# <sup>01</sup> Масштабные преобразования 1/*f* флуктуаций при неравновесных фазовых переходах

# © В.П. Коверда, В.Н. Скоков

Институт теплофизики УрО РАН, 620016, Екатеринбург, Россия e-mail: vnskokov@itp.uran.ru

#### (Поступило в Редакцию 16 декабря 2003 г.)

Исследования динамики флуктуаций тепломассообмена показывают, что в кризисных и переходных режимах наблюдаются высокоэнергетические пульсации со спектром мощности, обратно пропорциональным частоте (фликкерные или 1/f флуктуации). Такой спектр предполагает перекачку энергии от высокочастотных к низкочастотным модам и возможность крупномасштабных катастрофических выбросов в системе. Теория показывает, что такие флуктуации возникают в системе благодаря одновременному протеканию взаимодействующих фазовых переходов в присутствии белого шума достаточной интенсивности. Исследована функция распределения флуктуаций при масштабных преобразованиях системы стохастических уравнений, описывающих генерацию 1/f шума. Показано, что гауссовское распределение случайного процесса с 1/f спектром переходит при масштабном преобразовании в экспоненциальное распределение, характерное для статистики экстремальных выбросов. Вероятность таких выбросов следует учитывать при прогнозировании устойчивости различных режимов теплообмена.

# Введение

Тепломассообмен в двухфазных системах характеризуется не только средними значениями параметров процесса, но и хаотическими флуктуационными отклонениями от средних значений этих параметров. В особенности сильное возрастание флуктуаций происходит в критических и переходных режимах тепломассообмена [1]. Динамика и эволюция случайных пульсаций может быть охарактеризована зависимостью спектра мощности флуктуаций от частоты. Она определяется отношением среднего квадрата амплитуды шумового сигнала (а следовательно, и его мощности) вблизи частоты f к ширине полосы частот  $\Delta f$ . Устойчивым процессам тепломассообмена соответствует спектр с ограничением мощности со стороны низких частот. Экспериментальное исследование динамики флуктуаций теплообмена в кризисных и переходных режимах [2–4] показывает, что такая ситуация в поведении низкочастотной асимптотики спектров наблюдается не всегда. В кризисных режимах кипения, при взрывном вскипании струй перегретой жидкости, в колебательных режимах горения, при дуговом электрическом разряде наблюдаются низкочастотные высокоэнергетические пульсации со спектром мощности, обратно пропорциональным частоте (фликкерные или 1/f пульсации). Характерная черта систем с фликкер-шумом (1/f шумом) заключается в том, что значительная часть энергии флуктуаций связана с очень медленными процессами и, кроме того означает возможность огромных катастрофических выбросов в системе [5].

Спектр мощности флуктуаций, обратно пропорциональный частоте  $S \sim 1/f$ , встречается в разнообразных физических, химических, механических и биологических системах [6,7]. Поведение 1/f продолжает сохраняться

в пределах нескольких десятичных порядков мощности флуктуаций. В астрофизике известны 1/f пульсации интенсивности излучения квазаров и солнечных пятен, в геофизике 1/f спектры мощности используются для описания землетрясений и наводнений. В биологии 1/fспектры наблюдаются в колебании инсулина в крови больных диабетом, в сердечных и мозговых ритмах при некоторых заболеваниях. В экономике спектральной зависимости 1/f подчиняются финансовые потоки и колебания курсов акций на биржах, фликкерные флуктуации обнаруживаются в колебаниях числа автомобилей на дорогах, даже в музыке и речи [8].

Чаще всего в литературе под 1/f шумом понимаются флуктуационные процессы со спектром мощности, пропорциональным  $1/f^{\alpha}$ , где показатель степени  $\alpha$  изменяется в некоторых пределах (0.8 <  $\alpha$  < 2). Хорошо известным свойством 1/f<sup>a</sup> флуктуаций является динамический скэйлинг, наблюдаемый в равновесных критических точках. Имеется много попыток объяснить возможный механизм генерации масштабноинвариантных флуктуаций. Выдающимся примером является концепция самоорганизованной критичности [9], которая применяется для описания сложных систем с развитыми флуктуациями. Система в состоянии самоорганизованной критичности имеет большое число метастабильных состояний, в которых она может находиться. В процессе своей эволюции система самоорганизуется и подстраивается к критическому поведению с масштабноинвариантными флуктуациями. В работе [9] самоорганизованная критичность продемонстрирована на модели клеточных автоматов "куча песка". При постоянном потоке песчинок в куче песка, достигшей самоорганизованной критичности, возникают лавины различного размера или флуктуации, которые поддерживают критическое состояние системы независимо от величины внешних

воздействий. Теория самоорганизованной критичности дает спектр вида  $1/f^{\alpha}$  ( $\alpha \simeq 1.4-2$ ) и степенное распределение флуктуаций. Точная обратная пропорциональность частоте ( $\alpha = 1$ ) наблюдается для спектра флуктуаций напряжения, когда электрический ток течет через резистор [6,10] и неравновесные фазовые переходы взаимодействуют в процессах тепломассообмена [2–4].

В настоящей работе приводится теория флуктуационных процессов с фликкерным спектром мощности, согласно которой фликкер-шум возникает в результате наложения и взаимодействия неравновесных фазовых переходов. Существенным фактором наряду со взаимодействием является развитая флуктуационная природа процесса, что проявляется в генерации шума с расходящимися спектрами при низких частотах.

# Функция распределения 1/f флуктуаций

Теория 1/f флуктуаций при неравновесных фазовых переходах предложена в работе [2]. Простейшие стохастические уравнения, описывающие динамику флуктуаций в сосредоточенной системе, имеют вид

$$\frac{d\phi}{dt} = -\phi\psi^2 + \psi + \Gamma_1(t),$$
  
$$\frac{d\psi}{dt} = -\phi^2\psi + \lambda\phi + \Gamma_2(t).$$
(1)

Здесь  $\phi$ ,  $\psi$  — динамические переменные (параметры порядка);  $\Gamma_1$  и  $\Gamma_2$  — гауссовы  $\delta$ -коррелированные шумы (белый шум), которые имеют одинаковые дисперсии. Коэффициент  $\lambda > 1$  при переменной  $\phi$  во втором уравнении делает два уравнения системы (1) неэквивалентными. Его наличие можно интерпретировать как присутствие в системе (1) макропотоков. Ниже будем рассматривать случай  $\lambda = 2$ . Если определить потенциал

$$\Phi = \frac{1}{2}\phi^2\psi^2 - \phi\psi, \qquad (2)$$

то систему (1) можно переписать в виде

$$\frac{d\phi}{dt} = -\frac{\partial\Phi}{\partial\phi} + \Gamma_1(t),$$
  
$$\frac{d\psi}{dt} = -\frac{\partial\Phi}{\partial\psi} + \phi + \Gamma_2(t).$$
 (3)

Чтобы лучше понять физический смысл потенциала (2), сделаем линейное преобразование динамических переменных  $\phi = \eta - \theta$ ,  $\psi = \eta + \theta$ , которое соответствует повороту координат потенциала на угол  $\pi/4$ . В новых переменных потенциал примет вид

$$\Phi = \frac{1}{2}\eta^4 - \eta^2 + \frac{1}{2}\theta^4 + \theta^2 - \eta^2\theta^2,$$
 (4)

который характерен для взаимодействия докритического (с параметром порядка  $\eta$ ) и закритического (с параметром  $\theta$ ) фазовых переходов. Последнее слагаемое в (4),

пропорциональное  $\eta^2 \theta^2$ , учитывает взаимодействие параметров порядка в самом общем виде.

Для численного интегрирования систему (1) при  $\lambda = 2$  переписывают в виде

$$\phi_{i+1} = (\phi_i + \psi_i \Delta t)(1 + \psi_i^2 \Delta t)^{-1} + \xi_i \Delta t^{0.5},$$
  
$$\psi_{i+1} = (\psi_i + 2\phi_i \Delta t)(1 + \phi_i^2 \Delta t)^{-1} + \xi_i \Delta t^{0.5}, \qquad (5)$$

где  $\xi_i$  и  $\xi_i$  — последовательности гауссовских случайных чисел с нулевым средним и стандартным отклонением  $\sigma$ , которые моделируют внешний белый шум.

Характерная особенность стохастических уравнений состоит в том, что дифференциал времени в системе (1) имеет второй порядок малости относительно дифференциала стохастической переменной [11]. Поэтому в системе для численного интегрирования (5) дифференциалы  $\xi_i \Delta t^{0.5}$  и  $\xi_i \Delta t^{0.5}$  содержат интервал времени в степени 0.5. Это создает математические удобства при изменении шага интегрирования  $\Delta t$ : не нужно корректировать значение стандартного отклонения  $\sigma$  гауссовских случайных чисел  $\xi_i$  и  $\xi_i$  при изменении шага интегрирования.

Система (1) и ее расчетный вариант (5) имеют индуцированный шумом переход по отношению к плотности вероятности  $P(\sqrt{\phi^2\psi^2})$  [5]. Индуцированный шумом переход означает, что при изменении интенсивности внешнего белого шума плотность вероятности меняет положение экстремума (рис. 1). Это изменение протекает как фазовый переход. Если  $\sigma$  меньше некоторого критического значения  $\sigma_c$  ( $0 < \sigma < \sigma_c$ ), то плотность вероятности  $P(\sqrt{\phi^2\psi^2})$  имеет максимум при некотором значении аргумента  $\sqrt{\phi^2\psi^2}$ . При интенсивности внешнего шума, соответствующей  $\sigma = \sigma_c$ , максимум  $P(\sqrt{\phi^2\psi^2})$ совпадает с нулем. При дальнейшем увеличении интенсивности ( $\sigma > \sigma_c$ ) плотность вероятности становится монотонно убывающей функцией (рис. 1).



**Рис. 1.** Стационарные плотности вероятности  $P(\sqrt{\phi^2 \psi^2})$  для системы (5). Расчет с шагом интегрирования  $\Delta t = 0.1$ :  $1 - \sigma < \sigma_c, 2 - \sigma = \sigma_c, 3 - \sigma > \sigma_c, \sigma_c = 0.8.$ 

Когда интенсивность внешнего белого шума соответствует критичности индуцированного шумом перехода ( $\sigma = \sigma_c$ ), система (1) и соответственно система (5) генерируют стационарные стохастические процессы  $\phi(t)$  и  $\psi(t)$ , спектры, мощности которых имеют частотные зависимости 1/f и  $1/f^2$  соответственно. При выборе шага интегрирования в интервале ( $0.05 < \Delta t < 0.3$ ) критичность индуцированного шумом перехода отвечает значению  $\sigma_c = 0.8$  и, следовательно, при интенсивности  $0.7 < \sigma < 0.9$  спектральные мощности флуктуаций  $\phi_i$  и  $\psi_i$  следуют указанным зависимостям.

Система (5) хорошо работает не только в ближайшей окрестности критичности индуцированного шумом перехода, но в достаточно широком диапазоне изменения средней интенсивности белого шума [4]. Это связано с некоторым самосогласованием переменных  $\phi_i$  и  $\psi_i$ в системе (1). Еще в работе [2] было отмечено для сосредоточенной системы, что среднее значение произведения  $\langle \phi \psi \rangle \simeq 1$  соблюдается независимо от начальных условий, длины реализации случайного процесса, управляющих параметров и является инвариантом системы. Поэтому следует ожидать, что обратная функция от *ψ* также имеет фликкерный спектр мощности. Чтобы избежать расходимости при нулевых значениях  $\psi_i$ , определим обратную функцию в виде [12]  $\chi_i = \psi_i / (\varepsilon + \psi_i^2)$ , где  $\varepsilon$  — малый параметр (обычно  $\varepsilon \simeq 0.01 - 0.02$ ). Функция  $\chi_i$  близка к  $1/\psi_i$  в большинстве точек реализации случайного процесса, только в окрестностях, где  $\psi_i$ близко к нулю,  $\chi_i$  также близко к нулю. От расходимости в нуле при определении обратной функции для  $\psi_i$ можно избавиться и другим способом, но это не меняет главного результата: спектральная плотность переменной  $\chi_i$  обратно пропорциональна первой степени частоты  $(S_{\chi} \sim 1/f)$  и численно совпадает со спектральной плотностью переменной  $\phi_i$ . Спектры переменных  $\chi_i$  и  $\phi_i$ приведены на рис. 2. В масштабе рисунка они совпадают и следуют зависимости  $\sim 1/f$  (пунктир на рис. 2).



**Рис. 2.** Спектральная плотность переменных  $\phi_i$  и  $\chi_i$ . Пунктир — зависимость  $S \sim 1/f$ .



**Рис. 3.** Функции распределения переменных:  $I - P(\phi_i)$ ,  $2 - P(\chi_i)$ .

В расчетах использовано  $10^4 - 10^5$  шагов интегрирования системы (5) и усреднение по нескольким десяткам реализаций. Хотя спектр мощности переменной  $\psi_i$  обратно пропорционален квадрату частоты, спектр мощности обратной переменной  $\chi_i$  обратно пропорционален первой степени частоты. Таким образом, не только первое уравнение системы (1) или (5) дает 1/f спектр, но и второе уравнение после преобразования от  $\psi(t)$  к  $\chi(t)$ связано с таким спектром.

В отличие от спектров функции распределения переменных  $\phi_i$  и  $\chi_i$  различны. На рис. 3 приведена функция распределения переменной  $\phi_i$ . Она близка к гауссовской, но имеет длинные хвосты больших амплитудных выбросов, которые можно заменить только в полулогарифмических координатах. Как показывают численные расчеты, функция распределения переменной  $\phi_i$  может быть аппроксимирована выражением

$$P(\phi) = A \exp\left(-\frac{\phi^2}{2\sigma_{\phi}}\right) + B \exp\left(-\frac{|\phi|}{\sigma_{\phi}}\right), \qquad (6)$$

где A и B — константы ( $A \gg B$ ),  $\sigma_{\phi} = 2\sigma dt^{0.5}$  — стандартное отклонение случайного процесса  $\phi(t)$ , второе слагаемое в (6) как раз и аппроксимирует длинные "хвосты" на фоне гауссовского распределения.

Распределение  $P(\chi_i)$  отличается от  $P(\phi_i)$  наличием двух максимумов и минимума в нуле (рис. 3), длинные "хвосты" наблюдаются так же, как и для  $P(\phi_i)$ . Однако они могут быть деформированы в зависимости от способа аппроксимации обратной функции  $\psi_i$ .

# Масштабное преобразование 1/*f* флуктуаций

Рассмотрим, как изменяются функции распределения переменных при масштабных преобразованиях реализаций случайных процессов. Для этого из последовательности рассчитанных релазиций {*x*<sub>1</sub>, *x*<sub>2</sub>, ..., *x*<sub>N</sub>}

создадим последовательность огрубленных реализаций  $\{y^{(\tau)}\}$  с помощью усреднения по некоторому масштабу времени  $\tau$  в соответствии с уравнением

$$y_j^{(\tau)} = \frac{1}{\tau} \sum_{i=\tau j}^{\tau(j+1)-1} x_i, \quad 0 \le j \le N/\tau,$$
 (7)

где  $x_i$  — стохастическая переменная ( $\phi_i$ ,  $\chi_i$  и др.).

Параметр  $\tau$  называют еще коэффициентом масштабного преобразования. Для первого масштаба реализация  $\{y^{(1)}\}$  является просто исходной реализацией. Длина каждой последующей огрубленной реализации уменьшается в  $\tau$  раз, т.е. содержит  $N/\tau$  точек. Заметим, что данное масштабное преобразование не меняет частотную зависимость спектра. В случае  $\phi_i^{(\tau)}$  и  $\chi_i^{(\tau)}$  спектр остается обратно пропорциональным частоте  $S \sim 1/f$ .

Реализации исходных и огрубленных случайных процессов приведены на рис. 4. Из рисунка видно, что с ростом коэффициента масштабных преобразований



**Рис. 4.** Реализации исходных и огрубленных случайных процессов  $\phi_i^{(\tau)}$  и  $\chi_i^{(\tau)}$  при коэффициенте масштабного преобразования  $\tau$ : I - 1, 2 - 4, 3 - 8, 4 - 16, 5 - 32.



**Рис. 5.** Изменения функций распределения переменных  $\chi_i^{(\tau)}$  и  $\phi_i^{(\tau)}$  в зависимости от коэффициента масштабного преобразования  $\tau$ : I - 1, 2 - 4, 3 - 8, 4 - 16, 5 - 32.

Журнал технической физики, 2004, том 74, вып. 9

реализации процессов  $\chi_i^{(\tau)}$  и  $\phi_i^{(\tau)}$  приближаются друг к другу (рис. 4). Коэффициент корреляции реализаций процессов  $\chi_i^{(\tau)}$  и  $\phi_i^{(\tau)}$  при  $\tau = 32$  составляет более 0.9. С дальнейшим ростом коэффициента масштабного преобразования реализации  $\chi_i^{(\tau)}$  и  $\phi_i^{(\tau)}$  совпадут.

Изменения функций распределения переменных  $\chi_i^{(\tau)}$  и  $\phi_i^{(\tau)}$  приведены на рис. 5. Функции распределения обоих процессов при  $\tau = 32$  практически совпадают и аппроксимируются формулой

$$P(\chi) = C\chi^2 \exp\left(-\frac{|\chi|}{\sigma_{\chi}}\right), \qquad (8)$$

где С — нормировочный коэффициент.

Экспоненциальный множитель в (8) описывает длинноволновые выбросы случайного процесса с 1/f спектром мощности. Это согласуется с результатами [13], что скэйлинговая функция огрубленного распределения определенного класса периодических сигналов с 1/fспектров становится распределением экстремальных выбросов [14,15]. Результаты настоящей работы показывают, что гауссовское распределение стохастического процесса  $\phi(t)$  с 1/f спектром переходит при масштабном преобразовании в экспоненциальное распределение, характерное для статистики экстремальных выбросов. К такому же распределению с ростом коэффициента масштабного преобразования стремится распределение переменной  $\chi_i$ , только значительно быстрее.

### Энтропийный анализ реализаций

Для численной характеристики изменения распределения в результате масштабного преобразования определим величину

$$H(x) = -\sum_{x_i} p(x_i) \log(p(x_i)).$$
(9)

Величина H(x) имеет смысл информационной энтропии. Использование зависимости энтропии от масштабного фактора названо в работе [16] мультискэйлинговым энтропийным анализом реализаций случайных процессов. Результаты расчета энтропии огрубленных реализаций в зависимости от коэффициента масштабного преобразования  $\tau$  приведены на рис. 6. Из этого рисунка видно, что для случайного процесса  $\chi_i^{(\tau)}$  энтропия не зависит от  $\tau$  (точки *1* на рис. 6), как и сама функция распределения, и не изменяется. Функция распределения  $P(\chi_i^{(\tau)})$  практически сразу является масштабноинвариантной, как и в процессе самоорганизованной критичности. Энтропия случайного процесса  $H(\phi_i^{(\tau)})$ с ростом коэффициента масштабного преобразования убывает и стремится к значению  $H(\chi_i)$ .

Энтропия случайного процесса при масштабном преобразовании может характеризовать воздействие других управляющих параметров системы. В частности, увеличение коэффициента  $\lambda$  при линейном члене второго



**Рис. 6.** Зависимость энтропии огрубленных реализаций от коэффициента масштабного преобразования  $\tau$  при различных значениях управляющего параметра  $\lambda$ . I — зависимость  $H(\tau)$  для случайного процесса  $\chi_i^{(\tau)}$ ; 2-6 — зависимости  $H(\tau)$  для случайного процесса  $\phi_i^{(\tau)}$ .  $\lambda = 4$  (2), 3 (3), 2 (4), 1.8 (5), 1.5 (6).

уравнения (1) по сравнению с (2) приводит к затягиванию гауссовости процесса  $\phi_i^{(\tau)}$  при возрастании коэффициента масштабного преобразования  $\tau$ . При уменьшении  $\lambda$  по сравнению с (2) масштабно-инвариантное распределение (близкое к распределению переменной  $\chi_i^{(\tau)}$ ) получается при меньших значениях коэффициента масштабного преобразования. При  $\lambda = 2$  система (1) дает 1/f флуктуации в наиболее широком диапазоне интенсивностей белого шума и шагов интегрирования. Это связано с максимальной самоорганизацией случайных процессов, имеющих 1/f спектр: гауссовского и процесса с масштабно-инвариантной функцией распределения.

# Заключение

Теория флуктуационных процессов с фликкерным спектром мощности при неравновесных фазовых переходах показывает, что огрубленное распределение при больших коэффициентах масштабного преобразования становится экспоненциальным, характерным для статистики экстремальных выбросов. Развитая флуктуационная природа процессов теплообмена в двухфазных системах и генерация шума с расходящимися при низкой частоте спектрами приводят к перекачке энергии от высокочастотных колебаний к низкочастотным и может приводить к крупномасштабным выбросам в системе. Возможность таких выбросов следует учитывать при оценке устойчивости систем с развитыми флуктуационными процессами. Наряду со спектральным анализом полезно проводить масштабный анализ функций распределения.

Работа выполнена при поддрежке Российского фонда фундаментальных исследований (грант № 03-02-16215) и Программы фундаментальных научных исследований ОЭММПУ РАН.

## Список литературы

- [1] Кутателадзе С.С., Накоряков В.Е. Теплообмен и волны в газожидкостных системах. Новосибирск: Наука, 1984.
- Коверда В.П., Скоков В.Н., Скрипов В.П. // ЖЭТФ. 1998.
   Т. 113. Вып. 5. С. 1748–1757.
- [3] Скоков В.Н., Решетников А.В., Коверда В.П. // ТВТ. 2000.
   Т. 38. Вып. 5. С. 786–791.
- [4] Skokov V.N., Koverda V.P., Reshetnikov A.V., Skripov V.P., Mazheiko N.A., Vinogradov A.V. // Int. J. Heat and Mass Transfer. 2003. Vol. 46. P. 1879–1883.
- [5] Коверда В.П., Скоков В.Н. // ДАН. 2002. Т. 386. № 2. С. 187–189.
- [6] Коган Ш.М. // УФН. 1985. Т. 145. № 2. С. 285–328.
- [7] Weisman M.B. // Rev. Mod. Phys. 1988. Vol. 60. N 2. P. 537– 571.
- [8] Климонтович Ю.Л. Статистическая теория открытых систем. М.: ТОО "Янус", 1995. 624 с.
- [9] Bak P., Tang Ch., Wiesenfeld K. // Phys. Rev. A. 1988. Vol. 38. N 1. P. 364–374.
- [10] Yakimov A.V., Hooge F.N. // Physica B. 2000. Vol. 291. N 1–2. P. 97–104.
- [11] Олемской А.И. // УФН. 1998. Т. 168. № 3. С. 287-321.
- [12] Коверда В.П., Скоков В.Н. // ДАН. 2003. Т. 393. № 2. С. 184–187.
- [13] Antal T., Droz M., Guorgui G, and Rach Z. // Phys. Rev. Lett. 2001. Vol. 87. N 24. P. 240601-1–240601-4.
- [14] Bramwell S.T., Christensen K., Fortin J.-Y., Holdsworth P.C.W., Jensen H.J., Lise S., López J.M., Nicodemi M., Pinton J.-F., Sellitto M. // Phys. Rev. Lett. 2000. Vol. 84. P. 3744–3747.
- [15] Dahlstedt K., Jensen H.J. // J. Phys. A. 2001. Vol. 34. P. 11193–11200.
- [16] Costa M., Goldberger A.L., Peng C.-K. // Phys. Rev. Lett. 2000. Vol. 89. N 6. P. 068102-1-4.