03:04:07:12

Широкополосный спектр излучения непрерывной плазменной струи в смеси инертных газов с молекулами SF₆

© В.С. Рогулич, Л.Л. Шимон

Ужгородский национальный университет, 88000 Ужгород, Украина e-mail: ishev@univ.uzhgorod.ua

(Поступило в Редакцию 4 марта 2003 г.)

В непрерывной струе плазмы на смеси $Ar/Kr/SF_6$ обнаружена широкая полоса излучения в видимой области спектра на расстоянии $l>75\,\mathrm{nm}$ от сопла плазмотрона. Представлены экспериментальные зависимости максимума интенсивности наблюдаемого свечения от параметров плазменного источника.

Ранее [1-3] при исследовании оптимальных условий образования эксимерных молекул KrF^* , XeF^* и ArF^* в непрерывной плазменной струе на смесях инертных газов с молекулами SF_6 нами были обнаружены широкие полосы излучения в видимой области спектра, природа которых не получила объяснения. Это излучение было зарегистрировано на достаточно больших расстояниях $(l>75\,\mathrm{mm})$ от сопла плазмотрона.

В данном сообщении представлен спектр излучения смеси Ar/Kr/SF $_6$ и основные экспериментальные зависимости интенсивности излучения максимума наблюдаемой полосы на $\lambda_{max} \approx 630\,\text{nm}$ от параметров плазменного источника.

Эксперименты проведены на плазмодинамической установке, где источником плазменной струи служил плазмотрон постоянного тока с газовихревой стабилизацией дуги и звуковым соплом критического диаметра $\sim 5\,\mathrm{nm}$ из графита при токах дуги $50{-}150\,\mathrm{A}$ и падении напряжения на разрядном промежутке 15-35 V. Плазма инертного газа (Не, Аг, Кг, Хе) создавалась в дуговой камере плазмотрона, а галогенидные молекулы SF₆ подмешивались в плазму инертных газов как в предсопловой камере, так и в уже сформированную струю плазмы за сопловым блоком на различных расстояниях от него. Давление инертного газа в дуговой и предсопловой камерах изменялось от нескольких десятков Ра до значения 20 kPa. Регистрация излучения струи за сопловым блоком производилась с помощью фотоумножителя ФЭУ-106 и монохроматора МДР-2. Более подробно техника и методика эксперимента описана в работах [1–4].

Запись спектров излучения струи на смеси $Ar/Kr/SF_6$ производилась в широком диапазоне длин волн ($200-800\,\mathrm{nm}$). Во избежание искажений исследуемых спектров в видимой области за счет вклада излучения второго порядка с ультрафиолетовой области, где эффективно излучают эксимерные молекулы KrF^* , ArF^* и радикалы OH, участок спектра излучения с длиной волны $\lambda < 350\,\mathrm{nm}$ отсекался с помощью светофильтра.

Типичный спектр свечения смеси $Ar/Kr/SF_6$ представляет собой широкую полосу излучения с максимумом интенсивности на $\lambda \approx 630\,\mathrm{nm}$ и полушириной $\approx 90\,\mathrm{nm}$

в интервале длин волн 550-800 nm (рис. 1). На фоне сплошного спектра присутствуют некоторые интенсивные спектральные линии KrI. Нами изучались зависимости интенсивности в максимуме излучения полосы от параметров плазменного источника. На рис. 2 приведены также зависимости интенсивности излучения полосы при $\lambda \approx 630$ nm от расходов Kr и SF $_6$. Видно, что при отсутствии криптона или молекул SF $_6$ в смеси интенсивность излучения полосы принимает практически нулевое значение. Полученные экспериментальные зависимости показывают, что зарегистрированное нами широкополосное излучение присутствует только при наличии в смеси атомов криптона и молекул элегаза SF $_6$ одновременно.

На рис. З показана зависимость максимума интенсивности излучения данной полосы в смеси $Ar/Kr/SF_6$ от расстояния вдоль оси истечения плазменной струи. Видно, что эффективное излучение полосы происходит при $l\approx 80~\mathrm{mm}$ от сопла плазмотрона. С увеличением введенной в плазмотрон мощности интенсивность излучения полосы увеличивалась.

Следует отметить, что в смеси $He/Xe/SF_6$ также была обнаружена широкая полоса излучения в диапазоне длин волн $370-670\,\mathrm{nm}$, однако для данной смеси не были оптимизированы условия эксперимента и результаты требуют дальнейшей доработки и тщательного анализа.

Рис. 1. Спектр излучения струи плазмы на смеси Ar/Kr/SF $_6$ при $P \approx 8$ kPa, W = 1.8 kW, l = 81.5 mm.

Рис. 2. Зависимость интенсивности излучения полосы при $\lambda = 630\,\mathrm{nm}$ от парциальных расходов криптона при $G(\mathrm{SF}_6) = 0.24\,\mathrm{g/s}$ (a) и SF₆ при $G(\mathrm{Kr}) = 0.07\,\mathrm{g/s}$ (b).

Рис. 3. Распределение интенсивности в максимуме излучения полосы на $\lambda=630\,\mathrm{nm}$ вдоль струи при $G(\mathrm{SF}_6)=0.1\,\mathrm{g/s},$ $G(\mathrm{Kr})=0.24\,\mathrm{g/s},$ $P=8\,\mathrm{kPa},$ $W=1.8\,\mathrm{kW}.$

На основании полученных экспериментальных зависимостей и проведенного выше анализа можно предположить, что в плазменной струе на смеси $Ar/Kr/SF_6$ на достаточно больших расстояниях от сопла идет эффективное образование более сложного, чем известные двухи трехатомные молекулы, возбужденного комплекса, составленного из атомов или ионов тяжелого инертного газа и молекул SF_6 или ее фрагментов. Не исключено участие в образовании предполагаемого нами комплекса также и атомов плазмообразующего газа аргона. Следует

отметить, что в условиях сильного переохлаждения плазмы за соплом, где температура электронов $\sim 0.1\,\mathrm{eV}$ в плазменной струе на смеси инертных газов и сильно электроотрицательных молекул SF₆ могут эффективно протекать процессы прилипания электронов с образованием отрицательных ионов SF₆, SF₅, F⁻ и других фрагментов распада молекулы, которые могут служить центрами образования сложных возбужденных комплексов, например кластерного типа.

Что касается других возможных источников рассматриваемого нами широкополосного излучения в смеси $Ar/Kr/SF_6$, то здесь следует упомянуть хорошо изученные в лазерной физике эксимерные трехатомные молекулы $ArKrF^*$ и Kr_2F^* , которые дают широкие спектры излучения. Однако молекула $ArKrF^*$ излучает в УФ области спектра, излучение из которой мы исключили с помощью светофильтра, а излучение молекулы Kr_2F^* сосредоточено в основном в области с $\lambda_{max}\approx 415$ nm. Поэтому мало вероятно, что данные трехатомные молекулы могут быть основными источниками зарегистрированного нами широкополосного излучения смеси $Ar/Kr/SF_6$.

Список литературы

- [1] *Рогулич В.С., Стародуб В.П., Шевера В.С.* // Опт. и спектр. 1990. Т. 69. Вып. 4. С. 756–758.
- [2] Рогулич В.С., Шевера В.С. // ЖТФ. 1996. Т. 66. Вып. 4. С. 188–191.
- [3] Рогулич В.С., Шевера В.С. // УФЖ. 1999. Т. 44. № 9. С. 1082.
- [4] Рогулич В.С., Шимон Л.Л. // Прикладная физика. 2002. № 4. С. 60–65.