05;12 Амплитудная зависимость внутреннего трения в сплаве Pb-62% Sn

© В.М. Аржавитин

Национальный научный центр "Харьковский физико-технический институт", 61108 Харьков, Украина e-mail: vasil@kipt.kharkov.ua (TO:AR)

(Поступило в Редакцию 23 июля 2003 г.)

Методом вынужденных изгибных колебаний получена амплитудная зависимость внутреннего трения $Q^{-1}(\varepsilon_0)$ сплава Pb-62% Sn, проявляющего сверхпластичность при комнатной температуре. Предложена феноменологическая модель внутреннего трения, в которой пластичность сплавов рассматривается как гибридный релаксационно-гистерезисный процесс. Определены численные значения показателя циклического деформационного упрочнения Pb-62% Sn в микропластическом и сверхпластическом состояниях, а также обсуждена природа экспериментально обнаруженного асимметричного максимума $Q^{-1}(\varepsilon)$.

Введение

Практически всегда деформация протекает в объеме поликристаллов неравномерно и неоднородно. Единственное исключение представляет сверхпластическая деформация. На микроуровне она целиком межзеренная. Но в деформационный процесс все зерна вовлечены равноправно, без какого-либо статического распределения напряжений по ним, чем отчасти достигается предельная пластичность материалов. Вместе с тем полной ясности в понимании механизмов сверхпластичности нет [1], тем более, что в определенных температурно-скоростных условиях нагружения демонстрируют все характерные признаки сверхпластического течения композиты [2] и даже керамики [3] (среди них сверхпроводящие [4,5]).

В основном материалы, проявляющие сверхпластичность, исследуются при одном частном виде нагружения — одноосном растяжении. Метод внутреннего трения здесь используется редко. Случай знакопеременного напряжения более сложен с экспериментальной точки зрения, результатом является и более сложное поведение материала. Между тем эта методика позволяет имитировать условия (температуру, величину, скорость нагружения) проявления сверхпластичности в материалах при непрерывной регистрации их упругих и неупругих характеристик непосредственно в ходе пластического течения (in situ). Поэтому исследования внутреннего трения в сверхпластичных материалах представляются важными, так как они могут дать специфическую информацию о не выясненных до конца аспектах сверхпластичности.

Образцы и методика эксперимента

Сплав эвтектического состава Pb-62% Sn, проявляющий сверхпластичность при комнатной температуре, был изготовлен из чистых компонентов сплавлением в лабораторной печи с последующим литьем на массивную медную подложку. После длительного (до двух лет) старения на воздухе слитки были обжаты на гидрав-

лическом прессе на $\approx 75\%$. Из полученных заготовок вырезались образцы для исследований, имеющие форму прямоугольной призмы 2 × 2 × 20 mm. Зависимости внутреннего трения $Q^{-1}(\varepsilon_0)$ от резонансной амплитуды изгибных колебаний консольно закрепленного образца є получены при комнатной температуре по ширине амплитудно-частотного пика перемещения [6]. Амплитудная деформация регистрировалась индукционным датчиком, калибровка показаний которого проводилась визуально с помощью дистанционного микроскопа с окуляримикрометром. Ошибка измерения амплитудной деформации составляла ±5%. Деформация ε_0 изменялась в пределах $0.53 - 3.75 \cdot 10^{-4}$. Такие значения ε_0 обеспечивали интервал внешних напряжений на образце, заведомо включающий в себя и напряжения, при которых исследуемый сплав велет себя сверхпластично. Оптимальному напряжению для проявления сверхпластичности $\sigma = E\varepsilon_0 \approx 7 \,\mathrm{MPa}$ [7] при значении статического модуля Юнга сплава $E \approx 25 \, \mathrm{GPa} \, [8]$ соответствует деформация $\varepsilon_0 \approx 2.8 \cdot 10^{-4}$. Динамический модуль Юнга сплава связан с резонансной частотой колебаний образца f_0 квадратичным соотношением $E \sim f_0^2$.

Результаты и их обсуждение

Первичная (экспериментальная) зависимость внутреннего трения $Q^{-1}(\varepsilon_0)$ для Pb-62% Sn имеет максимум при амплитуде деформации $\varepsilon_0 \approx 2.2 \cdot 10^{-4}$ (рис. 1). Классический механизм Гранато–Люке высвобождения дислокаций от закрепляющих их примесных атомов не дает максимумов на кривой $Q^{-1}(\varepsilon_0)$. Но его модификации такой экстремум уже предсказывают. Например, в механизме Роджерса атермического отрыва от примесей дислокаций разного типа асимметричный максимум $Q^{-1}(\varepsilon_0)$ соответствует случаю, когда произошли все возможные отрывы легкоподвижных дислокаций, после чего начинается уменьшение амплитудного внутреннего трения. Последующее увеличение внутреннего трения сотрывом дислокаций другого типа [9]. Микроскопические модели внутреннего трения, предполагаю-

Рис. 1. Амплитудные зависимости внутреннего трения и модуля Юнга сплава Pb-62% Sn при комнатной температуре. I — аппроксимированная кривая внутреннего трения Q^{-1} ; 2 — модуль Юнга E (в единицах квадрата резонансной частоты колебаний f_0^2).

щие отрыв дислокаций от закрепляющих их примесей, применимы к сравнительно чистым металлам в ограниченном диапазоне внешних напряжений. При больших напряжениях в каждом цикле нагружения дислокации размножаются, освобождаются от всех стопоров и в пределах зерна перемещаются на значительные расстояния. Тогда эффект внутреннего трения могут вызвать взаимодействия дислокаций с любыми препятствиями для их движения, распределенными в плоскостях скольжения дислокаций. При невысоких температурах для преодоления одиночными дислокациями силовых барьеров различного типа необходимо приложить внешнее напряжение $\sigma > \sigma_f$, превышающее напряжение σ_f сухого трения [6,10,11]. Конкретный физический смысл напряжение σ_f приобретает в зависимости от типа барьера, преодолеваемого дислокациями. Влияние напряжения сухого трения на внутреннее трение в материалах можно учесть в независимом от дислокационных моделей феноменологическом подходе, который отражает наиболее общие закономерности микродеформации и гистерезиса.

В качестве математической модели поведения материалов при квазистатическом нагружении выберем распространенное в практике инженеров и исследователей эмпирическое уравнение состояния материала [12], в котором напряжение пластического течения чувствительно как к степени деформации (показатель деформационного упрочнения n), так и к скорости деформации (показатель скоростного упрочнения m)

$$\sigma = \eta (e + \varepsilon)^n \dot{\varepsilon}^m, \tag{1}$$

где η — эффективная вязкость материала; $\dot{\varepsilon}$ — скорость пластической деформации; e — постоянная материала, указывающая на то, что пластическая деформация ε начинается только после превышения некоторого критического напряжения.

При n = 0 уравнение (1) описывает вязкое течение материалов, в том числе сверхпластическое [1,12,13].

Для квазистатически деформируемых металлов индекс упрочнения n всегда меньше единицы, т. е. напряжение σ тогда возрастает не прямо пропорционально деформации.

Представим контур петли гистерезиса $\sigma(\varepsilon)$ уравнением

$$\sigma = E\varepsilon \pm \eta (|e| + |\varepsilon|)^n |\dot{\varepsilon}|^m, \qquad (2)$$

в котором нелинейная поправка к закону Гука (1) задает форму петли гистерезиса. Здесь |e|, $|\varepsilon|$, $|\dot{\varepsilon}|$ — абсолютные значения предварительной деформации, текущей пластической деформации, не зависящей от времени и скорости пластической деформации (рис. 2) соответственно. Кривая циклического нагружения (2) описывает поведение материалов при установившемся циклическом деформировании после нескольких первых циклов колебаний. Тогда параметры петли (2) можно назвать коэффициентом η и показателем *n* деформационного циклического упрочнения [14]. Численно они будут отличаться от аналогичных параметров при квазистатическом нагружении. В частности, показатель степени *n* при относительной деформации ε в уравнении (2) может превышать единицу [15].

Графически петля (2) представлена на рис. 3. Гистерезисная петля (2) отличается от предложенной в [15] главным образом наличием сомножителя $\dot{\varepsilon}^m$. Алгебраическая зависимость напряжения от деформации является разрываемой функцией при $\varepsilon = \varepsilon_0$. Разрыв (раскрытие) петли гистерезиса становится возможным только при уровнях напряжений в материале $\sigma > \sigma_f$ [6]. Так, при комнатной температуре петля $\sigma(\varepsilon)$ с разрывом в точке $\varepsilon_0 \approx 5 \cdot 10^{-5}$ наблюдается экспериментально в поликристаллическом сплаве состава Cu-38% Zn [16].

В общем случае напряжение и деформация представляют собой тензор второго ранга. При циклическом изгибе тонких $(2 \times 2 \times 20 \text{ mm})$ стержней напряженное состояние может быть охарактеризовано лишь одной

Рис. 2. Диаграмма (без соблюдения масштаба) изменения во времени нормальных компонент деформации $\varepsilon(t)$ (*a*), напряжения $\sigma(t)$ (*b*), в приповерхностном слое колеблющегося образца.

Журнал технической физики, 2004, том 74, вып. 6

Рис. 3. Петля гистерезиса $\sigma(\varepsilon)$ Леонова–Безпалько.

нормальной компонентой тензора, остальные компоненты пренебрежимо малы. Это обстоятельство позволяет обращаться с напряжением и деформацией как со скалярами, отвлекаясь от их тензорного характера.

Амплитудную зависимость внутреннего трения материалов можно рассчитать по общей формуле [6]

$$Q^{-1} = \frac{\Delta W}{2\pi W} = \frac{\Delta W}{\pi E \varepsilon_0^2},$$

где $\Delta W = \oint \sigma d\varepsilon$ есть "площадь" петли гистерезиса в координатах $\sigma - \varepsilon$, тогда

$$Q^{-1} = \frac{1}{\pi E \varepsilon_0^2} \oint \sigma d\varepsilon = \frac{4}{\pi E \varepsilon_0^2} \cdot \int_0^{\varepsilon_0} \eta (e+\varepsilon)^n \dot{\varepsilon}^m d\varepsilon$$
$$= \frac{4\eta [(e+\varepsilon_0)^{n+1} - e^{n+1}] \dot{\varepsilon}^m}{\pi (n+1) E \varepsilon_0^2}.$$
(3)

Соотношение (3) описывает внутреннее трение гистерезисного (амплитудно-зависимого) и релаксационного (частотно-зависимого) типов одновременно, поскольку зависит от амплитуды ε_0 и скорости $\dot{\varepsilon}$ деформации. Последняя некоторым образом определяется частотой f_0 циклической деформации (рис. 2). Получается некий гибрид релаксации и гистерезиса [17], когда разница между ними становится неотчетливой.

Необходимо различать истинные и средние значения параметров петли гистерезиса. Их истинные значения регистрируются при испытаниях в условиях однороднонапряженного состояния (изгиб или кручение полых либо продольные колебания сплошных образцов). В противном случае ΔW [6,14] и, по-видимому, индекс *n* [14] усредняется по неоднородно-напряженному объему образца. Они представляют собою средневзвешенные свойства материала при данном варианте испытаний.

Имея в виду низкий предел текучести сплава Pb-62% Sn можно считать, что его пластическое течение начинается сразу при сколь угодно малой деформации. В таком приближении предварительная деформация e = 0 и выражение (3) упрощается

$$Q^{-1} = \frac{4\eta\varepsilon_0^n \dot{\varepsilon}^m}{\pi(n+1)E}.$$
(4)

При n = 0 из (4) получим

$$Q^{-1} = rac{4\eta\dot{arepsilon}^m}{\pi Earepsilon_0},$$

т.е. с повышением амплитуды деформации ε_0 внутреннее трение может уменьшаться. Сходную амплитудную зависимость на ограниченном амплитудном отрезке внутреннее трение $Q^{-1} \sim \varepsilon/\varepsilon_0$ проявляет в процессе ползучести [18], где $\dot{\varepsilon}$ — скорость деформации растяжения.

С позиций внутреннего трения сверхпластическое течение часто рассматривается как релаксационный процесс [12, 19–22]. Однако сугубо релаксационные явления наблюдаются обычно при малых внешних воздействиях, не приводящих к пластическим деформациям в образце. Устранить имеющееся противоречие можно в предположении (сделанном выше) о возможности одновременного осуществления процессов релаксации и гистерезиса.

Безусловно, во время сверхпластического течения деформационное упрочнение не существует (n = 0) либо оно крайне мало́. Но в отличие от одноосного нагружения, когда весь объем материала находится в сверхпластическом состоянии, при изгибе напряжения распределены по толщине вибрирующего стержня и максимальны вблизи его поверхности. Сверхпластичность тогда локализуется в приповерхностном слое материала в моменты времени, соответствующие амплитудным деформациям. Благодаря существованию квазиупругого "ядра" образец сохраняет жесткость и выдерживает нарастающие знакопеременные усилия при испытаниях. Поскольку амплитудно-зависимое внутреннее трение $Q^{-1}(\varepsilon_0)$ представляет собой усредненную по объему диссипативную величину, то вклады в нее квазиупругого "ядра" и приповерхностного слоя (сверхпластичности) невозможно разделить. Этой аппаратной спецификой и продиктован выбор гистерезисной петли $\sigma(\varepsilon)$ в общей форме (2). Тогда выражения (3) и (4) вынужденно описывают суммарное внутреннее трение, что позволяет проводить оценочные сопоставления следствий из соотношений (3) и (4) с экспериментальными данными.

Применительно к сплаву Pb-62% Sn показатель циклического деформационного упрочнения *n* вычислялся с помощью соотношения (4) по возрастающей и убывающей с ростом амплитуды ветвям экспериментальной кривой внутреннего трения (рис. 1). При аппроксимации (подгонке) по возрастающей ветви $Q^{-1}(\varepsilon_0)$ получено значение $n = 1.75 \pm 0.03$. Поэтому возрастающая ветвь внутреннего трения аппроксимируется почти линейной зависимостью $Q^{-1} \sim \varepsilon_0^{0.75}$ (рис. 1, кривая *I*). Стадия линейного роста внутреннего трения по мере увеличения ε_0 в сплавах вызвана микродеформациями внутри зерен, когда еще не вступил в действие механизм передачи деформации от зерна к зерну [10]. Процедура аппроксимации по убывающей ветки $Q^{-1}(\varepsilon_0)$ дает близкое к нулю значение индекса $n = 0.19 \pm 0.05$. Следовательно, циклическая деформация Pb-62% Sn осуществляется стадийно: на первой стадии ($n \approx 1.75$) внутреннее трение увеличивается за счет микропластических деформаций в зернах [10], на второй стадии ($n \approx 0.19$) в приповерхностном слое образца реализуется сверхпластическое состояние. В данном случае стадийность упрочнения оказывается достаточно четко выраженной, поскольку переход от одной стадии к другой сопровождается скачком величины *n*. Таким образом, показатель циклического упрочнения *n* играет особую роль как индикатор стадийности процесса дефомирования. О смене механизмов пластической деформации в точке максимума $Q^{-1}(\varepsilon_0)$ свидетельствует также ступенчатое уменьшение упругого модуля с увеличением амплитуды колебаний (рис. 1, кривая 2).

Согласно (4), зависимости $Q^{-1}(\varepsilon_0)$ в поликристаллических материалах имеют форму асимметричного максимума всегда, когда при смене стадий упрочнения реологический параметр n > 1 резко меняется на $0 \le n < 1$. В подобных случаях асимметричный пик $Q^{-1}(\varepsilon_0)$ можно зарегистрировать и в сплавах, не проявляющих сверхпластических свойств.

Выводы

1) Амплитудная зависимость внутреннего трения сплава Pb-62% Sn проходит через максимум в диапазоне относительных амплитуд деформаций $0.53-3.75\cdot10^{-4}$, включающем в себя деформации, при которых этот сплав ведет себя сверхпластично.

2) Предложена феноменологическая модель внутреннего трения, в которой пластичность поликристаллических сплавов рассматривается как гибридный релаксационно-гистерезисный процесс. С ее помощью показано, что в исследуемом деформационном интервале, пластическая деформация сплава Pb-62% Sn осуществляется в две стадии. При переходе от первой стадии микропластического деформирования зерен к стадии сверхпластического поведения приповерхностного слоя материала его показатель циклического деформационного упрочнения резко уменьшается от $n \approx 1.75$ до ≈ 0.19 .

Список литературы

- [1] Васин Р.А., Еникеев Ф.У., Мазурский М.И, Мунирова О.С. // Проблемы прочности. 2000. № 2. С. 6–19.
- [2] Перевезенцев В.Н., Свирина Ю.В. // ЖТФ. 1998. Т. 68. Вып. 12. С. 38-41.
- [3] Заринов Н.Г. // ФТТ. 2000. Т. 42. Вып. 9. С. 1621–1623.
- [4] Аржавитин В.М., Вердян А.И., Головин В.Н. и др. // СФХТ. 1990. Т. З. № 9. С. 2050–2053.
- [5] Chen Y.T., Yun J., Harmer M.P., Goyal A. et al. // Appl. Superplasticity 1995. Vol. 5. N 2. P. 1452–1455.
- [6] Головин С.А., Пушкар А., Левин Д.М. Упругие и неупругие свойства конструкционных металлических материалов. М.: Металлургия, 1987. 190 с.
- [7] Коршак В.Ф., Кузнецова Р.И., Иванов И.Г. // ФММ. 1997.
 Т. 84. Вып. 2. С. 123–129.

- [8] Драпкин Б.М., Кононенко В.К. // Изв. АН СССР. Металлы. 1987. № 2. С. 162–165.
- [9] Rogers. D.H. // J. Appl. Phys. 1962. Vol. 33. № 3. P. 781–792.
- [10] Кон-Сю Ю., Буткевич Л.М. // Изв. вузов. Физика. 1968. № 8. С. 33–37.
- [11] Соловьев Л.А. Внутреннее трение в металлических материалах. М.: Наука, 1970. С. 94–99.
- [12] Грабский М.В. Структурная сверхпластичность. М.: Металлургия, 1975. 272 с.
- [13] Еникеев Ф.У., Мазурский М.И., Мунирова О.С. // Заводская лаборатория. Диагностика материалов. 2001. Т. 67. № 4. С. 42–52.
- [14] Трощенко В.Т., Хамаза Л.А., Покровский В.В. и др. Циклические деформации и усталость металлов. Т. 1. Малоцикловая и многоцикловая усталость металлов. Киев: Наукова думка, 1985. 216 с.
- [15] Кочнева Л.Ф. Внутреннее трение в твердых телах при колебаниях. М.: Наука, 1979. 96 с.
- [16] Соловьев Л.А., Буткевич Л.М., Макогон М.Б. // ФММ. 1968. Т. 25. Вып. 1. С. 183–185.
- [17] Мешков С.И., Постников В.С., Рудис М.А. Релаксационные явления в твердых телах. М.: Металлургия, 1968. С. 153–156.
- [18] Мешков С.И. Вязко-упругие свойства металлов. М.: Металлургия, 1974. 192 с.
- [19] Тихонов А.С. Эффект сверхпластичности металлов и сплавов. М.: Наука, 1978. 142 с.
- [20] Питеримова В.А., Мальцева Г.К., Новоселов В.С., Дядькова Н.Б. Внутреннее трение в металлах и неорганических материалах. М.: Наука, 1982. С. 88–92.
- [21] *Torisaka Y., Kojima S.* // Acta Met. et Mater. 1991. Vol. № 5. P. 947–954.
- [22] Lakki A.T.I. // J. de Physique. 1996. Vol. 6(8). P. 331-340.