Феноменологическая теория перехода сыпучей среды в текучее состояние

© А.И. Олемской, О.В. Ющенко

Сумский государственный университет, 40007 Сумы, Украина, e-mail: olemskoi@ssu.sumy.ua

(Поступило в Редакцию 10 сентября 2002 г. В окончательной редакции 17 марта 2003 г.)

В рамках самосогласованной схемы показано, что учет флуктуаций скорости и упругих напряжений позволяет представить переход сыпучей среды в текучее состояние как в непрерывном, так и в прерывистом режиме. В последнем случае флуктуации упругих напряжений способствуют проявлению самоорганизуемой критичности.

Введение

01:03

"Зыбучий песок! — закричал я и оперся ружьем, но и его стало засасывать... Зыбуны на берегу моря, где прибой взрыхляет песок и со дна с шипением вырывается сероводород, явление довольно обычное... Когда море успокоилось, песок уплотнился так, что на нем даже не оставалось следов." Приведенное описание [1] дает наглядное представление о двойственной природе сыпучих (гранулированных) сред: при хаотическом воздействии волн прибоя и давлении, пониженном восходящей струей газа, песок проявляет свойства вязкой жидкости; в отсутствие указанных условий он подобен твердому телу.¹ Интенсивные исследования последних 10-15 лет показали, что такая двойственность связана с тем, что среднеквадратичная флуктуация и скорости движения частиц приобретает гидродинамический характер, приводя к макроскопической степени свободы эффективной (гранулированной) температуре $T \equiv mu^2$ (*m* — масса частицы) [2–4].

Простейший случай представляет плоское течение Куэтта, которое обеспечивается равномерным движением нижней границы со скоростью U вдоль оси x. При этом неоднородность развивается в перпендикулярном направлении y и обнаруживает следующие закономерности [4]: вблизи движущейся границы течение ограничено тонким слоем, в котором флуктуации скорости u спадают медленнее, чем среднее значение V; пространственный профиль скорости V(y), отнесенной к максимальному значению U, не зависит от величины V, давления P и режима течения — стационарного или прерывистого; сдвиговое напряжение $\sigma = \mu P$ постоянно по объему течения и характеризуется коэффициентом трения $\mu = \mu(U)$, величина которого спадает с ростом скорости U до значения, присущего сухому трению.

Понимание указанных закономерностей может быть достигнуто в рамках гидродинамической теории [3,4], где поведение системы параметризуется полями температуры T(y, t) и скорости V(y, t). Первое подчиняется

уравнению теплопроводности

$$\dot{T} = -\varepsilon T + (\chi T')' + \sigma V', \qquad (1)$$

дополненному законом течения $\sigma = \eta V'$. Здесь ε параметр диссипации, обусловленной неупругими столкновениями частиц; χ — температуропроводность; η динамическая вязкость; σ — сдвиговая компонента напряжений; точка означает полную производную $d/dt \equiv \partial/\partial t + V\nabla$ по времени *t*; штрих — по координате *y*. Поле скорости определяется уравнением движения

$$\dot{V} = \nu V'',\tag{2}$$

где кинематическая вязкость ν связана с динамической $\eta = \nu \rho$ через плотность среды ρ .

В условиях плоского течения давление подчиняется условию P' = 0, означающему его неизменность по объему. Система (1), (2) замыкается уравнением состояния

$$d^{3}\left(1-\frac{\rho}{\rho_{c}}\right) = \frac{T}{P},$$
(3)

где d — размер частицы, критическая плотность ρ_c отвечает точке стеклования.

Благодаря изменению плотности ρ материальные константы ε , χ , ν критическим образом зависят от параметров состояния

$$\varepsilon, \chi \sim \frac{P}{T^{1/2}}; \quad \nu \sim \left(\frac{P}{T}\right)^{\beta} T^{1/2}, \quad \beta \ge 1.$$
 (4)

Качественное изменение поведения системы, обусловленное гидродинамической модой флуктуаций скорости, выражается в наличии двух режимов: классическое течение жидкости, отвечающее конечным температурам T, малым давлениям P и плотности ρ ; твердотельное поведение, при котором T пренебрежимо мало́, P велико, а плотность $\rho \leq \rho_c$ близка к критической. Указанное различие представлено в [4] за счет априорного придания среде необходимых критических свойств — в первой области показатель β принят равным единице, а во второй существенно превосходит ее ($\beta \simeq 1.75$).

¹ В оригинальном тексте опущены художественные детали и вставлены слова-связки.

В результате гидродинамическая теория [4] объясняет экспериментальную картину течения сыпучей среды, тогда как картина перехода из твердотельного режима в гидродинамический остается за рамками рассмотрения.

В настоящей работе предлагается феноменологическая схема, в рамках которой указанный переход представлен как самоорганизация ансамбля частиц, подверженных внешней нагрузке. Наш подход основывается на системе Лоренца, отвечающей простейшему полевому представлению самоорганизующейся среды [5].

Синергетическая картина перехода в текучее состояние

Учитывая неравновесный характер перехода, можно полагать, что его описание достигается в рамках синергетического представления [6], обобщающего термодинамическую картину фазовых превращений. Как показывает пример транспортных потоков [7], задача сводится к нахождению уравнений релаксации для полей параметра порядка, сопряженного ему поля и управляющего параметра. При написании этих уравнений мы будем исходить из того, что самосогласованная картина достигается, если для каждой степени свободы учитывается микроскопический канал диссипации, обусловленный движением отдельных частиц, и макроскопический, связанный с коллективным поведением (течением среды).

В качестве параметра порядка, отличающего текучее состояние от твердотельного, удобно принять вместо температуры *T* среднеквадратичную амплитуду флуктуаций скорости $u \equiv \sqrt{T/m}$. Тогда, опуская нелинейные слагаемые и вводя гидродинамический член $\dot{u} \sim \dot{V} = \nu V''$, из уравнения (1) получаем

$$\dot{u} = -\frac{u}{t_u} + \chi u'' + a\nu V'', \qquad a = \text{const} > 0.$$
 (5)

Здесь первое слагаемое учитывает микроскопический канал диссипации за счет неупругих столкновений, интенсивность которых, определенная в (1) параметром ε , обратно пропорциональна времени релаксации t_u . Оставшиеся слагаемые представляют макроскопический канал диссипации за счет пространственного изменения скорости флуктуаций u (термический вклад) и ее среднего значения V (гидродинамический вклад). В рамках самосогласованной схемы гидродинамическое уравнение (2) следует дополнить линейным слагаемым, представляющим микроскопический канал диссипации, обусловленный действием скалывающих напряжений на флуктуации скорости

$$\dot{V} = -gu\sigma + \nu V''. \tag{6}$$

Здесь g — положительная константа. Последнее из уравнений определяет релаксацию упругих напряжений σ к значению σ_e , задаваемому внешним воздействием,

$$\dot{\sigma} = \frac{\sigma_e - \sigma}{t_\sigma} - g_\sigma v \, u V''. \tag{7}$$

Как и выше, первое слагаемое представляет микроскопический механизм релаксации, обеспечиваемый локальным перераспределением частиц с характерным временем t_{σ} ; второй член учитывает коллективный вклад, обусловленный флуктуационным перераспределением частиц, движущихся с ускорением $\dot{V} \sim \nu V''$.

Для анализа синергетических уравнений (5)–(7) удобно воспользоваться безразмерными переменными, относя время *t*, координату *y*, амплитуду флуктуаций скорости *u*, ее среднее значение *V* и упругие напряжения σ к следующим масштабам:²

$$t_u, \quad l \equiv \sqrt{\chi t_u}, \quad u_c \equiv (gg_\sigma t_\sigma)^{-1/2}, \quad V_c \equiv a^{-1} \frac{\chi}{\nu} u_c,$$
$$\sigma_c \equiv (agt_u)^{-1}, \tag{8}$$

где гидродинамические величины координаты и времени представляются выражениями

$$\chi^2 \equiv \nu \tau = \frac{\eta^2}{\rho G}, \quad \tau \equiv \frac{\eta}{G},$$
 (9)

G — характерное значение модуля сдвига.

В результате поведение сыпучей среды представляется безразмерной системой уравнений

$$\dot{u} = -u + u'' + V'', \tag{10}$$

$$(\tau/t_u)(l/\lambda)^2 \dot{V} = -u\sigma + V'', \qquad (11)$$

$$(t_{\sigma}/t_{u})\dot{\sigma} = (\sigma_{e} - \sigma) - uV''.$$
(12)

Характер их решения задается соотношением времен t_u , τ , t_σ и масштабов l, λ . Диссипативная картина фазового перехода реализуется, когда неупругий характер столкновений выражен настолько слабо, что соответствующее время релаксации t_u намного превосходит гидродинамический масштаб $(l/\lambda)^2 \tau$ и микроскопическое время t_σ [6,8]

$$(l/\lambda)^2 \tau \ll t_u, \quad t_\sigma \ll t_u. \tag{13}$$

Поскольку безразмерные скорости \dot{u} , \dot{V} , $\dot{\sigma}$ имеют одинаковый порядок, то условия (13) позволяют пренебречь левыми частями уравнений (11), (12), которые приводят к соотношениям

$$V'' = \frac{\sigma_e u}{1 + u^2}, \qquad \sigma = \frac{\sigma_e}{1 + u^2}.$$
 (14)

Таким образом, спонтанный рост флуктуаций скорости в интервале, ограниченном максимальным значением u = 1, приводит к увеличению кривизны V'' профиля средней скорости и релаксации внутренних напряжений $\sigma < \sigma_e$ ниже уровня, фиксируемого внешними условиями. Подстановка первого из равенств (14) в (10) дает уравнение Гинзбурга–Ландау–Халатникова

$$\underline{\dot{u}} = u^{\prime\prime} - \frac{\partial E}{\partial u},\tag{15}$$

² В обычных условиях кинематическая вязкость ν не превышает коэффициент температуропроводности χ и масштаб изменения средней скорости V_c превосходит соответствующее значение u_c амплитуды ее флуктуаций [4].

вид которого определяется энергией флуктуаций

$$E = \frac{u^2}{2} - \frac{\sigma_e}{2}\ln(1+u^2),$$
 (16)

измеренной в единицах u_c^2 . При малых напряжениях σ_e зависимость E(u) имеет монотонно возрастающий вид с минимумом u = 0, отвечающим твердотельному состоянию. С ростом σ_e до значений, превышающих критический уровень σ_c , появляется минимум

$$u_0 = \sqrt{\sigma_e - 1},\tag{17}$$

который соответствует текучему состоянию, отвечающему упорядоченной фазе. При этом кривизна профиля скорости приобретает конечное значение $V_0'' = u_0$, а внутренние напряжения релаксируют к критическому значению $\sigma_c = 1$.

В стационарном состоянии *u* = 0 уравнение (15) имеет первый интеграл

$$\frac{1}{2} (u')^2 = E + |E_0|,$$

$$E_0 \equiv E(u_0) \simeq -\frac{1}{4} (\sigma_e - 1)^2 < 0.$$
(18)

Здесь мы учли, что в упорядоченной фазе, отвечающей $y = -\infty$, выполнение условий $u = u_0$, u' = 0 требует, чтобы константа интегрирования сводилась к абсолютному значению энергии упорядочения E_0 , при оценке которой произведено разложение до квадратичных слагаемых по разности $\sigma_e - 1 \ll 1$.

Удерживая в уравнении (18) слагаемые порядков u^2 и u^4 , находим стационарное распределение флуктуаций в виде кинка

$$u = u_0 \tanh\left(\frac{y_0 - y}{\xi}\right), \quad \xi^2 \equiv \frac{2}{\sigma_e - 1}, \qquad (19)$$

где введена корреляционная длина ξ, расходящаяся при критическом значении упругих напряжений; постоянная интегрирования $y_0 \gg \xi$ определяет ширину пограничной области, в которой флуктуации скорости спадают от стационарного значения (17) до нуля. Подставляя распределение (19), спадающее на корреляционной длине ξ , в последнюю из формул (14), видим, что в переходной области скалывающая компонента напряжений монотонно возрастает от критического значения $\sigma_c = 1$ до величины $\sigma_e > \sigma_c$, задаваемой внешними условиями (рис. 1, а). Такое распределение напряжений обусловливает критическое возрастание коэффициента трения $\mu \equiv \sigma/P$ от гидродинамического значения $1/P \equiv (ga t_u P)^{-1}$, спадающего с уменьшением интенсивности неупругих столкновений и усилением связи флуктуаций с напряжениями (см. (6)) до величины σ_e/P , отвечающей сухому трению. Отметим, что указанное поведение ни в коей мере не противоречит выводу [4] о неизменности упругих напряжений в ячейке течения.

Рис. 1. *а* — пространственная зависимость среднеквадратичных флуктуаций скорости *u* (*I*) и упругих напряжений σ (*2*); *b* — соответствующие профили градиента скорости *V'* (*I*) и средней скорости *V* (*2*). Принято $y_0 = 5$, $\sigma_e = 2$.

Действительно, этот вывод основывается на использовании макроскопического приближения, в рамках которого межфазная граница предполагается бесконечно тонкой, тогда как в нашем случае упругое поле изменяется на корреляционной длине $\xi \neq 0$.

Отметим во избежание недоразумений, что формальное использование равенства (18) на границе течения $y = y_0$, отвечающей u = 0, приводит к конечному градиенту флуктуаций скорости

$$u_0' = \frac{u_0}{\xi} \equiv \frac{1}{\sqrt{2}} \left(\sigma_e - 1 \right).$$
 (20)

С физической точки зрения, наличие такого градиента вовсе не означает появление теплового потока $J \propto T'$, поскольку на границе течения градиент температуры $T' \equiv 2muu'$ пропадает благодаря исчезновению флуктуаций самой скорости u = 0.

Комбинирование первого равенства (14) с выражением для u'(y), следующим из (18), приводит к уравнению для средней скорости течения

$$\sqrt{2}V' = -\ln\left[\frac{1+u^2}{(\sigma_e - 1) - u^2}\right].$$
 (21)

Согласно рис. 1, b, градиент этой скорости монотонно возрастает на расстояниях $0 < y < y_0$ от значения

$$V'(0) \simeq -\sqrt{2} \frac{y_0}{\xi} + \frac{1}{\sqrt{2}} \ln \frac{4(\sigma_e - 1)}{\sigma_e}$$
 (22)

до нуля. В результате профиль скорости V(y) разбивается на участки быстрого $(0 < y < y_0 - \xi)$ и медленного $(y_0 - \xi < y < y_0)$ спадания. Поскольку флуктуации u(y)изменяются лишь при $y_0 - \xi < y < y_0$, то в основной области течения $0 < y < y_0 - \xi$ средняя скорость спадает быстрее, чем ее флуктуации [4].

Проведенное рассмотрение показывает, что использование системы Лоренца (5)–(7) позволяет представить самосогласованную картину перехода сыпучей среды из твердотельной в текучее состояние.

Прерывистый режим течения

В силу гидродинамического характера уравнений Лоренца (5)–(7) упругие напряжения представляют величину σ , усредненную по физически малому объему. На расстояниях порядка размера частиц проявляются флуктуации, для учета которых в уравнение (7) следует добавить стохастический источник (\sqrt{I}/t_{σ}) $\eta(t)$, характеризуемый интенсивностью I и белым шумом $\eta(t)$: $\langle \eta(t) \rangle = 0$, $\langle \eta(t) \eta(t') \rangle = \delta(t - t')$. Тогда в адиабатическом приближении (13) кривизна профиля скорости V''(t) и напряжение $\sigma(t)$ приобретают стохастические добавки

$$V''(t) = V'' + \tilde{V}''\eta(t), \quad \sigma(t) = \sigma + \tilde{\sigma}\eta(t), \quad (23)$$

$$\tilde{V}'' \equiv \frac{g}{\nu} \frac{\sqrt{I} u}{1 + u^2/u_c^2}, \quad \tilde{\sigma} \equiv \frac{\sqrt{I}}{1 + u^2/u_c^2},$$
 (24)

где первые слагаемые (23) имеют вид (14).

Комбинирование этих равенств с (5) приводит к пространственно зависимому уравнению Ланжевена

$$t_u \dot{u} = l^2 u'' + f(u) + \sqrt{I(u)} \eta(t), \qquad (25)$$

$$f(u) \equiv -u + \frac{\sigma_e}{\sigma_c} \frac{u}{1 + u^2/u_c^2}, \quad I(u) \equiv \left[avt_u \tilde{V}''(u)\right]^2.$$
(26)

Стационарное распределение его однородных решений [8]

$$\mathscr{P}(u) \propto I^{-1}(u) \exp\left\{\int \frac{f(u)}{I(u)} du\right\}$$
 (27)

имеет максимум в точке, определяемой условием

$$x^{3} - \frac{\sigma_{e}}{\sigma_{c}} x^{2} - 2 \frac{I}{\sigma_{c}^{2}} (x - 2) = 0, \quad x \equiv 1 + \frac{u^{2}}{u_{c}^{2}}.$$
 (28)

Согласно фазовой диаграмме, показанной на рис. 2, при напряжениях σ_e , превышающих предел $\sigma_{c2} \equiv (1+2I)\sigma_c$, наиболее вероятные флуктуации скорости отвечают значениям $u \neq 0$ и поведение системы сводится к исследованному выше режиму течения. С понижением напряжений до $\sigma_e < \sigma_{c2}$

Рис. 2. Фазовая диаграмма состояний сыпучей среды под действием упругих напряжений со средним значением σ_e и интенсивностью флуктуаций *I. 1, 2* — границы области покоя *N* и непрерывного течения *A. SS* — режим stick-slip.

появляется максимум в точке u = 0, отвечающей твердотельному состоянию. Под кривой $\sigma_{c1} \equiv \sigma_e(I)$, задаваемой уравнением

$$\frac{I^2}{\sigma_c^4} - \frac{I}{\sigma_c^2} \left[\frac{27}{2} \left(1 - \frac{1}{3} \frac{\sigma_e}{\sigma_c} \right) - \frac{1}{8} \left(\frac{\sigma_e}{\sigma_c} \right)^2 \right] + \frac{1}{2} \left(\frac{\sigma_e}{\sigma_c} \right)^3 = 0,$$
(29)

этот максимум становится единственным.

Таким образом, учет флуктуаций упругих напряжений приводит к появлению двухфазного состояния при нагрузках $\sigma_{c1}(I) < \sigma_e < \sigma_{c2}(I)$. В этой области система может случайным образом переходить из твердотельного состояния в текучее, реализуя прерывистый режим stickslip. Такой режим достигается даже в отсутствие внешних напряжений, если интенсивность флуктуаций превосходит значение $I_c = (27/2)\sigma_c^2$. При этом реализуется поведение, присущее самоорганизуемой критичности [9].

Поскольку система имеет стохастический характер, то описание режима stick-slip сводится к нахождению функции распределения $\mathscr{P}(\tau)$ продолжительностей τ интервалов течения, чередуемых состоянием покоя. Это распределение определяется конкуренцией отрицательной обратной связи, обусловливающей уменьшение энергии упругих напряжений ξ , и положительного вклада, повышающего энтропию (complexity) системы *s*. При этом величина τ играет роль параметра порядка, энтропия *s* представляет сопряженное поле, а энергия ξ — управляющий параметр. В результате самосогласованное поведение системы представляется обобщением уравнений Лоренца (5)–(7) на стохастический случай

$$t_{\tau}\dot{\tau} = -\tau + A_{\tau}s + \sqrt{I_{\tau}}\eta(t),$$

$$t_{s}\dot{s} = -s + A_{s}\tau^{a}\xi + \sqrt{I_{s}}\eta(t),$$

$$t_{\xi}\dot{\xi} = (\xi_{e} - \xi) - A_{\xi}\tau^{a}s + \sqrt{I_{\xi}}\eta(t).$$
 (30)

Здесь t_{τ}, t_s, t_{ξ} — времена релаксации основных переменных; A_{τ}, A_s, A_{ξ} и I_{τ}, I_s, I_{ξ} — константы связи и

Рис. 3. a — фазовая диаграмма состояний системы в зависимости от интенсивностей флуктуаций I_{ξ} , I_s энергии упругих напряжений и энтропии ($I_{\tau} = 0$, $\xi_e = 0$). Пунктир, сплошная и штриховая кривые соответствуют показателям a = 0.5, 0.75, 1.0. Ромбы I-4 отвечают соответствующим кривым на рис. 3, b. b — распределения интервалов течения при a = 0.75 и интенсивностях флуктуаций, указанных на рис. 3, a.

интенсивности флуктуаций соответствующих величин; ξ_e — параметр внешнего воздействия. Существенная особенность системы (30) состоит во фрактальном характере обратной связи, интенсивность которой задается показателем $0 < a \leq 1$.

В адиабатическом приближении $t_s, t_{\xi} \ll t_{\tau}$ эта система сводится к пространственно однородному уравнению Ланжевена типа (25), где эффективная сила и интенсивность стохастического источника определяются выражениями

$$f \equiv -\tau + \xi_e \tau^a d_a(\tau), \quad I \equiv I_\tau + (I_s + I_\xi \tau^{2a}) d_a^2(\tau), \quad (31)$$

где $d_a(au) \equiv (1+ au^{2a})^{-1}$ и использованы масштабы

$$\begin{aligned} \tau^{sc} &\equiv (A_s A_{\xi})^{-\frac{1}{2a}}, \quad s^{sc} \equiv A_{\tau}^{-1} (A_s A_{\xi})^{-\frac{1}{2a}}, \\ \xi^{sc} &\equiv A_{\tau}^{-1} A_s^{-\frac{1}{2}(1+\frac{1}{a})} A_{\xi}^{\frac{1}{2}(1-\frac{1}{a})}, \quad I_{\tau}^{sc} \equiv (A_s A_{\xi})^{-\frac{1}{a}}, \\ I_s^{sc} &\equiv A_{\tau}^{-2} (A_s A_{\xi})^{-\frac{1}{a}}, \quad I_{\xi}^{sc} \equiv A_{\tau}^{-2} A_s^{-(1+\frac{1}{a})} A_{\xi}^{(1-\frac{1}{a})}. \end{aligned}$$

2 Журнал технической физики, 2003, том 73, вып. 10

Стационарное распределение интервалов течения $\mathscr{P}(\tau)$ задается выражением (27), исследование которого показывает, что в режиме самоорганизуемой критичности ($\xi_e = 0$) поведение системы определяестя фазовой диаграммой, приведенной на рис. 3, *a*. Она показывает, что уменьшение показателя обратной связи *a* приводит к существенному расширению области прерывистого течения. Из зависимостей $\mathscr{P}(\tau)$, показанных на рис. 3, *b*, видно, что степенное поведение, присущее режиму самоорганизуемой критичности, реализуется в пределе $I_{\tau}, I_s \ll I_{\xi}$, где распределение интервалов течения характеризуется асимптотикой $\mathscr{P} \sim \tau^{-2a}, \tau \to 0$.

Таким образом, проведенное рассмотрение показывает, что прерывистое течение сыпучей среды в режиме самоорганизуемой критичности обеспечивается флуктуациями упругих напряжений.

Олемской А.И. благодарен УНТЦ (проект 1976) за финансовую поддержку и Институту физики сложных систем (Дрезден, Германия) за оказанное гостеприимство.

Список литературы

- [1] Арсеньев В.К. Дерсу Узала. М.: Правда, 1983. 200 с.
- [2] Rajchenbach J. // Adv. Phys. 2000. Vol. 49. N 2. P. 229-256.
- [3] Losert W., Bocquet L., Lubensky T.C. et al. // Phys. Rev. Lett. 2000. Vol. 85. N 7. P. 1428–1431.
- [4] Bocquet L, Losert W., Schalk D. et al. // Phys. Rev. E. 2001.
 Vol. 65. N 1. P.011307(1–19).
- [5] Olemskoi A.I. // Physica A. 2002. Vol. 310. P. 223-233.
- [6] Олемской А.И., Хоменко А.В. // ЖЭТФ. 1996. Vol. 110. N 6(12). C.2144–2167.
- [7] Olemskoi A.I., Khomenko A.V. // Phys. Rev. E. 2001. Vol. 63.
 N 3. P. 036116(1–4).
- [8] Олемской А.И. // УФН. 1998. Vol. 168. N 3. C. 287-321.
- [9] Bak P. How Nature Works: the Science of Self-Organized Criticality. Oxford: University Press, 1997. 212 p.