01;03 Определение кинетических коэффициентов переноса ионов в воздухе как функций напряженности электрического поля и температуры

© И.А. Буряков

Конструкторско-технологический институт геофизического и экологического приборостроения СО РАН, 630090 Новосибирск, Россия e-mail: buryakov@uiggm.nsc.ru

(Поступило в Редакцию 15 сентября 2003 г. В окончательной редакции 23 января 2004 г.)

Описан метод определения кинетических коэффициентов переноса ионов в газе: коэффициентов подвижности (K), продольной (D_L) и поперечной (D_T) диффузии как функций напряженности электрического поля (E) и температуры газа (T). Метод основан на измерении зависимостей приращения коэффициентов подвижности ионов от напряженности электрического поля при параметрическом задании температуры. Для положительных ионов анилина, пиридина, бензола, ортотолуидина, диметилметилфосфоната, N-метиланилина, N, N-диметиланилина, N, N-диэтиланилина и дифениламина (ДФА), образующихся при β -ионизации в воздухе, определены кинетические коэффициенты переноса $K(E, T), D_{L,T}(E, T)$.

Введение

Основными кинетическими коэффициентами переноса ионов в газе в электрическом поле являются коэффициенты подвижности (К) и диффузии (D) ионов, зависящие от эффективной температуры, приращения коэффициента подвижности, интеграла столкновений. Экспериментальные значения этих величин, в особенности их зависимость от температуры газа (T) и от напряженности электрического поля, приведенной к плотности числа частиц (E/N), могут дать информацию о потенциале взаимодействия иона с частицей газа, сечениях упругих, неупругих и реакционных столкновений частиц. Информация о подвижности и диффузии ионов необходима для количественного описания электрического разряда в газах, расчета коэффициентов ионно-ионной рекомбинации, анализа экспериментов по исследованию плазмохимических реакций [1,2]. Кроме того, данные о зависимостях K(E/N, T), D(E/N, T) необходимы для решения прикладных задач, например при определении аналитических характеристик и областей применения спектрометров приращения ионной подвижности [3]. В этих устройствах разделение ионов производят по зависимости коэффициентов подвижности от величины напряженности электрического поля при температуре и давлении окружающего воздуха.

Для расчета кинетических коэффициентов переноса ионов используют метод моментов, в котором эти коэффициенты определяют через коэффициенты разложения и моменты функции распределения ионов, а также проинтегрированные сечения рассеяния частиц. В качестве пробной функции применяют максвелловскую функцию распределения, сдвинутую на величину дрейфовой скорости ионов в направлении электрического поля, причем продольная и поперечная температуры ионов варьируемые параметры. Такой подход носит название трехтемпературной теории подвижности ионов. Целью данной работы было исследовать зависимости приращения коэффициентов подвижности от температуры газа и напряженности электрического поля, приведенной к плотности частиц $\alpha(E/N, T)$, для положительных ионов анилина, пиридина, бензола, ортотолуидина (о-ТЛД), диметилметилфосфоната (ДММФ), N-метиланилина (МА), N, N-диметиланилина (ДМА), N, N-диэтиланилина (ДЭА) и дифениламина (ДФА), образующихся при β -ионизации в воздухе. На основе этих зависимостей определить интегралы столкновений, коэффициенты подвижности, продольной и поперечной диффузии ионов как функции напряженности электрического поля и температуры газа.

Уравнения и параметрические коэффициенты для расчета кинетических коэффициентов переноса ионов

Уравнения для расчета коэффициента подвижности в зависимости от параметров (E, N, T) [1] имеют вид

$$K(E/N) \equiv V/E = K(0) \left(1 + \alpha(E/N) \right), \tag{1}$$

$$K(0) = \frac{3e}{16N} \left(2\pi/\mu k T_{\rm eff} \right)^{1/2} \frac{1}{\overline{\Omega}^{(1,1)}(T_{\rm eff})},\tag{2}$$

$$3/2kT_{\rm eff} \approx 3/2kT + 1/2M(KE)^2,$$
 (3)

$$K_0 = K \frac{p}{760} \frac{273.15}{T} + K \frac{N}{N_0},\tag{4}$$

$$\alpha = \sum_{n=1}^{\infty} \alpha_{2n} \left(E/N \right)^{2n},\tag{5}$$

где V — скорость дрейфа ионов, обусловленная действием электрического поля; K(0) — коэффициент подвижности ионов в "слабом" поле (E/N < 6 Td —

Таблица 1. Молекулярная масса, приведенные коэффициенты подвижности в малом поле $K_0(0)$, интегралы столкновений $\overline{\Omega}^{(1,1)}$, безразмерные параметрические коэффициенты Δ_L , Δ_T , β_L

Вещество	<i>m</i> , amu	$\frac{K_0(0)}{\mathrm{cm}^2/\mathrm{Vs}}$	$\frac{\overline{\Omega}^{(1,1)}(T)}{10^{-14}}, \text{cm}^2$	Δ_L	Δ_T	β_L
Бензол	78.11	1.94	1.235*	0.088	0.098	0.92
ДММФ	124.08	1.95	1.14	0.056	0.064	0.964
о-ТЛД	107.15	1.75	1.315*	0.065	0.076	0.954
MA	107.15	1.74	1.3	0.065	0.076	0.954
Пиридин	79.1	1.7	1.376	0.087	0.096	0.922
Анилин	93.13	1.81	1.232	0.074	0.086	0.941
ДМА	121.18	1.81	1.23	0.057	0.065	0.963
ДЭА	149.23	1.7	1.287	0.045	0.043	0.972
ДФА	169.22	1.54	1.407	0.04	0.031	0.979
		•				

* $T_g = 283 \,\mathrm{K}.$

"таунсенд", 1 Td = 10^{-17} V · cm²); $\alpha(E/N)$ — приращение коэффициента подвижности, зависящее от параметра E/N; e — заряд иона; N — плотность нейтральных частиц газа; $\mu = mM/(m+M)$ — приведенная масса; m — масса иона; M — масса частицы нейтрального газа; k — постоянная Больцмана; $T_{\rm eff}$ — эффективная температура; $\overline{\Omega}^{(1,1)}(T_{\rm eff})$ — интеграл столкновений теории переноса [1]; T — температура газа; p — давление; K_0 — коэффициент подвижности, приведенный к нормальным условиям (T = 273.15 K, p = 760 mm Hg, $N_0 = 2.687 \cdot 10^{19}$ сm⁻³ — число Лошмидта); α_{2n} — коэффициенты при степенях разложения.

Уравнения для расчета продольного и поперечного коэффициентов диффузии $(D_L \ и \ D_T)$ в зависимости от параметров (E, N, T) получены при использовании обобщенных уравнений Энштейна [1]. Поскольку коэффициенты диффузии ионов зависят от плотности частиц газа через отношение 1/N, то более удобно пользоваться произведениями $ND_{L,T}$. В практических единицах эти выражения имеют вид [1]

$$ND_L \approx 2.32 \cdot 10^{15} K_0 T_L (1 + (1 + \Delta_L) K'),$$

$$ND_T \approx 2.32 \cdot 10^{15} K_0 T_T (1 + \Delta_T K' / (1 + K')), \qquad (6)$$

$$K' = \frac{d\ln K}{d\ln(E/N)},\tag{7}$$

$$kT_{L,T} \approx kT + \gamma_{L,T}M(KE)^{2} (1 + \beta_{L,T}K'), \quad \beta_{T} = 0,$$

$$\gamma_{L} = \frac{4m - (2m - M)A^{*}}{4m + 3MA^{*}},$$

$$\gamma_{T} = \frac{(m + M)A^{*}}{4m + 3MA^{*}}, \qquad A^{*} \approx 0.9.$$
(8)

Типы ионов

При ионизации исследуемых веществ при атмосферном давлении основным типом ионов является протонированная молекула $(m + H)^+$ (H — атом водорода), образующаяся в реакциях передачи протона [4,5],

$$(\mathrm{H}_2\mathrm{O})_n\mathrm{H}^+ + m \to (m + \mathrm{H})^+ + n\,\mathrm{H}_2\mathrm{O}.$$

В табл. 1 даны молекулярная масса исследуемых веществ, коэффициенты подвижности в малом поле $K_0(0)$ [4,6–8], величины интегралов столкновений, вычисленные с помощью уравнения (2) при T = 294 К, значения параметрических коэффициентов Δ_L , Δ_T , β_L , зависящие от соотношения масс *m* и *M* и определяемые через интегралы столкновений кинетической теории [1].

Методика определения зависимостей K(E/N, T), D(E/N, T)

Для определения зависимостей K(E/N, T), D(E/N, T) необходимо иметь информацию о поведении функций $\overline{\Omega}^{(1,1)}(T_{\text{eff}})$ и $\alpha(E/N)$. Комбинируя уравнения (1)–(4), имеем

$$\frac{1}{\overline{\Omega}^{(1,1)}(T_{\text{eff}})} = \frac{1}{\overline{\Omega}^{(1,1)}(T)} \times \sqrt{1 + \frac{M}{3T} \left(N_0 K_0(0)(1+\alpha) \frac{E}{N} \right)^2}.$$
 (9)

Единственным неизвестным в этом уравнении является функция $\alpha(E/N, T)$.

В [9] подробно описан метод определения приращения коэффициента подвижности $\alpha(E/N)$ с помощью переменного периодического несимметричного по полярности электрического поля. Под действием такого поля $E_d(t) = E_d \cdot f(t)$ (E_d — амплитуда поля, f(t) — форма поля), описываемая условиями

$$\int_{t}^{t+P} f(t) dt = 0, \quad \frac{1}{P} \int_{t}^{t+P} f^{2n+1}(t) dt \equiv \langle f^{2n+1} \rangle \neq 0 \quad (10)$$

 $(n \ge 1$ — целое число), ионы определенного типа, находящиеся в газе, совершая быстрые колебания с периодом *P*, дрейфуют вдоль силовых линий поля с характерной средней скоростью $\langle V \rangle$, пропорциональной $\alpha(E/N)$. Эту скорость можно компенсировать ($\langle V \rangle = 0$) постоянным электрическим полем E_c , тогда выражение для компенсирующего поля с учетом разложения (5) имеет вид [10]

$$E_{c} \approx \left(E_{d} \sum_{n=1}^{\infty} \alpha_{2n} \left(\frac{E_{d}}{N} \right)^{2n} \langle f^{2n+1} \rangle \right) \Big/$$
$$\left/ \left(1 + \sum_{n=1}^{\infty} (2n+1) \alpha_{2n} \left(\frac{E_{d}}{N} \right)^{2n} \langle f^{2n} \rangle \right).$$
(11)

Экспериментально получив зависимости $E_c(E_d/N)$ при разных значениях T и решая обратную задачу уравнения (11), находим коэффициенты разложения α_{2n} и по уравнению (5) зависимости $\alpha(E/N, T)$. Используя $\alpha(E/N, T)$, находим $\overline{\Omega}^{(1,1)}(T_{\text{eff}})$ и с помощью уравнений (1), (6) и данных табл. 1 определяем зависимости K(E/N, T), $ND_{L,T}(E/N, T)$.

Рис. 1. Блок-схема экспериментальной установки.

Экспериментальная часть

Блок-схема экспериментальной установки, приведенная на рис. 1, содержит прогреваемую камеру ионизации I (β -источник ⁶³Ni, $T_i = 80$ °C), дрейфовую камеру 3, образованную между двумя коаксиальными цилиндрическими электродами, продуваемую потоком газа-носителя (очищенный сухой воздух, концентрация паров воды < 100 ppm, скорость потока $Q_g = 30 \text{ cm}^3/\text{s}$, температура $T = 21 \pm 1$ °C, $N = (2.5 \pm 0.1) \cdot 10^{19} \text{ cm}^{-3}$), систему электродов 2, обеспечивающую транспортировку ионов из камеры ионизации в дрейфовую камеру, источник компенсирующего напряжения 4, генератор переменного периодического несимметричного по полярности напряжения 5, подключенный к коаксиальным электродам, коллектор 6, электрометрический усилитель 7 (амплитуда шума $2 \cdot 10^{-14} \text{ A}$).

Параметры генератора: форма напряжения f(t) (рис. 1)

$$f(t) = \left(\sin \left[\pi (t - bP) / \tau \right] - 2\tau / \pi P \right) / (1 - 2\tau / \pi P)$$

при $bP \le t \le (bP + \tau),$
 $f(t) = -(2\tau / \pi P) / (1 - 2\tau / \pi P)$
при $(bP + \tau) \le t \le (b + 1)P$ (12)

 $(b \ge 0$ — целое число); диапазон изменения амплитуды напряжения $U_d = \pm 1000 - 4000$ V; период $P = 6 \mu$ s; длительность импульса $\tau = 2 \mu$ s. Пределы допускаемых значений погрешности измерения: компенсирующего напряжения $\delta U_c = \pm 2\%$; амплитуды переменного несимметричного по полярности напряжения $\delta U_d = \pm 10\%$; временны́х интервалов $\delta t = \pm 7\%$.

Образцы веществ были получены из Института органической химии СО РАН (Новосибирск). Для определения состава образцов использовали газожидкостный хроматограф HP 5890, содержание основной компоненты было не менее 98.5%. Паровоздушные смеси исследуемых веществ получали при пропускании очищенного воздуха через кювету, в которую помещали диффузионные трубки, содержащие вещества. Далее смесь подавали в камеру ионизации.

Определение зависимостей $\alpha(E/N)$ и $\overline{\Omega}^{(1,1)}(T_{\text{eff}})$

Сигнал, регистрируемый на экспериментальной установке, представляет собой зависимость ионного тока от напряжения компенсации $(I(U_c))$, спектр. Каждый тип иона на спектре регистрируется как ионный пик. Значения U_{ci} , соответствующие максимумам пиков, наблюдаются при выполнении соотношения (11) для каждого *i*-го типа ионов, связь между напряженностью электрического поля и прикладываемым напряжением определяется уравнением

$$U = Er \ln(r_2/r_1), \quad r \approx (r_1 + r_2)/2. \tag{13}$$

На рис. 2 приведены экспериментальные зависимости $U_c(U_d)$ для ионов исследуемых веществ. Отрицательное значение U_c для положительных ионов свидетельствует о том, что $\alpha(E/N) > 0$ и коэффициент подвижности K с ростом U_d возрастает. Для ионов о-ГЛД приведены зависимости $U_c(U_d)$, полученные при разной температуре газа-носителя $T = 10, 20, 30, 40^{\circ}$ С. Как видно из рисунка, при увеличении температуры

Рис. 2. Экспериментальные зависимости $U_c(U_d)$ (фигуры) для ионов: 1 — пиридин, 2 — бензол, 3 — ДММФ, 4 — МА, 5 — анидин, 6-9 — о-ТЛД при T = 10, 20, 30, 40° С соответственно, 10 — ДМА, 11 — ДФА, 12 — ДЭА.

Вещество	$\alpha_2, 10^{-6}, Td^{-2}$	$\alpha_4, 10^{-10},$ Td ⁻⁴	$\alpha_6, 10^{-14}, \ \mathrm{Td}^{-6}$
Бензол, а	12.9	-9.36	2.22
Бензол, b	13.4	-12.4	4.86
Бензол, с	13.4	-13.4	5.74
Бензол, d	13.8	-16.2	9.13
ДММФ	9.6	-2.58	2.26
о-ТЛД, <i>а</i>	7.94	-5.38	1.61
о-ТЛД, <i>b</i>	7.91	-5.36	1.53
о-ТЛД, <i>с</i>	7.96	-5.67	1.59
о-ТЛД, <i>d</i>	8	-5.93	1.44
MA	10.9	-6.87	1.29
Пиридин	15.1	-11.1	2.65
Анилин	10.8	-8.19	3
ДМА	9.05	-9.25	3.6
ДЭА	4.51	-4.9	1.76
ДФА	5.22	-3.96	4.76

Таблица 2. Значения коэффициентов α_{2n} для ионов исследуемых веществ

газа-носителя зависимость $U_c(U_d)$ уменьшается. Подобные зависимости при $T = 10, 20, 30, 40^{\circ}$ С получены для ионов бензола (на рисунке не показано).

Рис. 3. Зависимости $\alpha(E/N)$ для ионов исследуемых веществ: 1 — пиридин; 2a-2d — бензол при T = 10, 20, 30, 40°C соответственно; 3 — анилин; 4 — МА; 5 — ДММФ; 6a-6d о-ТЛД при T = 10, 20, 30, 40°C соответственно; 7 — ДМА; 8 — ДФА; 9 — ДЭА.

Рис. 4. Зависимости $\overline{\Omega}^{(1,1)}(T_{\text{eff}})$ для ионов исследуемых веществ. *а*: $1 - \square \Phi A$; 2 - пиридин; 3 - MA; $4 - \square A$; 5 - анилин; $6 - \square MA$; $7 - \square MM\Phi$; *b*: 1a - 1d - o-ТЛД; 2a - 2d - бензол при T = 10, 20, 30, 40°С соответственно.

Коэффициенты α_{2n} , представленные в табл. 2, вычисляли, решая обратную задачу уравнения (11) и используя экспериментальные данные (рис. 2), выраженные в единицах напряженности с помощью уравнения (13). Коэффициенты $\langle f^{2n} \rangle = 0.23$, 0.13, 0.1 и $\langle f^{2n+1} \rangle = 0.12$, 0.11, 0.1 при n = 1, 2, 3 соответственно были определены ранее [9]. Расчет значений α_{2n} проводили с помощью полиномиальной аппроксимации, используя метод наименьших квадратов (полиномиальная регрессия). Обозначения a, b, c, d в таблице 2 для ионов бензола и о-ТЛД соответствуют $T = 10, 20, 30, 40^{\circ}$ С.

На рис. З представлены зависимости $\alpha(E/N)$, вычисленные с помощью (5) по коэффициентам из табл. 2. Из рисунка видно, что на начальной стадии зависимости приращение α увеличивается пропорционально квадрату параметра E/N, причем скорость роста убывает в ряду пиридин > бензол > MA = = анилин = ДММФ > ДМА \approx о-ТЛД > ДФА > ДЭА. Далее с увеличением E/N степень зависимости α уменьшается, переходя в линейную. При дальнейшем увеличении параметра E/N зависимость α становится еще более пологой, а для бензола, ДММФ и ДФА после достижения некоторого максимума уменьшается. Для ионов бензола и о-ТЛД зависимости $\alpha(E/N)$, полученные при разных температурах газа-носителя T = 10, 20, 30, 40° С, по мере увеличения температуры уменьшаются, а местоположения максимумов подвижностей ионов смещаются в область меньших значений параметра (E/N).

На рис. 4, *а* приведены зависимости $\overline{\Omega}^{(1,1)}(T_{\text{eff}})$, рассчитанные с помощью уравнения (9) и зависимостей $\alpha(E/N)$, для ионов пиридина, анилина, МА, ДММФ, ДМА, ДФА и ДЭА при $T = 20^{\circ}$ С, а на рис. 4, *b* — для ионов бензола и о-ТЛД при $T = 10, 20, 30, 40^{\circ}$ С. Как видно, с увеличением эффективной температуры T_{eff} величина параметра $\overline{\Omega}^{(1,1)}$ уменьшается, а при увеличении температуры газа T с 283 до 313 К зависимость $\overline{\Omega}^{(1,1)}(T_{\text{eff}})$ смещается как целое в сторону увеличения T_{eff} не более чем на 0.8% (рис. 4, *b*).

Определение приведенных кинетических коэффициентов переноса как функций напряженности поля и температуры $K_0(E/N, T), ND(E/N, T)$

На рис. 5 показаны зависимости $K_0(E/N, T)$, вычисленные по уравнениям (1), (2) и данным табл. 1. Для ионов бензола и о-ТЛД эти зависимости рассчитаны для T = 10, 20, 30 и 40°С, для ионов остальных веществ $T = 20^{\circ}$ С. Вид зависимостей $K_0(E/N)$ определяется потенциалами взаимодействия ион-нейтральная частица газа. Если тепловая энергия частиц газа много меньше глубины ямы в потенциале взаимодействия ион-нейтральная частица, то по мере повышения напряженности поля подвижность иона будет возрастать, пока средняя энергия не окажется порядка глубины ямы. Далее подвижность должна падать с увеличением напряженности поля, поскольку она определяется уже короткодействующей отталкивательной частью потенциала взаимодействия. При этом максимум подвижности как функции напряженности поля по мере увеличения температуры газа смещается в область меньших значений напряженности.

На рис. 6, 7 представлены зависимости продольных и поперечных приведенных коэффициентов диффузии $ND_L(E/N, T)$, $ND_T(E/N, T)$ соответственно. Интересно отметить некоторые особенности в поведении этих зависимостей. Из рисунков видно, что с увеличением напряженности поля коэффициенты возрастают; как показано на примере ионов бензола, увеличение температуры газа приводит к росту абсолютной величины коэффициентов ND_L , ND_T при малых значениях (E/N), при этом скорость роста этих коэффициентов по мере увеличения параметра (E/N) существенно уменьшается. Как и следовало ожидать, на уменьшение зависимости ND_L при больших E/N сказывается падение

Рис. 5. Зависимости $K_0(E/N, T)$ для ионов: 1 - ДММФ;2a-2d — бензол при $T = 10, 20, 30, 40^{\circ}$ С соответственно; 3 — анилин; 4 - ДМА; 5 - МА; 6a-6d — о-ТЛД при T = 10,20, 30, 40° С; 7 — пиридин; 8 - ДЭА; 9 - ДФА.

коэффициента подвижности K_0 (рис. 5). Численные значения скорости роста коэффициентов следующие: скорость роста D_L с ростом параметра E/N в диапазоне значений 0–100 Td увеличивается в следующей последо-

Рис. 6. Зависимости продольных приведенных коэффициентов диффузии $ND_L(E/N, T)$ для ионов: 1 - ДММФ; 2a-2d -бензол при T = 10, 20, 30, 40°С соответственно; 3 -анилин; 4 - ДМА; 5 - MA; 6 -о-ТЛД; 7 -пиридин; 8 - ДЭА; 9 - ДФА.

Рис. 7. Зависимости поперечных приведенных коэффициентов диффузии $ND_T(E/N, T)$ для ионов: 1a-1d — бензол при $T = 10, 20, 30, 40^{\circ}$ С соответственно; 2 — ДММФ; 3 — анилин; 4 — ДМА; 5 — МА; 6 — о-ТЛД; 7 — пиридин; 8 — ДЭА; 9 — ДФА.

вательности: ДФА — в 2.13 раза, ДЭА — в 2.41, МА в 2.71, о-ТЛД — в 2.72, ДМА – в 2.76, пиридин в 2.79, бензол — в 2.82, ДММФ — в 3, анилин в 3.07. Скорость роста D_T с ростом параметра E/Nувеличивается в ряду: ДФА — в 1.54, ДЭА — в 1.65, о-ТЛД — в 1.78, МА и ДМА – в 1.81, пиридин — в 1.84, анилин — в 1.93, бензол — в 1.97, ДММФ — в 2 раза.

Заключение

В работе показано, что для определения кинетических коэффициентов переноса ионов как функций напряженности электрического поля и температуры газа можно использовать переменное периодическое несимметричное по полярности электрическое поле. Для ионов исследуемых веществ увеличение параметра E/N от 0 до 100 Td приводит к возрастанию коэффициентов подвижности K на 1.4–6.7%, продольной составляющей коэффициента диффузии D_L — приблизительно в 2–3 раза, поперечной составляющей коэффициента диффузии D_T — в 1.5–2 раза.

Список литературы

- [1] Mason E.A., McDaniel E.W. // Transport Properties of Ions in Gas. New York: John Wiley & Sons, 1988. 560 p.
- [2] Радциг А.А., Смирнов Б.М. // Химия плазмы / Под ред. Б.М. Смирнова. Вып. 11. М.: Энергоатамиздат, 1984. С. 170–200.

- [3] Буряков И.А., Крылов Е.В., Макась А.Л. и др. // ЖАХ. 1993. Т. 48. Вып. 1. С. 156–165.
- [4] Karpas Z. // Anal. Chem. 1989. Vol. 61. P. 684-689.
- [5] Ketkar S.N., Dulak J.G., Fite W.L., Bucher J.D., Dheandhanoo S. // Anal. Chem. 1989. Vol. 61. P. 260–264.
- [6] Borsdorf H., Rudolph M. // Int. J. for IMS. 3 (2001). N 1. P. 1–7.
- [7] Matsaev V.T., Kozlov N.N., Gumerov M.F., Buryakov I.A., Kolomiets Y.N. // Int. J. for IMS. 2003. In press.
- [8] Borsdorf H., Schelhorn H., Flachowsky J., Doring H.-R., Stach J. // Analytica Chimica Acta. 2000. Vol. 403. P. 235– 242.
- [9] Буряков И.А. // ЖТФ. 2002. Т. 72. Вып. 11. С. 109–113.
- [10] Buryakov I.A., Krylov E.V., Nazarov E.G. et al. // Int. J. Mass Spec. and Ion Processes. 1993. Vol. 128. P. 143–148.