12

Роль дефектов при кинковом механизме переключения состояний

© Б.В. Петухов

Институт кристаллографии им. А.В. Шубникова РАН, Москва, Россия E-mail: petukhov@ns.crys.ras.ru

(Поступила в Редакцию 4 мая 2012 г.)

Переключение состояний линейных систем, происходящее посредством кинкового механизма, описывается с учетом влияния дефектов, создающих центры облегченного зарождения пар кинков и препятствия для распространения кинков. Выводится уравнение, описывающее кинетику переключения с учетом стохастического характера рождения пар кинков во времени и хаотического распределения дефектов в пространстве. С помощью этого уравнения рассчитывается среднее время переключения в зависимости от концентрации дефектов и длительности создаваемых ими времен задержки и устанавливаются области параметров с преобладающим влиянием того или иного типа дефектов. Теория применима к магнитным нанопроволокам, дислокациям, биологическим макромолекулам и многим другим системам.

1. Введение

Переключение состояний в протяженных квазиодномерных материалах во многих случаях происходит посредством термоактивируемого образования зародышей нового состояния и их последующего разрастания вдоль системы. Примерами таких превращений являются переключение намагниченности нанопроволок в спинотронике (см. обзор [1]), уход дислокации из долины кристаллического рельефа (обзор [2]), репликация молекул ДНК [3], релаксация полимеров [4] и многие другие процессы в физике, химии и биологии. В связи с развитием технологии использования углеродных нанотрубок для выращивания в них квазиодномерных кристаллов резко возросло число объектов для изучения кинетики фазовых превращений в подобных системах [5,6].

Границы зародыша, связывающие сегменты первоначального и нового состояний (или в обобщенном смысле "фаз"), нередко трактуются как кинк-солитоны, и процесс перехода описывается в терминах зарождения и движения кинков. Слияние независимо образовавшихся зародышей, разросшихся до взаимных столкновений, и аннигиляция кинков завершают переход. Стохастический характер зарождения кинков в пространстве и времени накладывает существенный отпечаток на кинетику процесса [2,7,8].

В реальных материалах на зарождение и движение кинков оказывают влияние дефекты строения (примеси, рельеф поверхности и т.п.) [9,10], причем, как показывают экспериментальные данные [9,11], это влияние носит разнонаправленный характер: одни дефекты создают активные центры, способствующие зарождению пар кинков и ускоряющие переключение, другие являются центрами пиннинга кинков, тормозящими переключение. Это обстоятельство может существенно модифицировать кинетику протекания процесса в целом и требует соответствующего развития теории. Влияние вносимых дефектами задержек движения межфазных границ предельно большой длительности на процесс репликации молекул ДНК изучалось в работе [3] в рамках приближения самосогласованного поля. Модификация кинетики дефектами, создающими задержку движения кинков произвольной длительности, рассчитывалась в работах [12,13]. С учетом того экспериментального факта [9,11], что существенный, а нередко и преобладающий вклад в кинетику вносят дефекты, образующие активные центры, способствующие зарождению пар кинков, в настоящей работе проведено исследование более общей модели. Эта модель учитывает влияние случайно расположенных центров двух типов: центров зарождения (активаторов) и торможения (стопоров) кинков.

Простейший подход к решению проблемы заключается в перенормировке дефектами частоты зарождения кинков и скорости их движения. Однако в работе [14] было показано, что влияние дефектов по мере усиления вносимых ими искажений исходного материала может приводить к существованию режимов кинетики, для которых такой подход неприменим. В общем случае на протекание процесса существенное влияние оказывают флуктуации пространственного распределения дефектов и распределения длительности задержек на них, так что расчет кинетики требует более полного статистического описания, развитие которого и является целью настоящей работы. Качественное исследование возможных режимов, проведенное в [14], дополнено также описанием кинетики в промежуточных случаях и при произвольных соотношениях плотности активаторов и стопоров.

Кинковая модель переключения состояний

В теорию кинкового механизма, относящуюся к чистым материалам, закладываются два параметра: частота независимого спонтанного образования зародышей новой фазы в единицу времени на единицу длины системы J_0 и скорость движения границы новой фазы v.

В настоящей работе J_0 и v принимаются постоянными. Наиболее удовлетворительным подходом, в явном виде учитывающим все стадии процесса от зарождения кинков до их аннигиляции, является модель Колмогорова– Джонсона–Мела [15,16], в которой чрезвычайно просто решается статистическая проблема слияния случайно рождающихся в пространстве и времени зародышей при любой зависимости от времени t частоты образования зародышей J(t). Вкратце воспроизведем это решение.

Примем момент времени, соответствующий изменению условий, в которых находится система, и началу процесса переключения состояния равным нулю: t = 0. Обозначим вероятность для рассматриваемой точки не быть заметенной кинком, рожденным с какой-либо стороны от этой точки, ко времени t как $Q_0(t)$. По Колмогорову [15], $Q_0(t)$ вычисляется как вероятность того, что зародыш не возникнет на расстоянии, меньшем длины пробега за время t, т. е. vt. Если вероятность образования зародыша в малом интервале времени Δt_i на длине $l(t_i) = v(t - t_i)$ есть $J(t_i)l(t_i)\Delta t_i$, а вероятность того, что он не образуется, соответственно есть $1 - J(t_i)l(t_i)\Delta t_i$, то вероятность того, что зародыш не возникнет в течение промежутка времени $t = \sum \Delta t_i$ равна произведению

$$\prod [1 - J(t_i)l(t_i)\Delta t_i] \approx \exp\left[-\sum_i J(t_i)l(t_i)\Delta t_i\right]$$
$$\approx \exp\left[-\int_0^t J(t')v(t-t')dt'\right].$$
(1)

При постоянной частоте рождения кинков $J(t) = J_0$ получаем $Q_0(t) = \exp(-Jvt^2/2)$. Вероятность для точки не быть захваченной ни с той, ни с другой стороны есть $Q_0^2(t)$, а переключенная ко времени *t* доля системы равна, следовательно,

$$P_0(t) = 1 - Q_0^2(t) = 1 - \exp(-J_0 v t^2).$$
 (2)

С помощью этой формулы рассчитывается среднее время переключения

$$t_{\rm av0} = \int_{0}^{\infty} t \frac{dP_0}{dt} dt = \int_{0}^{\infty} Q_0^2(t) dt = \frac{1}{2} \sqrt{\frac{\pi}{J_0 v}}.$$
 (3)

3. Модификация кинкового механизма дефектами

Учтем дополнительно зарождение пар кинков на дефектах-активаторах, имеющих среднюю плотность на единицу длины системы n_+ и частоту срабатывания I_+ . Тогда частоту свободного образования пар кинков J_0 следует дополнить частотой зарождения на активаторах $n_+I_+ \exp(-I_+t)$ и подставить в (1) $J(t) = J_0 + n_+I_+ \exp(-I_+t)$. В этом случае "односторонняя" вероятность для данной точки системы не переключиться в новое состояние до времени t (обозначим

ее $Q_+(t)$) убывает со временем по закону

$$Q_{+}(t) = \exp\left\{-\int_{0}^{t} dt' J(t')v(t-t')\right\}$$

= $\exp\left\{-vtI(t) + vI_{1}(t)\right\}.$ (4)

Здесь

$$I(t) = \int_{0}^{t} J(t')dt', \quad I_{1}(t) = \int_{0}^{t} J(t')t'dt'.$$

В дальнейшем понадобится также вероятность q(t, l) того, что рассматриваемая точка не перейдет в новую фазу за счет образования зародыша только на прилегающем с одной стороны интервале с длиной l, меньшей длины пробега vt. Эта величина находится простым обобщением расчета, приводящего к (1), и равна

$$q(l,t) = \exp\left\{-\int_{0}^{t_{l}} dt' J(t')l - \int_{t_{l}}^{t} dt' J(t')v(t-t')\right\}$$
$$= \exp\left[vt_{l}I(t_{l}) - vtI(t) - vI_{1}(t_{l}) + vI_{1}(t)\right].$$
(5)

Здесь $t_l = t - l/v$.

Учтем теперь наличие дефектов, тормозящих движение кинков со средней плотностью на единицу длины системы *n*. Вычислим "одностороннюю" вероятность Q(t)для точки не перейти в новую фазу за счет рождения кинков с одной стороны от рассматриваемой точки (для определенности справа, условно представляя систему расположенной горизонтально) ко времени *t*. Обозначим дополнительную к Q(t) вероятность для рассматриваемой точки быть захваченной за счет рождения зародышей с одной стороны $P_1(t) = 1 - Q(t)$. Пусть первый стопор находится справа от рассматриваемой точки на расстоянии *l*. Тогда при l > vt он не оказывает влияния, и вероятность для точки не быть захваченной такая же, как в отсутствие стопоров, т.е. $Q_+(t)$. Вероятность отсутствия стопоров в интервале vt есть exp(-nvt).

Если первый стопор находится на расстоянии, меньшем vt, следует учесть возможность того, что кинк, подошедший к стопору в момент времени t', может задержаться на нем на время, большее t - l/v - t', и в результате не успеть пройти начало координат к моменту t. Обозначим вероятность задержки на стопоре, большей t, как f(t). Рассчитаем вероятность того, что кинк не окажется слева от стопора ко времени $t_l = t - l/v$. Обозначим ее $Q_-(t_l)$. Она равна сумме вероятности того, что граница не подойдет к стопору ко времени t_l , т. е. $Q(t_l)$ и, равной $dP_1(t')$ вероятности того, что, подойдя к нему в интервале времени dt', граница не преодолеет препятствие за время $t_l - t'$ для всех t' в интервале $(0, t_l)$,

$$Q_{-}(t_{l}) = Q(t_{l}) + \int_{0}^{P_{1}(t_{l})} f(t_{l} - t') dP_{1}(t')Q(t_{l}) - \int_{1}^{Q(t_{l})} f(t_{l} - t') dQ(t') = f(t_{l}) + \int_{0}^{t_{l}} \frac{df(t_{l} - t')}{dt'}Q(t') dt'.$$
(6)

Учитывая весь спектр возможных положений первого препятствия, получаем следующее уравнение для Q(t):

$$Q(t) = \exp(-nvt)Q_{+}(t) + n \int_{0}^{vt} dl \exp(-nl)q(l,t)Q_{-}(t_{l}).$$
(7)

Перейдем от интегрирования по l к интегрированию по t_l

$$Q(t) = \exp[-nvt - vtI(t) + vI_1(t)] \left\{ 1 + nv \int_0^t dt_l \exp[nvt_l + vt_lI(t_l) - vI_1(t_l)]Q_-(t_l) \right\}.$$

Перенося экспоненту в левую сторону равенства и дифференцируя обе стороны, получаем

$$\frac{dQ(t)}{dt} + [nv + vI(t)]Q(t) = nvQ_{-}(t).$$
(8)

Подстановка в уравнение (8) $Q_{-}(t)$ из (6) приводит к замкнутому уравнению относительно Q(t) при произвольной функции распределения времен задержки f(t).

В дальнейшем будет рассматриваться случайно однородная во времени вероятность преодоления препятствий со средней частотой $1/\tau$. В такой ситуации, отвечающей, например, термоактивируемой кинетике преодоления одинаковых препятствий, вероятность того, что время задержки превысит t, есть $f(t) = \exp(-t/\tau)$. Уравнение (6) при этом примет вид

$$\frac{dQ_{-}(t)}{dt} + \frac{1}{\tau}Q_{-}(t) = \frac{1}{\tau}Q(t).$$
(9)

Исключая из системы (8), (9) $Q_{-}(t)$, получаем замкнутое дифференциальное уравнение для Q(t)

$$\frac{d^2 Q(t)}{dt^2} + [nv + 1/\tau + vI(t)] \frac{dQ(t)}{dt} + [Jv + vI(t)/\tau]Q(t) = 0.$$
(10)

Уравнение (10) описывает самые разнообразные сценарии кинетики перехода. Некоторые из них были описаны ранее в рамках других подходов. В частности, как было показано в [14], влияние относительно слабых дефектов, что количественно может быть выражено условиями $I_+ \ll 1/t_{av0}$, $\tau \ll t_{av0}$, сводится к простой перенормировке частоты рождения кинков $J = J_0 + n_+ I_+$ и скорости

их движения $v_{av} = v/(1 + nv\tau)$. Это объясняется большой длиной пробега кинков в данной ситуации, следствием которой является усредненное влияние дефектов. В общем случае такого самоусреднения не происходит, и существенны флуктуации в хаотическом распределении дефектов.

Особенно показательна ситуация для достаточно сильных дефектов, характеризуемых выполнением обратных условий $I_+ \gg 1/t_{av0}$, $\tau \gg t_{av0}$, когда, как показано в [14], длина пробега кинков до аннигиляции составляет всего лишь величину порядка среднего расстояния между дефектами, и не о каком самоусреднении скорости кинков речь идти не может. Рассмотрение физических особенностей этой ситуации и составляет основное содержание настоящей работы. Количественную основу для расчета кинетики при этом дает уравнение (10).

При выполнении условия $I_+ \gg 1/t_{av0}$ время срабатывания активаторов мало по сравнению с характерным временем переключения, так что можно считать все активаторы срабатывающими мгновенно и положить $J(t) \approx J_0 + n_+ \delta(t), \ I(t) \approx J_0 t + n_+, \ I_1(t) \approx J_0 t$. Уравнение (10) примет вид

$$\frac{d^2 Q(t)}{dt^2} + \left[(n+n_+)v + 1/\tau + vJ_0t \right] \frac{dQ(t)}{dt} \\ + \left[(J_0 + n_+/\tau)v + vJ_0t/\tau \right] Q(t) = 0.$$
(11)

Начальным условием для Q(t) является $Q(t)|_{t=0} = 1$. Кроме того, наличие вклада в J(t) δ -функции приводит к условию для производной $dQ(t)/dt|_{t=0} = -n_+v$.

Решение уравнения (11) можно выразить через специальные функции, несложно также решить его численно. Полученное решение позволяет рассчитать затем среднее время переключения $t_{av} = \int_{0}^{\infty} Q^2(t) dt$. Рис. 1 иллюстрирует найденную таким образом зависимость времени переключения от плотности дефектов для нескольких значений времени задержки на них. Конкуренция роли активаторов и стопоров сравнимой плотности приводит к характерному немонотонному виду кривых с преобладанием ускорения кинетики при относительно небольшой плотности дефектов и преимущественным замедлением кинетики при более высокой их плотности.

Как было показано в [14], при большом времени задержки на стопорах $\tau \gg t_{av0}$ существует несколько качественно различных режимов переключения, не имеющих аналога в идеальных материалах. Развиваемая в настоящей работе теория позволяет дать более полное количественное описание как самих этих режимов, так и переходных областей между ними. Произведем соответствующее условию $\tau \gg t_{av0}$ упрощение уравнения (11). Будем измерять время в единицах $t_0 = 1/(J_0 v)^{1/2}$, длину в единицах $l_0 = (v/J_0)^{1/2}$ и введем безразмерные параметры $n(v/J_0)1/2 = n', \tau/t_0 = \tau' \gg 1$. Изучим видоизменение кинетики по сравнению с чистым материалом по мере увеличения плотности дефектов. Начнем со случая относительно малой их плотности ($n_+ \ll J_0 \tau$),

Рис. 1. Зависимость среднего времени переключения состояния от плотности дефектов при сравнимом содержании активаторов и стопоров $n = n_+$ для значений времени задержки кинков на стопорах $\tau/t_0 = 5$ (1), 7 (2), 10 (3); $l_0 = (v/J_0)^{1/2}$, $t_0 = 1/(vJ_0)^{1/2}$. Штриховые линии соответствуют режиму, описываемому уравнением (16), $t_{av0} = \frac{1}{2}\sqrt{\frac{\pi}{J_0v}}$ — время переключения в отсутствие дефектов.

когда время перехода t_{av} еще не сильно отклоняется от t_{av0} и, следовательно, много меньше τ . При этом можно опустить в уравнении (11) малые слагаемые $1/\tau$ и $n_+v/\tau + vJ_0t/\tau$, так что уравнение примет вид

$$\frac{d^2Q(t)}{dt^2} + (n' + n'_+ + t)\frac{dQ(t)}{dt} + Q(t) = 0.$$
 (12)

Решением этого уравнения, удовлетворяющим начальным условиям, является

$$Q(t) = \exp[-(n' + n'_{+})t - t^{2}/2] + n' \int_{0}^{t} \exp\left[-(n' + n'_{+} + t)t' + \frac{1}{2}t'^{2}\right] dt'.$$
 (13)

Соответствующая кинетика переключения показана на рис. 2, который позволяет понять причину проявившейся на рис. 1 неоднозначной роли дефектов. Как видно, при малых временах влияние активаторов приводит к ускорению убывания доли исходной фазы. При больших временах преобладает обусловленное наличием центров пиннинга замедление убывания исходной фазы. При сравнимых плотностях активаторов и стопоров конечный итог конкуренции этих двух тенденций не очевиден, и для его выяснения следует рассчитать среднее время переключения $t_{\rm av} = \int_{0}^{\infty} Q^2(t) dt$. Для области параметров $n+n_+\ll J_0\tau$ это нетрудно сделать с помощью результата (13). Расчет показывает, что по мере увеличения содержания дефектов преобладание роли центров активации в итоговой кинетике сменяется преобладанием роли центров пиннинга.

Асимптотики функции $t_{av}(n')$ легко находятся аналитически. При $n' + n'_+ \rightarrow 0$, естественно, $t_{av} \rightarrow \frac{1}{2}\sqrt{\pi}t_0$ (как в чистом материале). При $n' + n'_+ \gg 1$ приближенное вычисление интеграла в (13) дает

$$Q(t) \approx \exp[-(n'+n'_{+})t - t^{2}/2] + n' \frac{1 - \exp[-(n'+n'_{+})t]}{n'+n'_{+} + t}.$$
(14)

По истечении относительно короткого интервала времени $t \sim 1/(n'+n'_+)$ в Q(t) остается только долгоживущий вклад

$$Q(t) \approx \frac{n'}{n' + n'_+ + t}.$$
(15)

Вычисление среднего времени перехода с его учетом в случае размерных переменных дает

$$t_{\rm av} \approx \frac{n^2}{n+n_+} \frac{1}{J_0}.$$
 (16)

Интересно отметить, что в среднее время перехода (16) не входят явно ни скорость кинков v, ни время задержки на препятствиях τ . Для случая $n \sim n_+$ такой режим, при котором время переключения определяется временем

Рис. 2. Кинетика переключения Q(t) при разном соотношении плотностей центров активации и пиннинга в сравнении с идеальным материалом (пунктирные линии). $a - n_+ = 0.2n$; $n = 0.5/l_0$ (1), $1/l_0$ (2), $2/l_0$ (3), $5/l_0$ (4); $b - n_+ = n$; $n = 0.5/l_0$ (1), $2/l_0$ (2), $5/l_0$ (3). Штриховые линии показывают поведение приближенного решения (14) (для $n = n_+ = 5/l_0$ кривые, соответствующие приближенному и точному решению, сливаются).

ожидания свободного рождения пары кинков на среднем расстоянии между дефектами, был предсказан ранее в [14]. Данный расчет описывает также полностью поведение времени переключения в промежуточной между режимами (3) и (16) области значений плотности дефектов. При дальнейшем повышении плотности дефектов до значений $n + n_+ \ge J_0 \tau$ режим (16) сменяется другим предсказанным в [14] режимом кинетики, более детально описанным далее.

4. Кинетика переключения при большой плотности дефектов

При относительно большой плотности дефектов $n + n_+ \gg (J_0/v)^{1/2}$ можно получить более общее приближенное решение уравнения (11), которое справедливо и для области параметров $n + n_+ \gg J_0 \tau$. В этом случае, как и для (14), имеет место разделение решения на короткоживущую и долгоживущую части. При нахождении быстро меняющейся короткоживущей части в уравнении (11) достаточно учитывать только слагаемые с производными, а при нахождении медленно меняющейся долгоживущей части можно пренебречь второй производной d^2Q/dt^2 . В итоге получаем

$$Q(t) \approx \frac{n'}{n' + n'_{+}} \frac{\exp(-t/\tau')}{[1 + t/(n' + n'_{+})]^{1 - n'/\tau}} + \frac{n'_{+}}{n' + n'_{+}} \exp[-(n' + n'_{+})t].$$
(17)

Второе слагаемое в (17) вносит быстро затухающий вклад в кинетику процесса и при вычислении среднего времени переключения может не учитываться. Получаем

$$t_{\rm av} = \int_{0}^{\infty} dt Q^{2}(t) \approx \frac{{n'}^{2}}{n' + n'_{+}} \exp\left(\frac{2(n' + n'_{+})}{\tau}\right) \\ \times \left[\frac{\tau'}{2(n' + n'_{+})}\right]^{2n'/\tau' - 1} \Gamma\left(2n'/\tau' - 1.2(n' + n'_{+})/\tau'\right).$$
(18)

Здесь $\Gamma(a, x) = \int_{x}^{\infty} \exp(-t)t^{a-1}dt$ — неполная гамма-

функция (см., например, [17], 6.5.3). При $n', n'_+ \ll \tau'$ выражение (18) переходит в $n'^{2}/(n'+n'_{+})$, что согласуется с (16). При обратном соотношении параметров $(n', n'_+ \gg \tau')$ выражение (18)

сводится (в размерных переменных) к

$$t_{\rm av} \approx \frac{\tau}{2} \frac{n}{n+n_+}.$$
 (19)

При $n_+ \sim n$ этот результат согласуется с предсказанным в [14] на основании полукачественных аргументов режимом перехода, контролируемым временем задержки на дефектах и не зависящим явно от кинетики свободного зарождения кинков.

5 0 200 400 600 800 1000 0 nl_0 Рис. 3. Зависимость среднего времени переключения состояния от плотности дефектов при ее большой величине для значений времени задержки кинков на стопорах $\tau / t_0 = 10$ (1), 20 (2), 50 (3), 100 (4); $n = n_+$. Штриховые линии соответствуют качественно различным режимам кинетики: горизон-

На рис. 3 приведена определяемая уравнением (18) зависимость среднего времени перехода от плотности препятствий для различных значений среднего времени задержки т на них. Штриховыми линиями показаны предельные режимы (16), (19).

тальные линии — режиму, описываемому уравнением (19),

линия l' — режиму, описываемому уравнением (16).

5. Заключение

В настоящей работе построена теория, описывающая кинетику переключения состояний одномерной системы, содержащей хаотически расположенные дефекты, одна разновидность которых облегчает образование новой фазы, а другая тормозит движение фазовых границ. Изучена ситуация, при которой влияние дефектов не сводится к перенормировке скорости движения границ и становятся существенными случайные флуктуации пространственного распределения дефектов и времен задержки на них. Для этой ситуации выведено и проанализировано уравнение, дающее статистическое описание временной зависимости доли вещества, перешедшей в новое состояние, и обобщающее результат теории Колмогорова-Джонсона-Мела с учетом влияния дефектов. Модифицированная теория позволяет рассчитать обусловленное дефектами изменение кинетики образования новой фазы и времени превращения в зависимости от плотности дефектов и среднего времени задержки движения границ на них.

При достаточно больших искажениях, вносимых дефектами, основным качественным следствием их влияния является возникновение иерархии существенно отличающихся как от имеющего место в идеальном материале, так и друг от друга режимов перехода между различными состояниями системы. Если опре-

деляющие кинетику элементарные процессы термически активируемые, входящие в теорию параметры должны иметь температурные зависимости аррениусовского типа: $J_0 = J_{0*} \exp(-E_0/kT), v = v_* \exp(-E_m/kT),$ $\tau = \tau_* \exp(E/kT)$, где E_0 , E_m и E — соответствующие энергии активации, а J_{0*}, v_* и τ_* — некоторые предэкспоненциальные множители. Теория предсказывает, что в различных областях параметров дефектной структуры кинетика переключения будет характеризоваться различными энергиями активации. При низкой концентрации дефектов это в соответствии с (3) полусумма $(E_0 + E_m)/2$, при повышении содержания дефектов это E_0 (16), в области больших концентраций это E (19). При промежуточных значениях концентрации дефектов температурная зависимость кинетики переключения не имеет аррениусовского вида и определяется комбинацией различных элементарных процессов. Извлечение активационных параметров в этом случае может быть произведено посредством подгонки установленных в настоящей работе теоретических закономерностей под экспериментальные данные.

Модификация кинетики дефектами имеет важные следствия для систем самой различной природы. Один такой пример описан в работе [3] применительно к процессу деления клеток. В этом случае фазовыми границами являются точки расхождения двух ветвей молекулы ДНК (forks). Как отмечалось в [3], приближение к границе смены механизма репликации молекул ассоциируется с возникновением риска развития рака. Оценка вызываемого дефектами увеличения времени репликации в сравнении с временем жизненного цикла клеток позволяет определить степень такого риска.

Другой любопытной особенностью кинетики при наличии дефектов-активаторов является ускорение перехода к новому состоянию в некоторой области концентрации дефектов. Такая ситуация имеет место, например, при движении дислокаций, когда роль стопоров и активаторов играют одни и те же примеси, но расположенные в смежных долинах кристаллического рельефа [14,18], так что $n = n_+$. Как показывает проведенный расчет, результаты которого представлены на рис. 1, при низкой плотности дефектов конкуренцию выигрывают активаторы, а при более высокой плотности преобладающее влияние имеют стопоры. Проявление кинетики дислокаций в макроскопических механических свойствах приводит к аналогичной конкуренции эффектов разупрочнения и упрочнения, экспериментально наблюдаемой во многих материалах с кинковым механизмом пластичности (см. обзоры [9,18]).

Список литературы

- G. Hrkac, J. Dean, D.A. Allwood. Phil. Trans. R. Soc. A, 369, 3214 (2011).
- [2] B.V. Petukhov. In: Crystal lattice defects and dislocation dynamics /Ed. R.A. Vardanian. Nova Science Publ., Inc., Huntington, N.Y. (2000); http://ns.crys.ras.ru/~petukhov

- [3] M.G. Gauthier, J. Herrick, J. Bechhoefer. Phys. Rev. Lett. 104, 218 104 (2010).
- [4] P. Kraikivski, R. Lipowsky, J. Kierfeld. Eur. Phys. J. E 16, 319 (2005).
- [5] Р.М. Закалюкин, Л.Н. Демьянец, Н.А. Киселев, А.С. Кумсков, М.Б. Кислов, А.В. Крестинин, Д.Л. Хатчисон. Кристаллография, 55, 545 (2010).
- [6] J.H. Warner, S.R. Plant, N.P. Young, K. Porfyrakis, A.I. Kirkland, G.A.D. Briggs. ACS Nano 5, 1410 (2011).
- [7] J. Briones, F. Montaigne, M. Hehn, D. Lacour, J.R. Childress, M.J. Carey. Phys. Rev. B 83, 060 401(R) (2011).
- [8] W. Wernsdorfer, B. Doudin, D. Mailly, K. Hasselbach, A. Benoit, J. Meier, J.-Ph. Ansermet, B. Barbara. Phys. Rev. Lett. 77, 1873 (1996).
- [9] E. Pink, R.J. Arsenault. Progr. Mater. Sci. 24, 1 (1979).
- [10] P. Lendecke, G. Meier. J. Phys.: Cond. Matter. 24, 024 207 (2012).
- [11] R.G.P. McQuaid, M. McMillen, L.-W. Chang, A. Gruverman, J.M. Gregg. J. Phys.: Cond. Matter 24, 024 204 (2012).
- [12] Б.В. Петухов. ФТТ 54, 1211 (2012).
- [13] Б.В. Петухов. ЖЭТФ 141, 1130 (2012).
- [14] Б.В. Петухов. ФТТ **25**, 1822 (1983).
- [15] А.Н. Колмогоров. Изв. АН СССР. Сер. мат. 3, 355 (1937).
- [16] W.A. Johnson, P.A. Mehl. Trans. AIMME 135, 416 (1939).
- [17] А.П. Прудников, Ю.А. Брычков, О.И. Маричев. Интегралы и ряды. Элементарные функции. Наука, М. (1981). 800 с.
- [18] Б.В. Петухов. Кристаллография. 52, 113 (2007).