06;07 Оптические свойства CdF₂ в широкой области энергии

© А.И. Калугин, В.В. Соболев

Удмуртский государственный университет, 426034 Ижевск, Россия e-mail: sobolev@uni.udm.ru

(Поступило в Редакцию 20 мая 2003 г.)

Рассчитаны полные комплексы фундаментальных оптических функций кристалла дифторида кадмия на основе двух известных экспериментальных спектров отражения с помощью соотношений Крамерса-Кронига в области энергии 4–45 eV. Установлены основные особенности оптических спектров. Предложена их природа на основе известных теоретических расчетов зон.

Введение

Кристалл CdF₂ имеет важное значение для современной оптики и оптоэлектроники, так как на его основе могут быть созданы эффективные и экономичные излучатели, лазеры, работающие в видимом и ультрафиолетовом диапазонах длин волн [1]. Диэлектрик CdF₂ прозрачен в большой области энергии (ширина запрещенной зоны $E_g > 8 \text{ eV}$). При легировании и определенной термохимической обработке он может быть переведен в полупроводниковое состояние. Немаловажное значение имеет возможность получения кристаллов достаточно большого размера и их сравнительная дешевизна. Для оценки возможностей практического применения кристалла необходимо знание его энергетических уровней [2,3].

Известно, что наиболее полная информация об электронной структуре содержится в обширном комплексе фундаментальных оптических функций [2] (коэффициенты отражения R и поглощения μ , реальная ε_1 и мнимая ε_2 части диэлектрической проницаемости ε , показатели преломления n и поглощения k и др.). Принято рассчитывать его на основе экспериментальных спектров R(E) или $\varepsilon_2(E)$, однако для CdF₂ такие расчеты никем не проводились.

Для дифторида кадмия, имеющего структуру флюорита, известны два экспериментальных спектра отражения работ [4,5]. Результаты двух работ не сопоставлялись. Отсутствие полных комплексов не позволило детально обсудить оптические свойства исследуемого материала. Поэтому целью настоящей работы было рассчитать полные комплексы оптических функций кристалла CdF_2 на основе двух экспериментальных спектров отражения работ [4,5], сопоставить результаты двух расчетов между собой и установить основные особенности оптических спектров, обсудить их на основе известных теоретических расчетов зон.

Зоны CdF₂ теоретически рассчитывались методом эмпирического псевдопотенциала [6], методом сильной связи [7], а также методами сильной связи (валентные зоны) и псевдопотенциала (зоны проводимости) [8]. В работах [6,7] получены лишь несколько верхних

валентных зон и нижних зон проводимости. Не были учтены высоколежащие полуостовные зоны, образованные 4*d*-состояниями Cd²⁺. В работе [8] рассчитаны валентные, полуостовные и остовные зоны в интервале энергии 30 eV вдоль многих симметричных направлений зоны Бриллюэна и зоны проводимости в интервале 13 eV для направлений ГХ и ГL. До сих пор отсутствуют для исследуемого кристалла расчеты спектров $\varepsilon_2(E)$.

Расчеты полных комплексов выполнены с помощью интегральных соотношений Крамерса—Кронига и сравнительно простых, аналитических формул, связывающих оптические функции между собой. Использованные методы подробно изложены в [2] и неоднократно применялись [9,10].

Результаты расчетов и их обсуждение

Экспериментально спектры отражения были получены при 300 К в области энергии 0-45 eV на свежесколотых [4] и 4-56 eV на полированных [5] поверхностях образцов. На основе этих данных нами рассчитаны комплексы фундаментальных оптических функций в области 4-45 eV.

Два спектра отражения структурно весьма сходны. В них можно выделить 9 основных полос (см. таблицу). Кроме общих особенностей в области больших энергий (30–45 eV) отмечаются слабый пик 8', отсутствующий в R(E) [4], и пик 9', отсутствующий в R(E)[5]. Полоса 2 в спектре отражения работы [4] проявляется в виде широкого плеча, а в спектре работы [5] — как сравнительно интенсивный максимум. Положения основных максимумов двух экспериментальных спектров значительно различаются в области энергии 4–15 eV: $\Delta E \approx 0.4$ (максимум 1, 4) 1.2 (максимум 2), 0.7 eV (максимум 3). При меньших длинах волн расхождения по энергии максимумов менее заметны ($\Delta E \approx 0.1-0.4$ eV).

По интенсивности два спектра отражения сильно различаются в интервале 4-20 eV и хорошо согласуются при больших энергиях. Спектр отражения работы [5] в максимумах 1-5 занижен по сравнению с результатами [4] в 1.6 (максимум 1), 1.4 (максимумы 3, 5), 1.3 раз (максимум 4). Коэффициент отражения CdF₂

Энергии (eV) максимумов оптических функций CdF₂, рассчитанных на основе экспериментальных спектров *R*(*E*) работ [4] (столбец 1) и [5] (столбец 2)

N₂	R		ε_1		ε_2		п		k		μ		$-\mathrm{Im}\varepsilon^{-1}$		$-\mathrm{Im}(1+\varepsilon)^{-1}$	
	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
1	7.1	7.5	6.9	7.4	7.1	7.6	7.0	7.45	7.15	7.65	7.15	7.65	7.6	7.7	7.5	7.7
2	8.8	10.0	8.6	9.3	8.6	10.3	8.7	9.6	8.7	10.4	8.7	10.5	8.6	10.5	8.6	10.5
3	12.4	13.1	11.9	12.7	12.3	13.2	12.0	12.8	12.4	13.3	12.5	13.3	13.0	13.7	12.9	13.6
4	14.9	15.3	13.9	14.2	14.6	15.05	14.1	14.3	14.9	15.3	14.9	15.4	16.2	16.4	15.8	16.3
5	17.4	17.3	16.5	16.9	17.1	17.3	16.0	16.9	17.3	17.6	17.4	17.7	18.4	18.3	17.6	18.0
6	23.0	22.4	20.6	20.1	21.9	21.9	20.8	20.3	22.5	22.2	22.9	22.3	23.6	23.6	23.0	22.5
7	26.8	26.6	25.5	24.8	26.3	26.1	25.6	24.8	26.5	26.4	26.7	26.5	27.0	27.2	26.8	26.7
8	29.3	29.05	27.7	28.3	28.2	28.7	27.7	28.4	28.8	28.8	29.0	28.9	29.5	29.5	29.2	29.0
8'	_	32.8	_	31.6	_	32.5	_	31.6	_	32.7	_	32.7	_	33.0	_	32.7
9	37.1	36.7	34.6	34.2	36.0	35.9	35.1	34.3	36.3	36.3	36.6	36.5	37.2	36.8	36.7	36.6
9′	42.9	_	41.1	_	42.1	_	41.5	—	42.2	_	42.3	_	42.7	_	42.3	—

весьма мал во всем диапазоне длин волн: по данным [4] в самом интенсивном максимуме *1* он равен ~ 0.21. При $E > 45 \text{ eV } R \le 2\%$. Анализ особенностей методик регистрации спектров R(E) и использованных образцов позволяет сделать вывод о том, что рассогласование спектров в области энергии 4–20 eV, видимо, обусловлено недостатками методики измерений и более худшим качеством поверхности образцов работы [5].

В рассчитанных нами спектрах $\varepsilon_2(E)$ наблюдаются аналоги девяти основных полос спектров отражения (рис. 1, кривые 2, 2'). Самые интенсивные из них расположены в области энергии 4–20 eV (максимумы 1-4). Причем они смещены в спектре 2 в сторону меньших энергий на 0.0–0.3 eV относительно максимумов спектров R(E). На кривой 2' максимумы 1-3 сдвинуты в сторону больших энергий. Это привело к увеличению расхождения положений максимумов двух спектров ε_2 по сравнению со спектрами отражения. Также наблюдаются значительные разногласия в интенсивностях полос. В максимумах 1, 3, 4 значения ε_2 спектра 2' примерно одинаковы, тогда как на кривой 2 максимум 1 в 1.3 раз выше максимума 3 и 1.5 раз — максимума 4. При этом

Рис. 1. Спектры ε_1 (*1*, *1'*), ε_2 (*2*, *2'*), рассчитанные с помощью экспериментальных спектров R(E) работ [4] (*1*, *2*) и [5] (*1'*, *2'*).

максимумы спектра 2 завышены в 1.8 (максимум 1), 1.4 (максимум 3), 1.2 (максимум 4) по сравнению со случаем 2'. При больших энергиях (20–45 eV) наблюдается хорошее согласие двух спектров ε_2 и по энергии максимумов и по их интенсивности. Необходимо отметить сильный спад интенсивностей кривых: большинство полос проявляются весьма слабо.

Все это значительно затрудняет оценку энергий междузонных переходов и величины запрещенной зоны Eg для CdF_2 . По нашим данным E_g составляет примерно 8.6 eV. Полоса 2 обусловлена, видимо, первым междузонным переходом, а самая интенсивная низкоэнергетическая полоса — свободными экситонами. В этом случае энергия связи самого длинноволнового экситона $E_b \approx 1.5 \,\text{eV}$, т. е. очень велика. Согласно [8], теоретическая величина $E_g \approx 14.4 \,\mathrm{eV}$ в точке Г, что на 5.8 eV больше нашего значения. Структуры спектров ε_2 в области энергии 8-13 eV (максимумы 1-3) обусловлены преимущественно переходами в направлении ГХ из верхних валентных зон, образованных 2*p*-состояниями F⁻ в нижнюю зону проводимости. В области энергии полосы 4 возможны переходы вблизи точки Г из полуостовных зон, образованных 4d-состояниями Cd²⁺, и вблизи точки L из верхних валентных зон в нижнюю зону проводимости. Максимум 5 обусловлен переходами из верхних валентных зон, а широкая полоса 6 — в основном из *d*-зоны в более высокие зоны проводимости. Возбуждения остовной зоны, образованной 2s-состояниями фтора, происходят при энергиях E > 37 eV. Естественно, природу максимумов спектра ε_2 можно рассматривать по модели метастабильных экситонов, однако таких расчетов для CdF₂ никем не проводилось.

Показатель поглощения k оказался весьма низким: во всем рассматриваемом интервале энергии $k \le 1.04$ (рис. 2, кривые 2, 2'). В отличие от полос спектра ε_2 максимумы k(E) либо не смещены (в интервале энергии 6-20 eV), либо сдвинуты в сторону меньших энергий лишь на 0.1-0.3 eV (20-45 eV) относительно максимумов R(E). Коэффициент поглощения, наоборот, весьма

Рис. 2. Спектры n(1, 1'), k(2, 2'), рассчитанные с помощью экспериментальных спектров R(E) работ [4] (1, 2) и [5] (1', 2').

Рис. 3. Спектры μ , рассчитанные с помощью экспериментальных спектров R(E) работ [4] (1) и [5] (2).

интенсивен (рис. 3). Даже при 50 eV $\mu \approx 0, 7 \cdot 10^6 \text{ cm}^{-1}$. Расхождения спектров R(E) по интенсивности особенно сильно проявляются в спектрах k и μ двух расчетов в различном распределении интенсивностей максимумов. Так, в спектре $\mu(E)$, рассчитанного на основе спектра R(E) работы [5], самым интенсивным оказался максимум 7 ($\mu \approx 1.39 \cdot 10^6 \text{ cm}^{-1}$), а в спектре, полученном на основе R(E) [4], — максимум 4 ($\mu \approx 1.53 \cdot 10^6 \text{ cm}^{-1}$).

Спектры n(E) и $\varepsilon_1(E)$ имеют сходную структуру (рис. 1, 2, кривые I, I'). В них можно выделить область энергии 4–15 eV, в которой наблюдаются три самые интенсивные полосы I-4. При больших энергиях аналоги пиков спектра R(E) проявляются очень слабо. Все полосы спектров ε_1 сдвинуты в сторону меньших энергий на 0.2-2.4 eV относительно положений соответствующих максимумов спектра отражения, причем величина сдвига растет с увеличением энергии максимума. Полосы спектров n расположены при энергиях на 0.1-0.5 eV бо́льших энергий пиков ε_1 . Максимумы спектров, рассчитанных на основе данных [5], смещены относительно максимумов кривых I в коротковолновую область на 0.3-0.8 eV (в интервале 4-18 eV) или в длинноволновую сторону на 0.2-0.5 eV (18-45 eV). По интенсивности первый максимум кривых l' на рис. 1 и 2 занижен в ~ 1.2 раз по сравнению с максимумом кривых l. Интенсивности остальных полос согласуются хорошо.

В спектрах объемных характеристических потерь $-\mathrm{Im}\,\varepsilon^{-1}$ легко выделить четыре наиболее интенсивные полосы с максимумами при $E_{pv}^{(1)}=18.4, \ E_{pv}^{(2)}=23.6,$ $E_{pv}^{(3)} = 29.5, \ E_{pv}^{(4)} = 37.2 \,\mathrm{eV}$ (кривая *I* на рис. 4). На кривой 1' первые три из них проявляются при тех же энергиях, а последняя смещена на 0.3 eV в сторону меньших энергий. Известно, что максимумы спектров $-\mathrm{Im}\,\varepsilon^{-1}$ обусловлены либо плазмонами, либо продольными компонентами междузонных переходов [11]. В последнем случае в спектрах $\varepsilon_2(E)$ должны наблюдаться поперечные компоненты переходов, однако для рассматриваемых четырех полос они отсутствуют или очень слабые. Поэтому можно предположить, что четыре самые интенсивные полосы спектра потерь обусловлены возбуждением плазмонов. По аналогии с родственным кристаллом CaF₂ [10] максимум при 18.4 eV, видимо, обусловлен плазменными колебаниями 2р-электронов F⁻, а максимум при 29.5 eV — 2*s*-электронов F⁻. Максимум при 23.6 eV может быть связан с колебаниями 4*d*-электронов Cd²⁺. Остальные пики спектра $-\text{Im }\varepsilon^{-1}$, очевидно, обусловлены междузонными переходами и сдвинуты на 0.3-0.7 eV в коротковолновую сторону относительно максимумов-аналогов спектра ε_2 . Эти значения определяют величину продольно-поперечного расщепления переходов в CdF₂.

Спектры поверхностных потерь $-\text{Im}(1+\varepsilon)^{-1}$ в 2–3 раза менее интенсивны спектров $-\text{Im}\varepsilon^{-1}$. Максимумы спектра $-\text{Im}(1+\varepsilon)^{-1}$ сдвинуты на 0.5–0.8 eV в сторону меньших энергий для аналогов плазменных полос спектра объемных потерь и 0.1–0.3 eV для остальных. Таким образом, отношение энергий объемных плазмонов к энергиям поверхностных плазмонов в CdF₂ составляет 1.02–1.04, т.е. то же, что и в CaF₂.

Рис. 4. Спектры $-\text{Im}\,\varepsilon^{-1}$ $(1, 1'), -\text{Im}\,(1+\varepsilon)^{-1}$ (2, 2'),рассчитанные с помощью экспериментальных спектров R(E)работ [4] (1, 2) и [5] (1', 2').

Журнал технической физики, 2004, том 74, вып. 3

Заключение

Итак, в настоящей работе впервые получены полные комплексы оптических функций кристалла CdF_2 . Установлены их основные особенности. Результаты данной работы позволяют обсуждать природу оптических спектров фторида кадмия на принципиально новом уровне, выполнять значительно более точные теоретические расчеты зон и экситонов. Можно надеяться, что полученные данные будут способствовать разработке новых оптоэлектронных приборов на основе CdF_2 , а также дальнейшему развитию теории электронного строения твердых тел.

Список литературы

- [1] *Ryskin A.I.* et al. // Phys. Rev. Lett. 1998. Vol. 80. N 4. P. 2949–2952.
- [2] Соболев В.В., Немошкаленко В.В. Методы вычислительной физики в теории твердого тела. Электронная структура полупроводников. Киев: Наукова думка, 1988. 423 с.
- [3] Савинцев А.П., Темроков А.И. // ЖТФ. 2002. Т. 72. Вып. 4. С. 126–127.
- [4] Raisin C., Berger J.M., Robin-Kandare S., Krill G., Amamou A. // J. Phys. C. 1980. Vol. 13. N 4. H. 1835–1844.
- [5] Bourdillon A.J., Beaumont J.H. // J. Phys. C. 1976. Vol. 9. N 4. P. L473–477.
- [6] Orlowski B.A., Plenkiewicz P. // Phys. Stat. Sol. (b). 1984. Vol. 126. N 4. P. 285–292.
- [7] Velicky B., Masek J. // Sol. Stat. Commun. 1986. Vol. 58. N 4.
 P. 663–666.
- [8] Albert J.P., Jouanin C., Gout C. // Phys. Rev. B. 1977. Vol. 16. N 4. P. 4619–4629.
- [9] Sobolev V.V., Kalugin A.I., Kormilets V.I., Sobolev V.Val. // J. Wide Bandgap Mat. 2001. Vol. 8. N 10. P. 87–104.
- [10] Соболев В.В., Калугин А.И., Соболев В.Вал., Смирнов С.В. // ФТТ. 2002. Т. 44. Вып. 1. С. 836–844.
- [11] Пайнс Д. Элементарные возбуждения в твердых телах. М.: Мир, 1965. 382 с. Pines D. Elementary Excitations in Solids. New York; Amsterdam, 1963. 340 р.