Выращивание и фотоэлектрические свойства варизонных гетероструктур Si-(Si₂)_{1-x}(GaP)_x

© Б. Сапаев, А.С. Саидов, С. Дадамухамедов

Физико-технический институт Научно-производственное объединение "Физика–Солнце" АН Республики Узбекистан, 700084 Ташкент, Республика Узбекистан e-mail: amin@physic.uzsci.net

(Поступило в Редакцию 9 февраля 2004 г.)

06

Приводятся теоретические предпосылки образования непрерывных твердых растворов замещения с позиции учета обобщенных моментов, разности валентности и ковалентных радиусов исходных компонентов. На основе этих исследований разработана технология получения из оловянного раствора-расплава методом принудительного охлаждения эпитаксиальных слоев $(Si_2)_{1-x}(GaP)_x$ ($0 \le x \le 1$) на кремниевых подложках. Исследованы распределение компонентов по толщине $(Si_2)_{1-x}(GaP)_x$ слоев, фоточувствительность и вольт-амперные характеристики гетероструктур $Si-(Si_2)_{1-x}(GaP)_x$. Анализ результатов рентгеновских исследований и фотоэлектрических свойств полученных эпитаксиальных слоев твердых растворов указывают на структурное совершенство выращенных варизонных $(Si_2)_{1-x}(GaP)_x$ слоев.

Целью современной науки в области полупроводникового материаловедения является создание новых полупроводниковых материалов высокого качества и с улучшенными характеристиками по сравнению с используемыми в фотоэлектронике в настоящее время. Поэтому разработка технологии и изучение свойств получаемых новых полупроводниковых материалов и твердых растворов на их основе является первостепенной задачей в этой области. В связи с этим гетероэпитаксия фосфида галлия на Si подложках представляет большой интерес благодаря близости параметров решеток Si и GaP при большом различии ширины запрещенной зоны последних. Твердые растворы замещения Si и GaP могут образоваться, так как для них выполняются условия $\Delta Z = 0$ и $|\Delta r| = (r_A + r_B) - (r_C - r_D) \le 0.1$ [1], где Z валентность, *r* – ковалентные радиусы компонентов.

Возможность пиролитического синтеза из газовой фазы непрерывного ряда твердых растворов впервые продемонстрирована в работе [2] на примере системы $(Ge_2)_{1-x}(GaAs)_x$. Ранее мы также продемонстрировали [3] возможность получения варизонных метастабильных твердых растворов $(Ge_2)_{1-x}(GaAs)_x$ ($0 \le x \le 1$) из свинцового раствора-расплава на подложках германия и арсенида галлия. Анализ растворимости Si и GaP в жидких металлических растворителях показал, что применение в качестве растворителя олова и относительно низкая температура роста (750–900°C) создают благоприятные условия для образования твердых растворов $(Si_2)_{1-x}(GaP)_x$.

В настоящей работе приводятся результаты технологических, морфологических исследований и некоторые фотоэлектрические свойства гетероструктур $Si-(Si_2)_{1-x}(GaP)_x$, полученных из ограниченного объема оловянного раствора-расплава в атмосфере очищенного палладием водорода. В общей сложности было изготовлено и исследовано пятнадцать $Si-(Si_2)_{1-x}(GaP)_x$ структур площадью $S \approx 15 \,\mathrm{mm}^2$ каждая. Технологические процессы по получению гетероструктур из ограниченного объема раствора-расплава описаны в [4].

Эпитаксиальные слои толщиной $15-30\,\mu$ т имели *n*-тип проводимости. По данным о распределении компонентов по толщине, полученным при помощи микроанализатора типа "Cameca", содержание GaP в эпитаксиальном варизонном слое (Si₂)_{1-x}(GaP)_x увеличивается вдоль оси роста и достигает 48% для Ga, 52% для Р и 0 для Si (рис. 1, *a*). Растровые картины, снятые при помощи рентгеновского микроанализатора "Jeol" JSM 5910 LV-Japan (рис. 1, *b*), показывают, что макроскопические дефекты структуры и металлические включения второй фазы отсутствуют. Погрешность измерений не превышает 2%.

Далее нами были определены межплоскостные расстояния d_{nkl} атомов со стороны подложек и со стороны эпитаксиальных слоев на дифрактометре ДРОН-3М. Из формулы $a = d\sqrt{h^2 + k^2 + l^2}$, где h, k, l — индексы Миллера, были определены постоянные решеток для кремния и твердых растворов (Si₂)_{1-x}(GaP)_x: $a_{Si} = 5.4290$ Å и $a_{(Si_2)_{1-x}(CaP)_x} = 5.4293$ Å для $x \approx 0.5$. Расчетная погрешность при определении параметров решетки a дает величину $\Delta a = 0.0004$ Å. Гладкие и варизонные (Si₂)_{1-x}(GaP)_x эпитаксиальные слои получаются при принудительном охлаждении со скоростью 0.5–5° С/min, при зазоре $\delta = 0.75-1.0$ mm между двумя горизонтально расположенными Si-подложками.

С увеличением содержания GaP в эпитаксиальных слоях $(Si_2)_{1-x}(GaP)_x$ и при определенных их толщинах роль коэффициента термического расширения увеличивается из-за постепенного перехода от Si к GaP. Поэтому в нашем случае не наблюдается изгибов и трещин пленки $(Si_2)_{1-x}(GaP)_x$.

При принудительном охлаждении вследствие неоднородности отвода тепла из разных мест отвод от послед-

Рис. 1. Распределение компонентов $Ga_{\kappa a}$, $P_{\kappa \alpha}$ и $Si_{\kappa \alpha}$ по толщине структур $Si-(Si_2)_{1-x}(GaP)_x$ (*a*) и растровые картины скола структуры $Si-(Si_2)_{1-x}(GaP)_x$ (*b*).

них кристаллизующихся слоев идет быстрее, чем отвод тепла от начальных слоев. При этом с увеличением скорости охлаждения эта разница увеличивается и в результате возникают термоупругие напряжения. Эти напряжения в свою очередь вызывают пластическую деформацию, трещинообразование и даже разрушение пленки. В работе [5] приводятся причины образования подобных дефектов. По мнению авторов, причины образования дефектов зависят от следующих факторов: различие периодов решетки кристаллов; термические напряжения; градиент состава по толщине эпитаксиального слоя; наследование дефектов из подложки.

Несоответствие параметров решеток для гетеропар Si-GaP составляет 0.36%, что является незначительным и поэтому эффект напряжений, возникающих на гетерогранице подложка-эпитаксиальный слой за счет разности периодов решеток гетеропары, отсутствует и при этом состав химического компонента GaP меняется от нуля до единицы плавно ($0 \le x \le 1$). Наследование дефектов от подложки исключается путем выбора бездислокационных (совершенных по структуре) Si подложек. Подобные растрескивания слоев Ge в структуре Ge-Si, выращенных на Ge [6,7], и толстых слоев ZnSe, выращенных на GaAs, наблюдали в работах [8]. Напряжения, возникающие в пленке за счет разности коэффициентов термического расширения, можно оценить по формуле [9]

$$\sigma_{\Delta lpha} = rac{E}{1-\gamma} \, \Delta lpha \cdot \Delta T,$$

где E — модуль Юнга, γ — коэффициент Пуассона, $\Delta \alpha$ — разность коэффициентов термического расширения эпитаксиальной пленки и подложки, ΔT — разность температуры между температурой выращивания пленки и комнатной температурой.

С понижением температуры $\sigma_{\Delta\alpha}$ возрастает линейно, а пластичность кристаллов повышается экспоненциально. Поэтому релаксация термического напряжения затруднена, что и приводит к разрушению эпитаксиальных слоев [9].

Были проведены предварительные исследования электрических свойств изготовленных $Si - (Si_2)_{1-x} (GaP)_x$ структур. Омические контакты изготовлялись с помощью состава Ga-In. Темновые вольт-амперные характеристики (BAX) гетеропереходов $p-Si-n-(Si_2)_{1-x}(GaP)_x$ снимались при прямом и обратном напряжениях смещения V_b , при температуре $T = 290 \,\mathrm{K}$ (рис. 2, *a*). Существует множество теорий описания ВАХ для гомои гетеропереходов [10]. Известно, что электрические характеристики *p*-*n*-перехода при прямом смещении зависят от высоты потенциального барьера V_d и удельного сопротивления полупроводников. Независимо от теории, выбираемой для описания ВАХ, прямой ток J_{dir} растет экспоненциально по закону $J_{\rm dir} \propto \exp(qV_b/kT) - 1$ при повышении напряжения V_b. Потенциальный барьер V_d, определенный путем экстраполяций прямолинейного участка, равен 0.5 V. В случае $V_d = V_b = 0.5$ V барьер исчезает и дальнейшее увеличение тока при повышении V_b определяется физическими процессами, происходящими в объеме полупроводника (термическая эмиссия и туннелирование).

Нетрудно выделить три характерных участка на обратной ветви ВАХ: а) диапазон напряжений $V_b = 0-0.3$ V;

Рис. 2. Темновая ВАХ (a) и спектральная зависимость фотоотклика гетероструктуры $pSi-n(Si_2)_{1-x}(GaP)_x$ (b).

b) $V_b = 0.3 - 1.25$ V; c) $V_b > 1.25$ V. В первом из них, относящемся к малым напряжениям, обратный ток с увеличением напряжения смещения слабо растет примерно по закону $J = B \times V_b^n$ и определяется преимущественно туннельным током [10], где V_b — приложенное напряжение, B — константа, n < 1. Во втором интервале, распространяющемся вплоть до напряжения, равного примерно $V_b = 1.25$ V, наблюдается значительное увеличение обратного тока. При более высоких напряжениях $V_b = 2.1$ V наступает ударная ионизация в объеме p-n-гетероперехода, приводящая к мягкому электрическому пробою. Наблюдаемое увеличение J во втором интервале, по всей видимости, связано с развитием процес-

сов ударной изонизации не в объеме, а в областях, прилегающих к p-n-гетеропереходу. Это обусловлено изменением ширины обедненной области, определяемой зарядом примесных центров в этих областях. Таким образом, во втором интервале ВАХ обратный ток задается в основном началом процесса ударной ионизацией примесных центров в областях вблизи p-n-гетероперехода.¹

На рис. 2, *b* приведена типичная спектральная зависимость фототока $pSi-n(Si_2)_{1-x}(GaP)_x$ структур. Гетеропереходы освещались перпендикулярно плоскости n-p-перехода со стороны варизонного эпитаксиального слоя. Как видно, фоточувствительность структур лежит в диапазоне энергий фотонов E = 1.05-2.4 eV.

Коротковолновая граница спектральной чувствительности определяется эпитаксиальным слоем варизонного $(Si_2)_{1-x}(GaP)_x$ кристалла. При этом состав кристалла выбран так, чтобы ширина запрещенной зоны увеличивалась от Si подложки и была максимально допустимой на поверхности кристалла, которая является широкозонным входным окном.

В рассматриваемых структурах *n*-*p*-переход расположен глубоко (напомним, что толщина *n*-варизонных слоев $d \approx 15 - 30 \,\mu m$), поэтому эффективность сбора носителей заряда, генерированных фотонами, определяется величиной варизонного поля E_V (Si₂)_{1-x}(GaP)_x кристалла. Носители, генерированные коротковолновым излучением вблизи поверхности широкозонного "входного окна", собираются полем Е_V с большей эффективностью, чем носители, созданные в объеме кристалал. Об этом свидетельствует существование широкого пика на спектральной зависимости фототока в диапазоне энергий фотонов $E_p = 1.35 - 2.1$ eV. Плавное увеличение интенсивности и его максимум ($E_p = 2.05 \, \text{eV}$) связаны с повышением величины Е_р по направлению к поверхности $(Si_2)_{1-x}(GaP)_x$ кристалла за счет градиента ширины запрещенной зоны. Резкий коротковолновый спад спектральной характеристики ($\lambda < 0.6 - 0.5 \,\mu m$) является результатом поверхностной рекомбинации фотогенерированных носителей, в то время как длинноволновый спад (при $\lambda = 0.918 - 1.180 \,\mu m$) обусловлен рекомбинацией носителей в объеме варизонного $(Si_2)_{1-x}(GaP)_x$ кристалла.

Созданы новые варизонные твердые растворы $(Si_2)_{1-x}(GaP)_x$ на Si подложках. Эти растворы имеют более широкий диапазон спектральной чувствительности по сравнению с варизонными твердыми растворами $Al_xGa_{1-x}As$, широко применяемым для создания солнечных элементов и выращиваемых исключительно на дорогих GaAs подложках.

Таким образом, указанные обстоятельства дают основание полагать, что новые твердые растворы $(Si_2)_{1-x}(GaP)_x$ на кремниевых подложках могут найти широкое применение в фотоэлектронике.

¹ В рамки данной работы не входит детальное исследование физических механизмов, ответственных за поведение ВАХ. Результаты этих исследований будут опубликованы позже.

Список литературы

- [1] Саидов М.С. // Гелиотехника. 1997. № 5-6. С. 57-67.
- [2] Алферов Ж.И., Жингарев М.З., Конников С.Г. и др. // ФТП. 1982. Т. 16. № 5. С. 831–839.
- [3] Саидов А.С., Кошчанов Э.А., Сапаев Б. и др. // ДАН УзССР. 1988. № 2. С. 26–27.
- [4] Саидов А.С., Кутлимратов А., Сапаев Б. и др. // Вести ГУЛГУ. 2001. № 2. С. 40-44.
- [5] Мильвидский М.Г., Освенский В.Б. Структурные дефекты в эпитаксиальных слоях полупроводников. М.: Металлургия, 1985. 159 с.
- [6] Riben A.K., Feucht B.L., Oldham W.G. // J. Electrohem. Soc. 1966. Vol. 113. P. 245.
- [7] Howel H.J., Milnes A.G. // J. Electrohem Soc. 1969. Vol. 116.
 P. 843.
- [8] Милнс А., Фойхт Д. Гетеропереходы и переходы металл-полупроводник. М.: Мир, 1975. 432 с.
- [9] Устинов В.М., Захаров Б.Г. // Обзоры по электронной технике. Сер. 6. Материалы. 1977. Вып. 4.
- [10] Шарма Б.Л., Пурохит Р.К. Полупроводниковые гетеропереходы. М.: Сов. радио, 1979. 233 с.