Π_2 зависит только величина M_1 .

Комплексная частота вычисляется по формуле

$$S = \omega_0 \cdot \alpha(\rho, g, v, k, W, D, \Pi_0, \Pi_1);$$

$$\omega_0^2 = kg(1 + (ak)^2 - akW); \quad a = \sqrt{\frac{\Pi_0}{\rho g}}, \qquad (4)$$

a — капиллярная постоянная; безразмерный комплексный параметр α — корень безразмерного дисперсионного соотношения, соответствующий капиллярногравитационной волне (дисперсное соотношение и способ выбора нужного корня приведены в приложении); промежуточный для вычислений параметр ω_0 равен частоте капиллярно-гравитационных волн бесконечно малой амплитуды с волновым числом k на поверхности идеальной жидкости с постоянным значением коэффициента поверхностного натяжения Π_0 .

Набор переменных $\eta, \rho, g, \nu, k, W, D, \Pi_0, \Pi_1, \Pi_2$, через которые по формуле (1) выражается профиль нелинейной волны, обладает двумя важными свойствами. Во-первых, в приведенном списке исходных переменных отсутствует изотерма. Вместо функции $\gamma = \gamma(\Gamma)$ используются три числовых параметра П0, П1, П2, имеющих размерность поверхностного натяжения и характеризующие локальные свойства изотермы в окрестности равновесного состояния свободной поверхности. Такая замена оказалась возможной благодаря тому, что в процессе решения задачи использовались степенные разложения значения коэффициента поверхностного натяжения на свободной поверхности в окрестности равновесного значения. Как уже отмечалось, П₀ имеет смысл коэффициента поверхностного натяжения на равновесной плоской поверхности жидкости, по которой распределено ПАВ с концентрацией Г₀. Параметр П₁ равен произведению концентрации ПАВ на тангенс угла наклона изотермы в точке $\Gamma = \Gamma_0$ и называется упругостью пленки. Для обычных (не инактивных) ПАВ параметр $\Pi_1 < 0$. Он определяет силу на единицу длины, действующую между двумя линейными элементами поверхности с разными концентрациями ПАВ. Эта сила возникает при нарушении однородности распределения ПАВ в пленке и направлена вдоль поверхности пленки. Параметр П₂ определяется кривизной изотермы в точке $\Gamma = \Gamma_0$.

Во-вторых, в новом наборе имеется параметр *W*, характеризующий устойчивость однородно заряженной плоской поверхности жидкости по отношению к собственному заряду [14]. Из решения задачи первого порядка малости [8,10] известно, что при

$$\omega_0^2 < 0,$$
 r.e. $W > \frac{1}{ak} + ak,$
 $\operatorname{Re}(S) = r > 0,$ $\operatorname{Im}(S) = \omega = 0,$ (5)

так как соотношение для комплексной частоты *S* из (4) при переходе к идеальной жидкости в отсутствие пленки ПАВ (ν , D, Π_1) \rightarrow 0 превращается в $S = \pm i\omega_0$. В этом случае уже в первом порядке малости электрические силы на гребнях волн с волновым числом *k* преобладают над лапласовскими. Поверхность жидкости оказывается неустойчивой по отношению к любым сколь угодно малым по амплитуде периодическим волновым возмущениям, для которых выполняется условие (5), т.е. реализуется неустойчивость заряженной поверхности жидкости по отношению к собственному электрическому заряду [8,10,14]. Из (5) легко видеть, что если $0 \le W < 2$, то все волновые числа k > 0 устойчивы. При W = 2 появляется волновое число $k_* = 1/a$, лежащее при границе устойчивости в том смысле, что любое сколь угодно малое превышение величины W над значением W = 2 активизирует неустойчивость волнового возмущения с $k = k_*$. При W > 2 существует интервал неустойчивых волновых чисел, содержащий k_* , который расширяется с ростом W.

Когда в выражении (1) r > 0 и $t \to \infty$ отношение поправочного члена разложения, пропорционального η^2 , к главному, пропорциональному η , дает выражение вида $\infty \times \eta$, это означает, что на больших интервалах времени нарушается равномерность асимптотического разложения (1). Кроме того, при выполнении условия (5) режим движения свободной поверхности перестает быть волновым, поскольку $\omega = 0$.

В связи со сказанным будем исследовать профиль волны (1) в предположении, что выполняется условие

$$W < \frac{1}{ak} + ak$$
: \Rightarrow $r = \operatorname{Re}(S) < 0$, $\operatorname{Im}(S) = \omega \neq 0$.
(6)

В этом случае параметр r имеет смысл декремента затухания волны в первом порядке малости, а в выражении (1) для профиля волны отношение поправочного члена разложения к главному ограничено и стремится к нулю в пределе $\eta \to 0$ при всех значениях времени t > 0.

Полезно отметить, что выражение для профиля волны (1) можно переписать в альтернативной форме

$$\xi = \eta \cos \theta \exp(rt) + \eta^2 A \cos(2\theta + \phi) \exp(2rt);$$

$$A = 2\sqrt{\operatorname{Re}(\xi)^2 + \operatorname{Im}(\xi)^2};$$

$$\phi = \begin{cases} \operatorname{arctg}\left(\frac{\operatorname{Im}(\xi)}{\operatorname{Re}(\xi)}\right), & \operatorname{если} \operatorname{Re}(\xi) > 0; \\ \frac{\pi}{2}, & \operatorname{если} \operatorname{Re}(\xi) = 0; \\ \operatorname{arctg}\left(\frac{\operatorname{Im}(\xi)}{\operatorname{Re}(\xi)}\right) + \pi, & \operatorname{если} \operatorname{Re}(\xi) < 0. \end{cases}$$
(7)

Параметры ξ , r, θ такие же, как в (1).

В нижеследующем изложении перейдем к безразмерным переменным, в которых $\rho = g = \gamma = 1$, а остальные величины измеряются в единицах своих характерных масштабов

$$k^* = \frac{1}{a}; \quad \eta^* = a; \quad \xi_* = \frac{1}{a};$$

 $\Pi_n^* = \gamma; \quad \nu^* = \sqrt{ga^3}; \quad D^* = \sqrt{ga^3}$

Внутреннее нелинейное взаимодействие волн при отсутствии пленки ПАВ

В работах [1–4] выражение (1) для профиля нелинейной периодической бегущей капиллярно-гравитационной волны подробно исследовано в простейшем случае, когда на свободной поверхности нет пленки ПАВ, и

Рис. 1. Зависимости A = A(k) безразмерного амплитудного множителя поправки второго порядка малости к профилю волны от безразмерного волнового числа при W = 0, построенные для $\Pi_1 = 0$ (*I*), -0.4 (*2*).

показано, что нелинейный характер волнового движения наиболее отчетливо проявляется вблизи значения безразмерного волнового числа

$$k_* = 1/\sqrt{2}.$$
 (8)

Это следует из резонансоподобного вида зависимости A = A(k) (рис. 1). Высота резонансного пика характеризует степень интенсивности нелинейного взаимодействия волны с волновым числом k (главное волновое слагаемое в (1), пропорциональное η ; в нижеследующих рассуждениях будем называть его "k-волна") и волны с волновым числом 2k (поправочное волновое слагаемое в (1), пропорциональное η^2 ; "2k-волна"). Фазовые скорости обеих волн совпадают. Изменение значения k не влияет на амплитуду *η* главного волнового слагаемого, но заметно сказывается на величине множителя А (см. (7)), определяющего амплитуду 2k-волны. Таким образом, волновое число k, определяющее длину волны главного волнового слагаемого, влияет на амплитуду добавки второго порядка малости. Можно сказать, что k-волна и 2k-волна взаимодействуют. Именно такое взаимодействие в литературе по нелинейным волнам (см., например [15]) называется внутренним нелинейным взаимодействием волн. Важно обратить внимание на то, что мерой интенсивности взаимодействия является величина амплитудного множителя А в формуле (7).

Волна с волновым числом 2k, о которой идет речь, не является самостоятельной. Ее частота и волновое число в отличие от главной в (1) *k*-волны в общем случае не удовлетворяют дисперсионному соотношению. Только при $k = k_*$ дисперсионное соотношение для 2kволны удовлетворяется. Фазовая скорость и амплитуда 2k-волны полностью определяются *k*-волной, поэтому 2k-волна является не самостоятельным волновым движением, а волной, порожденной главной *k*-волной. Высота пика амплитуды A, а значит и степень интенсивности нелинейного взаимодействия, зависят от вязкости жидкости и величины поверхностного электрического заряда. Как показано в [1], с уменьшением вязкости высота пика монотонно растет и в пределе идеальной жидкости обращается в бесконечность, что соответствует реализации трехмодового нелинейного резонансного взаимодействия капиллярных и гравитационных волн в его вырожденном варианте [12–13]. При отличной от нуля вязкости высота резонансного пика конечна [1–4].

В общем случае нелинейная периодическая капиллярно-гравитационная волна кроме главной *k*-волны и поправочной 2*k*-волны содержит бесконечный набор гармоник: 3*k*-, 4*k*-, 5*k*-волны, которые могут взаимодействовать между собой. Мы рассматриваем простейший вариант такого взаимодействия.

В [2] отмечено, что степень интенсивности нелинейного взаимодействия волн довольно сложным образом зависит от значения поверхностной плотности заряда, квадрат которой пропорционален параметру W. Известно [3,4], что на плоскости параметров (k, W), на линии

$$W = (k + k^{-1})/2, (9)$$

амплитуда квадратичного по амплитуде слагаемого профиля (1) имеет минимум, стремящийся к нулю при уменьшении до нуля вязкости. Это означает, что для идеальной жидкости при таких значениях k и W главное волновое движение реализуется без порождения 2k-волны, т.е. механизм возбуждения этой волны, а значит и воздействия на нее, в такой ситуации не работает. В этом случае решение (1) состоит только из k-волны, а часть решения, отвечающая за 2k-волну с амплитудой, зависящей от свойств главной волны, обращается в нуль. С другой стороны, как показано в [3], всегда существует самостоятельная 2*k*-волна, амплитуда которой не зависит от главной *k*-волны. Она является решением однородной части задачи второго порядка малости и распространяется со своей фазовой скоростью, совпадающей со скоростью k-волны, только при $k = k_*$. Частота и волновое число этой самостоятельной 2kволны удовлетворяют дисперсионному уравнению. В (1) и (7) слагаемое, отвечающее, не зависимой от главного слагаемого, самостоятельной 2k-волне, не выписано, поскольку интерес в контексте проводимого исследования представляет только та часть решения, которая отвечает за нелинейное взаимодействие волн. В случае, когда k и W удовлетворяют (9), можно произвольно задать амплитуду самостоятельной 2k-волны, даже если амплитуда к-волны равна нулю и волны с волновыми числами k и 2k будут распространяться независимо. Для вязкой жидкости, если k и W удовлетворяют (9), интенсивность нелинейного взаимодействия сведена к минимуму.

На рис. 2 представлены зависимости A = A(k, W) при различных значениях параметра Π_1 . Сечение поверхности, соответствующей ситуации $\Pi_1 = 0$, плоскостью

Рис. 2. Зависимости A = A(k, W) безразмерного амплитудного множителя поправки второго порядка малости к профилю волны от безразмерного волнового числа и параметра W, характеризующего поверхностную плотность электрического заряда, построенные при различных значениях безразмерного коэффициента Π_1 , характеризующего упругость пленки ПАВ.

W = const соответствует зависимости, представленной линией 1 на рис. 1. На рис. 2 при $\Pi_1 = 0$ четко выделяется резонансный гребень, расположенный над прямой $k = k_*$, лежащей в плоскости параметров (k, W). Видно, что линия гребня имеет минимум. Положение минимума $k = k_* \approx 0.70$, $W = 0.5(k_* + k_*^{-1}) \approx 1.06$ определяется как точка на плоскости параметров (k, W), в которой пересекаются прямая $k = k_*$ и кривая (9). Из этого рисунка понятно, что если рассмотреть семейство зависимостей, аналогичных представленным на рис. 1 линией 1, но построенных при различных W, то высота резонансного гребня на них будет изменяться с увеличением W немонотонным образом. При увеличении W от нуля до $W \approx 1.06$ она уменьшается до близкого к нулю минимума в связи с приближением координат гребня (k, W) к кривой минимальности нелинейного взаимодействия (9). Дальнейшее увеличение W связано с удалением положения гребня от кривой (9) и сопровождается ростом величины резонансного максимума, что отражает рост интенсивности нелинейного взаимодействия [3].

5. Влияние ПАВ на интенсивность внутреннего нелинейного взаимодействия

Чтобы исследовать влияние наличия пленки ПАВ на интенсивность нелинейного взаимодействия волн, проведем анализ зависимостей величины амплитудного множителя *A* от различных исходных параметров.

Семейство поверхностей, приведенных на рис. 2, показывает, как ведет себя зависимость A = A(k, W) при

Рис. 3. Зависимости $A = A(k, -\Pi_1)$ безразмерного амплитудного множителя поправки второго порядка малости к профилю волны от безразмерного волнового числа и безразмерного параметра Π_1 , характеризующего упругость пленки ПАВ, построенные при различных значениях безразмерного параметра W, характеризующего поверхностную плотность электрического заряда.

различных значениях П₁ — упругости пленки ПАВ (известно [16], что ПАВ, образующие на поверхности жидкости пленки, уменьшают ее поверхностное натяжение и для них $\Pi_1 < 0$, в этой связи иллюстративные расчеты проведены для отрицательных значений П₁). Из рис. 2 видно, что при увеличении абсолютного значения |П1| характер зависимостей A = A(k, W) изменяется довольно сложным образом. При выбранном значении безразмерной вязкости $\nu = 0.01$ увеличение значения $|\Pi_1|$ до величины ≈ 0.15 существенно ослабляет интенсивность нелинейного взаимодействия при малых значениях поверхностной плотности заряда W < 1. Резонансный гребень на зависимости, построенной при $|\Pi_1| \approx 0.15$, выделяется весьма слабо. Дальнейшее увеличение |П₁| приводит к росту интенсивности нелинейного взаимодействия. При $|\Pi_1| \approx 0.4$ мы получим практически ту же картину взаимодействия, что при $|\Pi_1| = 0$. Более внимательный анализ приведенных зависимостей показывает, что кроме воздействия на интенсивность взаимодействия упругость ПАВ влияет на величину резонансного волнового числа (7). После прохождения упругостью ПАВ величины $|\Pi_1| \approx 0.15$ дальнейшее увеличение $|\Pi_1|$ связано с появлением резонансного гребня, который при W = 0 берет свое начало не над точкой $k = k_* \approx 0.7$, а над значением $k \approx 0.8$. Это особенно четко видно из

рис. 1, на котором приведены две зависимости A = A(k)при $\Pi_1 = 0$ (кривая I) и $\Pi_1 = -0.4$ (кривая 2), значения остальных параметров такие же, как для рис. 2. Величина смещения резонансного значения волнового числа зависит от вязкости и параметра W. При v = 0.05, $\Pi_1 = -0.4$ и W = 0 резонансное значение k близко к единице, но высота резонансного пика уменьшается до единицы, что существенно ниже высоты пиков, представленных на рис. 1. Увеличение W возвращает резонансное значение волнового числа к значению k_* уже при $W \approx 1$. Дальнейшее увеличение W не изменяет положения резонансного гребня над плоскостью параметров (k, W).

На рис. З показано семейство зависимостей $A = A(k, -\Pi_1)$ при различных значениях W. Как и для рис. 2, сечение поверхности, показанной на рисунках плоскостью $\Pi_1 = 0$, дает зависимость, представленную на рис. 1 линией I. Вторая переменная на плоскости аргументов в данном случае не W, как на рис. 2, $a -\Pi_1$. При переходе от семейства зависимостей с рис. 2 к семейству, представленному на рис. 3, параметры W и Π_1 , меняются ролями. Но качественное поведение зависимостей, показанных на рис. 3, оказывается аналогичным тому, которое наблюдалось при анализе семейства зависимостей рис. 2. При W = 0, когда на интенсивность нелинейного взаимодействия волн влияет только пара-

метр упругости пленки, ясно выделяется резонансный гребень, расположенный над прямой $k = k_*$, лежащей в плоскости параметров $(k, -\Pi_1)$. Линия гребня имеет минимум при $-\Pi_1 \approx 0.18$. В данном случае это значение упругости пленки ПАВ, при котором нелинейное взаимодействие волн минимально. Увеличение параметра W от нуля до единицы существенно уменьшает высоту резонансного гребня по всей линии его хребта, так что его контуры на рисунке теряют четкость, особенно при малых значениях $-\Pi_1$. При W > 1 контуры гребня снова становятся отчетливыми. Линия резонансного гребня на всех зависимостях рис. 3 начинается над точкой $k = k_*$. Далее линия гребня до достижения минимума идет над прямой $k = k_*$, лежащей в плоскости параметров (k, -П₁). После прохождения минимума линия гребня слабо отклоняется в направлении увеличения волновых чисел $k > k_*$. Это отклонение незначительно, заметно только при значениях W < 1 и усиливается при увеличении вязкости *v*.

Проведенный анализ показывает, что, как и поверхностная плотность электрического заряда W, упругость пленки Π_1 существенно влияет на интенсивность нелинейного взаимодействия волн, особенно при значениях волнового числа k, близких к резонансному. Для иллюстрации этого обстоятельства построена зависимость величины A от параметров W и $-\Pi_1$ при $k = k_*$ (рис. 4). Из рис. 4 видно, зависимость $A = A(-\Pi_1, W)$ при $k = k_*$ имеет весьма сложный характер. Кроме того, расположение различных складок и локальных экстремумов на этой поверхности сильно изменяется при изменении вязкости. Пожалуй, наиболее характерной ее чертой при всех значениях параметров является то, что наи-

Рис. 4. Зависимость $A = A(-\Pi_1, W)$, построенная при $k = 1/\sqrt{2}$ и $\Pi_2 = D = 0$.

Рис. 5. Зависимость $A = A(-\Pi_1)$, построенная при $k = 1/\sqrt{2}$ и $\Pi_2 = D = 0, W = 1$ (1), 1.2 (2), 0.8 (3).

меньшие значения A расположены над окрестностью прямой W = 1, вблизи которой взаимодействие волн оказывается минимальным. Но эти наименьшие значения ненулевые, их величина существенно зависит от величины упругости пленки ПАВ. На рис. 5 показаны зависимости, которые получаются при сечении поверхности, приведенной на рис. 4, плоскостями W = 0.8, W = 1.0, W = 1.2. При близких, но разных значениях W разница в характере влияния ПАВ на интенсивность нелинейного взаимодействия выражена довольно ярко. На практике это означает, что результаты экспериментального исследования влияния пленки ПАВ на формы нелинейных волн с волновым числом $k \approx k_*$ дложны быть весьма чувствительны к величине поверхностного заряда.

Заключение

Пленка ПАВ существенно влияет на формы профилей нелинейных периодических капиллярно-гравитационных волн с волновыми числами, близкими по величине к резонансному значению: удвоенный квадрат которого равен единице, деленной на квадрат капиллярной постоянной. Зависимость интенсивности нелинейного взаимодействия между отдельными гармониками, формирующими нелинейную капиллярно-гравитационную волну, от упругости пленки имеет немонотонный характер. Существует значение упругости, при котором интенсивность этого взаимодействия минимальна. Это значение существенно зависит от вязкости жидкости. Наличие пленки ПАВ приводит к увеличению резонансного волнового числа, при котором нелинейное взаимодействие волн наиболее интенсивно. Характер влияния пленки ПАВ на интенсивность нелинейного взаимодействия весьма сложным образом зависит от величины поверхностного заряда.

35

Приложение

Вспомогательные величины и соотношения

1. Касательный и нормальный орты к возмущенной свободной поверхности жидкости

$$\mathbf{n} = -\frac{\partial_x \xi}{\sqrt{1 + (\partial_x \xi)^2}} \,\mathbf{e}_x + \frac{1}{\sqrt{1 + (\partial_x \xi)^2}} \,\mathbf{e}_z;$$
$$\boldsymbol{\tau} = \frac{1}{\sqrt{1 + (\partial_x \xi)^2}} \,\mathbf{e}_x + \frac{\partial_x \xi}{\sqrt{1 + (\partial_x \xi)^2}} \,\mathbf{e}_z.$$

2. Правые части соотношений, выражающих математическую формулировку задачи второго порядка малости,

$$\mathbf{V}_{2} = -\frac{1}{2} \, \boldsymbol{\nabla}(\mathbf{U}_{1}^{2}) + \mathbf{U}_{1} \times (\boldsymbol{\nabla} \times (\mathbf{U}_{1}));$$

$$f_{12} = \xi_{1}\partial_{z}v_{1} - u_{1}\partial_{x}\xi_{1};$$

$$f_{22} = 2\rho v\xi_{1}\partial_{zz}v_{1} - \xi_{1}\partial_{z}p_{1} - \frac{(\boldsymbol{\nabla}\Phi_{1})^{2}}{8\pi} + \frac{E_{0}}{4\pi}\xi_{1}\partial_{z}z\Phi_{1}$$

$$-\chi(\Gamma_{1}\partial_{xx}\xi_{1} + 2\partial_{x}\xi_{1}\partial_{x}\Gamma_{1});$$

$$f_{32} = \rho v(4\partial_{z}v_{1}\partial_{x}\xi_{1} + \xi_{1}\partial_{z}(\partial_{z}u_{1} + \partial_{x}v_{1}) - \beta\Gamma_{1}\partial_{x}\Gamma_{1});$$

$$f_{42} = -\xi_{1}\partial_{z}\Phi_{1};$$

$$f_{52} = -\partial_{x}(u_{1}\Gamma_{1}) - \Gamma_{0}\left(\xi_{1}\partial_{xz}u_{1} + \frac{\chi}{\rho v}\partial_{x}\Gamma_{1}\partial_{x}\xi_{1}\right).$$

3. Коэффициенты М і

 $M_i = \det$

$$\times \begin{pmatrix} 0 & -k & ik & 0 & R_{1j} \\ \frac{kE_0}{2\pi} & -\rho(S+4\nu k^2) & 2\rho\nu ik\sqrt{2\left(2k^2+\frac{S}{\nu}\right)} & 0 & R_{2j} \\ 0 & 4i\rho\nu k^2 & \rho\nu\left(4k^2+\frac{S}{\nu}\right) & -ik\Pi_1 & R_{3j} \\ 1 & 0 & 0 & 0 & R_{4j} \\ 0 & -2k^2\Pi_1 & ik\Pi_1\sqrt{2\left(2k^2+\frac{S}{\nu}\right)} & (S+2k^2D)\Pi_1 & R_{5j} \end{pmatrix}; \\ R_{10} = 2S; \quad R_{20} = -(\rho g + 4\gamma k^2); \quad R_{30} = 0; \\ R_{40} = -E_0; \quad R_{50} = 0; \end{cases}$$

$$\begin{split} R_{11} &= \frac{1}{2} k \\ &\times \left(bk \left(1 - \frac{ic(k^2 - q^2)}{(3k+q)(2S + v(k-q)(3k+q))} \right) - icq \right) \\ R_{21} &= \frac{1}{4} k \left(bS\rho + 2\rho v(bk^2 - icq^2) + \frac{kE_0^2}{4\pi} + 3dk\Pi_1 \\ &- \frac{2\rho ibck(k-q)(2S + v(5k^2 + 2kq + q^2))}{(3k+q)(2S + v(k-q)(3k+q))} \right); \\ R_{41} &= k \frac{E_0}{4\pi}; \end{split}$$

$$\begin{split} R_{31} &= -\frac{1}{4} \left(\rho \nu \left(cq(5k^2 + q^2) + ik(6bk^2 - d^2\Pi_2) \right) \right. \\ &+ \frac{\rho \nu bck(k^2 - q^2)(5k^2 + 2kq + q^2)}{(3k + q)(2S + \nu(k - q)(3k + q))} \right); \\ R_{51} &= \frac{1}{4} k \Pi_1 \left(\frac{dk\Pi_1}{\rho \nu} - icq(2d + q) \right. \\ &+ bk \left(2d + k - \frac{2ic(k - q)(k + q)^2}{(3k + q)(2S + \nu(k - q)(3k + q))} \right) \right); \\ b &= -\frac{\omega_0^2 + 2\nu kqS}{k(S + 2\nu k(k - q))}; \quad c = \frac{i(\omega_0^2 + S(S + 2\nu k^2))}{k(S + 2\nu k(k - q))}; \\ d &= \frac{\omega_0^2(q - k) + qS^2}{(S + Dk^2)(S + 2\nu k(q - k))}; \\ q &= \sqrt{k^2 + \frac{S}{\nu}}; \quad E_0 = 2\sqrt{\pi W \sqrt{\rho g \gamma}}, \end{split}$$

і — мнимая единица.

4. Безразмерное дисперсионное уравнение имеет вид

$$\begin{cases} F(\alpha,\beta,\delta,\Lambda) = \sqrt{\alpha + \beta^4} \\ \operatorname{Re}(F(\alpha,\beta,\delta,\Lambda)) > 0, \end{cases}$$

где

;

$$\begin{split} \beta &= \sqrt{\frac{\nu k^2}{\omega_0}}; \quad \Lambda = \frac{k^3 \Pi_1}{\rho \omega_0^2}; \quad \delta = \frac{Dk^2}{\omega_0}; \\ F(\alpha, \beta, \delta, \Lambda) &= \left((\alpha + 2\beta^2)^2 + \left(1 + \frac{\Lambda}{\alpha(\alpha + \delta)} \right) \right) \\ &\times \left(4\beta^2 \left(1 + \frac{\alpha^2 + 1}{\alpha(\alpha + \delta)} \frac{\Delta}{4\beta^4} \right) \right)^{-1}. \end{split}$$

В общем случае это уравнение имеет две пары комплексно-сопряженных корней. Без ограничения общности корни с отрицательной мнимой частью можно опустить. Это означает, что отбираются корни, отвечающие волнам, распространяющимся в положительном направлении оси Ox. Среди оставшихся двух корней один отвечает капиллярно-гравитационной волне, а другой — волне, связанной с наличием пленки ПАВ.

Пусть при заданных значениях параметров $\beta = \beta_*$, $\Lambda = \Lambda_*$, $\delta = \delta_*$ найдены два корня с положительной мнимой частью. В безразмерном дисперсионном соотношении положим $\beta = \beta_*$, $\Lambda = 0$, $\delta = \delta_*$ и найдем его корень, который будет иметь положительную мнимую часть. Далее, непрерывно изменяя параметр Λ от $\Lambda = 0$ до $\Lambda = \Lambda_*$, проследим за изменением найденного корня (процедура реализуется численно). При $\Lambda = \Lambda_*$ этот корень сравняется с одним из тех, что были найдены изначально. Его и примем в качестве корня, соответствующего капиллярно-гравитационной волне.

Работа выполнена при поддержке гранта Президента РФ (№ МК-929.2003.01) и РФФИ (грант № 03-01-00760).

Список литературы

- Белоножко Д.Ф., Григорьев А.И. // ЖТФ. 2003. Т. 73. Вып. 4. С. 28–37.
- Белоножко Д.Ф., Григорьев А.И. // Письма в ЖТФ. 2003.
 Т. 29. Вып. 8. С. 1–7.
- [3] Белоножко Д.Ф., Григорьев А.И. // ЖТФ. 2003. Т. 73. Вып. 11. С. 37–45.
- [4] Белоножко Д.Ф., Григорьев А.И. // ЖТФ. 2004. Т. 74. Вып. 3. С. 5–13.
- [5] Левич В.Г. Физико-химическая гидродинамика. М.: ГИТТЛ, 1959. 669 с.
- [6] Lucassen E.H., Lucassen J. // Advan. Colloid Inreface Sci. 1969. Vol. 2. P. 347–395.
- [7] Alpers W. // J. Geophys. Res. 1989. Vol. 94. N. C 5. P. 6251– 6265.
- [8] Белоножко Д.Ф., Ширяева С.О., Григорьев А.И. // Письма в ЖТФ. 1996. Т. 22. Вып. 15. С. 61–64.
- [9] Белоножко Д.Ф., Григорьев А.И., Ширяева С.О. // Письма в ЖТФ. 1997. Т. 23. Вып. 6. С. 75–59.
- [10] Ширяева С.О., Белоножко Д.Ф., Григорьев А.И. // ЖТФ. 1998. Т. 68. Вып. 2. С. 22–29.
- [11] Боев А.Г., Ясницкая Н.Н. // Изв. РАН. ФАО. 2003. Т. 39. № 1. С. 132–141.
- [12] Simmons W.F. // Proc. Roy. Soc. 1969. Vol. 309. Ser. A. P. 551–575.
- [13] Nayfeh A.H. // J. Fluid Mech. 1971. Vol. 48. Pt. 2. P. 385–395.
- [14] Френкель Я.И. // ЖЭТФ. 1936. Т. 6. Вып. 4. С. 348-350.
- [15] Заславский Г.М., Сагдеев Р.З. Введение в нелинейную физику. От маятника до турбулентности и хаоса. М.: Наука, 1988. 368 с.
- [16] Поверхностно активные вещества. Справочник / Под ред. А.А. Абрамзона, Г.М. Гаевского. Л.: Химия, 1979. 376 с.