05;11;12 Термополевые формоизменения сплава вольфрам–гафний

© О.Л. Голубев, В.Н. Шредник

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: V.Shrednik@pop.ioffe.rssi.ru

(Поступило в Редакцию 10 декабря 2002 г.)

С помощью полевых эмиссионных методов изучалось одновременное воздействие сильных электрических полей и высоких температур на острийные полевые эмиттеры из сплава W–Hf. Для подобных сплавов выявлены в принципе те же стадии термополевого формоизменения, что и для чистых металлов, хотя и с рядом характерных особенностей, обусловленных поверхностной сегрегацией Hf. Термополевая обработка эмиттеров из таких сплавов приводила к существенному увеличению степени локализации эмиссии в узком телесном угле и к улучшению эмиссионных параметров эмиттеров. Термополевая обработка сопровождалась высокотемпературным полевым испарением с эмиссией преимущественно ионов Hf.

Введение

При одновременном воздействии на металлический образец сильного электрического поля (обычно сравнимого по величине с полем, вызывающем автоэлектронную эмиссию) и температуры, достаточной для активации поверхностной диффузии, форма образца претерпевает вполне определенные изменения. Исходная скругленная форма кончика острия (а именно острийные образцы используются в обсуждаемых экспериментах) по мере роста напряженности электрического поля F и температуры Т оказываетя в меньшей или большей степени ограненной (такие формы традиционно называются перестроенными). Затем на ребрах и вершинах ограненного кристалла возникают относительно небольшие микровыступы. Эти термополевые микровыступы способствуют росту более крупных выступов, локализующихся в основном на плотноупакованных гранях так называемых макронаростов. Вершины и ребра макронаростов покрыты микровыступами. Как правило, описанные формоизменения реализуются в поле по знаку, отвечающему положительно заряженному острию, но в той мере, в какой процессы роста не приводят к катастрофически развивающимся эмиссионным процессам, термополевая обработка может проводится и на остриях, заряженных отрицательно. На чистых тугоплавких металлах особенности термополевого воздействия изучены достаточно глубоко [1-3]. Однако в случае сплавов такого рода исследования в полном объеме не проводились.

В данной работе исследуется термополевое воздействие на сплав Hf с W при малых концентрациях Hf, отвечающих твердому раствору. Родственными, близкими по кристаллографическим и эмиссионным свойствам сплаву W–Hf являются, например, сплавы Mo–Hf, W–Zr. Термополевое воздействие на эти сплавы изучалось в нескольких работах. Так, в [4] описана перестройка в поле для сплава W–Zr и показано, что ее морфологические особенности заметно отличаются от случая чистого вольфрама. В работах [5,6] исследовалось полевое испарение с термополевых микровыступов на поверхности твердого раствора Hf в Mo и с применением атомного зонда [7] была выявлена заметная сегрегация Hf на поверхности сплава. Однако в этих работах не затрагивались проблемы морфологии, а также проблемы создания точечных электронных эмиттеров с малой расходимостью пучка электронов. Что касается сплавов W–Hf, то в [5] приводится лишь краткое описание спектра полевого испарения с термополевых микровыступов, выращенных на поверхности сплавного эмиттера, и при этом упоминается обогащение гафнием ионного потока.

В данной работе, проведенной методами полевой эмиссионной микроскопии, ставилась задача подробно исследовать термополевые формоизменения (т.е. морфологию) и эмиссионные свойства острийного монокристалла из сплава W-Hf. Изучение термополевого воздействия на автоэмиттеры из сплавов, подобных сплаву W-Hf, представляет большой интерес особенно в связи с проблемой создания высокоэффективных точечных источников электронов и ионов, необходимых для различных областей электронной техники и нанотехнологии [8]. Обычное острие — автоэмиттер размером в доли микрона является вполне точечным источником электронов и ионов. Однако для целей микроэлектроники и нанотехнологии простые автоэмиттеры могут оказаться непригодными главным образом вследствие того, что они эмиттируют довольно сильно расходящийся пучок частиц, телесный угол эмиссии а при этом составляет обычно от 1 до 2 ster.

Мы будем называть точечными такие источники, которые имеют малый эффективный размер вплоть до одного атома на поверхности эмиттера и тем самым локализуют эмиссию в малом телесном угле. Существуют по меньшей мере три способа уменьшения эмитирующей площади и локализации эмиссии в малом телесном угле [9]. Первый способ состоит в понижении работы выхода φ поверхности эмиттера на малом участке площади. Для этого необходимо иметь на поверхности эмиссионноактивный материал, образующий малые островки на избранном участке поверхности. Второй способ состоит

в повышении величины локального электрического поля F на таком участке поверхности за счет выращивания там пирамидального выступа. Третий способ состоит в совмещении обоих вышеописанных способов, так что на малом участке поверхности эмиттера одновременно и понижается φ и повышается F [9, с. 221].

Адсорбаты, подобные Zr и Hf, существенно понижают работу выхода φ поверхности W. Кроме того, слои Zr и Hf на W локализуют эмиссию электронов в областях $\{001\}$ W в узком телесном угле, образуя контрастные, ярко эмитирующие островки в этих областях при прогреве эмиттера даже и без присутствия внешнего электрического поля [10,11]. Термополевая обработка обычных (несплавных) металлических эмиттеров также позволяет получить высокую локализацию эмиссии в узком телесном угле за счет образования острых микровыступов [12]. Применение термополевого воздействия к полевым эмиттерам из сплавов типа W-Hf должно позволить использовать преимущества обоих способов локализцаии одновременно. Изучение морфологии термополевого воздействия на сплавы имеет самостоятельный интерес, поскольку это позволяет расширить представления о кристаллическом росте в электрическом поле [2].

Техника эксперимента

Работа проводилась с применением классических методов полевой эмиссионной микроскопии. В качестве объектов использовались образцы из сплавов, получающихся конденсацией нескольких десятков моноатомных слоев Hf на поверхность W острия с последующим прогревом таких покрытий при $T \ge 1600 \,\mathrm{K}$, обеспечивающим объемную диффузию атомов Hf. Эмиссионные картины изучаемого сплава не обнаруживали признаков неоднофазности. Из этого следует, что полученные таким путем сплавы представляли собой твердый раствор Hf в W с концентрацией Hf не выше 3 at.%, как это следовало из диаграммы состояния сплава W-Hf [13]. Это подтверждается также измерениями φ сплава. В нашем случае в зависимости от условий термополевой обработки величина ϕ составляла 3.4–3.8 eV, тогда как, согласно [14], для сплава W-Hf с объемной концентрацией 3 at.% Нf величина $\phi = 3.51 \, \text{eV}$ в интервале T = 1300 - 1900 K.

При термополевом воздействии следует различать начальное поле обработки F_{tr} , которое всегда определяется относительно исходной формы отжига острия, и конечное поле F_{fin} , которое получается у поверхности после изменения формы острия. Величины F и работы выхода поверхности φ определялись обычным способом из наклонов характеристик Фаулера–Нордгейма в предположении, что полное изменение наклона такой характеристики соответствует изменению либо F, либо φ , когда один из этих параметров (тот, который не изменяется) известен.

Результаты эксперимента

Для сравнения с экспериментами на сплаве W-Hf приведем вначале данные по термополевой обработке исходного острия из чистого W. При относительно низких T и F, в нашем случае $F_{\rm tr} \sim 0.4 \, {\rm V/\AA}$ и T $\sim 1600 \, {\rm K}$, наблюдается начальная стадия перестройки острия в поле. Рост F_{tr} до 0.45–0.50 V/Å и T до 1800 К ведет к более глубокой перестройке, наблюдается уже существенное расширение плотноупакованных граней {011}, {001} и {211}. При $T = 1800 \,\mathrm{K}$ и $F_{\mathrm{tr}} = 0.55 \,\mathrm{V/\AA}$ отдельные малые наросты-микровыступы вырастают вокруг граней (001). Наконец, при $T = 1850 \,\mathrm{K}$ и $F_{\mathrm{tr}} = 0.6 \,\mathrm{V/\AA}$ имеет место стадия значительного полевого кристаллического роста, когда большие кристаллические наростымакронаросты растут в основном на плотноупакованных гранях острия, а на углах и ребрах макрокристаллов вырастают микровыступы. При этом величина F возрастает от исходной Ftr до конечной $F_{\rm fin} = 2.0 - 2.3 \, {\rm V/\AA}.$

Как показали эксперименты, при термополевой обработке острий из сплавов W–Hf наблюдаются в принципе те же стадии термополевого формоизменения, что и для чистого W, но с существенными особенностями и при других T и F. После конденсации 10–20 моноатомных слоев Hf на поверхность W и последующего прогрева покрытия при T = 1500-1600 K в отсутствие внешнего поля на поверхности в областях {001} W образуются ярко эмитирующие двумерные островки Hf в виде пятен или колец (рис. 1, *a*). При этом исходная работа выхода поверхности снижается от величины $\varphi = 4.5$ eV, характерной для чистого W, до величины $\varphi = 3.4-3.8$ eV

Рис. 1. Полевые электронные изображения поверхности эмиттера из сплава W-Hf при термополевом воздействии. Начальные стадии формоизменений эмиттера. a — после прогрева эмиттера при T = 1600 K в отсутствие внешнего поля, b — после прогрева эмиттера при T = 1600 K и $F_{\rm tr} = 0.53$ V/Å, c — после прогрева эмиттера при T = 1600 K и $F_{\rm tr} = 0.6$ V/Å, d — после прогрева эмиттера при T = 1700 K и $F_{\rm tr} = 0.6$ V/Å, e — после прогрева эмиттера при T = 1700 K и $F_{\rm tr} = 1600$ K в отсутствие внешнего поля, f — после прогрева эмиттера при T = 1700 K и T = 1600 K в отсутствие внешнего поля, f — после прогрева эмиттера при T = 1800 K в отсутствие внешнего поля, f — после прогрева эмиттера при T = 1800 K и $F_{\rm tr} = 0.6$ V/Å.

в зависимости от количества адсорбата и Т прогрева. В этом случае эффективный угол эмиссии электронов а понижается до величин $\alpha = 0.01 - 0.03$ ster. Исходная величина для W острия составляет $\alpha \sim 2$ ster. Для характеристики эмиссионных свойств полевых эмиттеров помимо вышеуказанных величин весьма полезной является величина приложенного напряжения U, необходимого для получения фиксированного значения электронного тока. Мы использовали величину U₁₀, необходимую для получения эмиссионного тока $i = 10 \, \text{nA}$. В случае эмиттера из сплава W-Hf, показанного на рис. 1, a, величина $U_{10} = 5700 \,\mathrm{V}$, тогда как для исходного острия из чистого W эта величина $U_{10} = 6850$ V. Термополевое воздействие на такие эмиттеры приводит к изменению структуры эмитирующих колец в областях {001}, а также к заметному уменьшению величины а. Однако прогрев острия при $T = 1600 \,\mathrm{K}$ и $F_{\mathrm{tr}} = 0.4 \,\mathrm{V/\AA}$ не приводит к перестройке острия, лишь исходные округлые кольца вокруг {001} постепенно превращаются в квадратные. Повышение Ftr до 0.45-0.55 V/Å при той же T = 1600 K приводит к тому, что кольца в областях {001} окончательно превращаются в квадраты, отражающие симметрию четвертого порядка граней {001} W (рис. 1, b). В этом случае наблюдается и перестройка граней {111}, чего никогда не наблюдалось для чистого W. При этом U₁₀ заметно уменьшается до 4070 V. Рост F_{tr} до величины 0.6 V/Å при той же T = 1600 K приводит к тому, что ярко эмитирующие квадраты в областях {001} распадаются на отдельные весьма малые эмитирующие точки. При этом наблюдается также образование линий эмитирующих точек от граней {001} в направлении центральной грани {011}. Линии эти на рис. 1, с, показывающем данное состояние поверхности, не видны вследствие их слабого контраста по сравнению с сильно эмитирующими областями вокруг {001}. В этом случае величина U₁₀ снижается до $U_{10} = 3450 \,\mathrm{V}.$

При той же величине $F_{\rm tr} = 0.6 \, {\rm V/\AA}$ и $T = 1700 \, {\rm K}$ в областях {001} вырастает несколько острых микровыступов. На рис. 1, d можно видеть четыре таких микровыступа вокруг верхней и три вокруг нижней грани {001}. В этом случае наблюдается весьма сильная локализация эмиссии электронов, поскольку $\alpha = 0.002$ ster, при этом U₁₀ уменьшается до 2300 V. Такую высокую степень локализации эмиссии трудно получить для эмиттера из сплава W-Hf, не прибегая к термополевой обработке. Если сгладить микровыступы осторожным прогревом при $T = 1600 \, \text{K}$ без приложения внешнего поля, то можно видеть (рис. 1, e), что вся остальная поверхность острия не перестроена практически совсем, что весь процесс формоизменения затронул только области {001}, где концентрация Hf по-видимому максимальна. Дело в том, что Hf в этих областях W подобно Zr [15] может образовывать плотноупакованную квадратную решетку вследствие того, что атомный диаметр Hf — 3.18 Å [16] близок к межатомному расстоянию на грани {001} W —

3.16 Å. Это способствует образованию островков Hf именно в этих областях [10].

Для микровыступов, показанных на рис. 1, *d*, величины $F_{\rm fin}$ составляют обычно 2.3–2.4 V/Å, при таких величинах *F* и *T* происходит высокотемпературное полевое испарение. При этом может быть зафиксирована заметная эмиссия ионов Hf с вершин микровуступов. В этом случае реализуется точечный источник ионов Hf с такими же величинами α , что и для электронов, но при этом величины эмиссионных токов и соответственно плотности токов будут, разумеется, значительно меньше, поскольку величины и самих ионных токов *i* на несколько порядков меньше по сравнению с электронными. Обычно величины ионных токов *i* = $10^{-11}-10^{-9}$ А, тогда как величины электронных токов лежат в интервале $i = 10^{-7}-10^{-5}$ А.

Если *T* повысить до 1800 К при том же $F_{\rm tr} = 0.6 \text{ V/Å}$, количество микровыступов в областях граней куба возрастает (рис. 1, *f*). При этом наблюдается максимальная степень локализации эмиссии, поскольку в этом случае $\alpha = 0.001 - 0.002$ ster, а U_{10} снижается до минимальной величины 2040 V.

Интенсивная стадия полевого кристаллического роста, когда наблюдается уже и рост больших макронаростов, требует прежде всего более высоких *T*. При T = 1850 K и относительно низком $F_{\rm tr} = 0.35$ V/Å на тех же гранях {001} и на центральной грани {011} вырастают уже отдельные макронаросты, правда, не слишком большие. Подобные макронаросты на обеих гранях {001} и центральной грани {011}, выявленные после сглаживания микровыступов прогревом без поля при T = 1600 K, демонстрирует рис. 2, *a*. При этом в областях {001} на поверхности макронаростов наблю-даются отдельные островки Hf.

Если повысить и T до 1850 К и F_{tr} до 0.7 V/Å, то микровыступы образуются уже практически на всей поверхности острия (рис. 2, *b*). Если же сгладить микровыступы прогревом, то видно, что на многих гранях острия выросли макронаросты разных размеров (рис. 2, *c*). При этом в итоге обработки величина электрического поля была максимальной $F_{fin} = 2.45$ V/Å и также максималь-

Рис. 2. То же, что на рис. 1, для стадии интенсивного полевого кристаллического роста. a — после прогрева эмиттера при T = 1850 K и $F_{\text{tr}} = 0.35 \text{ V/Å}$ и последующего прогрева в отсутствие внешнего поля при T = 1600 K, b — после прогрева эмиттера при T = 1800 K и $F_{\text{tr}} = 0.7 \text{ V/Å}$, c — после прогрева состояния "d" при T = 1600 K в отсутствие внешнего поля.

Материал	Перестройка	Глубокая перестройка	Микровыступы	Макронаросты и микровыступы
W	$T = 1600 \mathrm{K}$ $F = 0.4 \mathrm{V/\AA}$	$T = 1800 \mathrm{K}$ $F = 0.45 \mathrm{V/\AA}$	$T = 1800 \mathrm{K}$ $F = 0.55 \mathrm{V/\AA}$	$T = 1850 \mathrm{K}$ $F = 0.6 \mathrm{V/\AA}$
W–Hf	Не наблюдается	Не наблюдается	$T = 1700 \mathrm{K}$ $F = 0.6 \mathrm{V/\AA}$	$T = 1850 \mathrm{K}$ $F = 0.35 \mathrm{V/\AA}$

Величины T и F, при которых наблюдаются различные стадии формоизменения эмиттеров из чистого W и сплава W-Hf

ной была величина ионного тока: $i \sim 10^{-9} \,\mathrm{A}$ в этом случае. При эксплуатации эмиттера в таком режиме на поверхности наблюдается процесс динамического испарения и роста макронаростов, наблюдаемый на полевом десорбционном изображении как "эффект схлопывания колец" [17]. Однако здесь необходимо отметить, что значения F_{fin} относятся только к участкам поверхности, где величина поля максимальна: либо к вершинам микровыступов, либо к участкам поверхности в областях {001}, где формируются при прогреве ступенчатые области, усиливающие локальное поле [5]. В остальных областях величина поля, конечно, меньше. Кроме того, такие ступенчатые области могут характеризоваться пониженной работой выхода, до $\varphi \sim 2.5 \, {\rm eV}$, что наблюдалось для случая Zr на W [15]. Использование такой пониженной величины ϕ может привести к некоторому снижению величины F_{fin}, вычисляемой из наклона характеристик Фаулера-Нордгейма.

Обсуждение результатов

Прежде всего обращает на себя внимание тот факт, что при термополевом воздействии на сплав наблюдается существенная сегрегация, т.е. обогащение поверхности гафнием по сравнению с его объемной концентрацией в сплаве. На это прежде всего указывают величины φ , близкие к величине φ для чистого Hf, — $\varphi = 3.53 \,\mathrm{eV}$ [14]. В работах [5,6], в которых с помощью атомного зонда изучалось высокотемпературное полевое испарение сплавов W — 3 at.% Нf и Мо — 7 at.% Hf, также отмечалось значительное обогащение поверхности эмиттеров гафнием. Именно поверхностная сегрегация Hf и объясняет особенности термополевого формоизменения сплава по сравнению с чистым W. Термополевые микровыступы на поверхности сплава вырастают прежде всего в областях {001}, где концентрация Hf максимальна, при таких величинах T и Ftr, когда остальная поверхность эмиттера практически даже не перестроена. Это говорит о том, что материал для строительства микровыступов черпается главным образом из поверхностного моноатомного слоя, тогда как нижележащие атомы W и Hf перемещаются пока относительно слабо. Микровыступы могут вырастать тогда, когда давление пондеромоторных сил электрического поля $P_F = F^2/8\pi$ превышает давление сил поверхностного натяжения $P_{\gamma} = 2\gamma/r$ [2] (γ — коэффициент поверхностного натяжения, r — радиус острия-эмиттера). Сегрегированный на поверхности Hf понижает величины γ и P_{γ} и делает возможным образование микровыступов при таких низких T и F_{tr} , когда на W наблюдается только самая начальная стадия перестройки острия. Величины T и F, при которых наблюдаются различные стадии формоизменения эмиттеров из чистого W и сплава W–Hf, показаны в таблице.

Как следует из результатов работы, термополевое воздействие, приводящее к образованию микровыступов, позволяет значительно повысить степень локализации эмиссии сплавного эмиттера, величины α уменьшаются на порядок по сравнению с таковыми для сплава, не подвергнутого термополевой обработке. Вследствие того, что величины φ для сплава заметно меньше, чем φ для W, эмиссионная способность микровыступов на сплаве W–Hf будет гораздо выше, т.е. при тех же величинах *i* и плотностей токов *j* микровыступы из сплава W–Hf будут работать при меньших *F* и U.

Как уже отмечалось, при термополевом воздействии эмиттер из сплава W–Hf может давать не только электронные, но и ионные токи, величины которых от долей nA до нескольких nA, конечно, ниже величин электронных токов при той же степени локализации. Потоки ионов при этом состоят в основном из ионов Hf разной зарядности. Как показано в работах [5,6], в случае высокотемпературного полевого испарения полевого эмиттера из сплава Мо — 7 аt.% Hf на масс-спектрах нередко наблюдались только ионы Hf⁺³ и Hf⁺². Следовательно, используя метод термополевого воздействия на эмиттеры из сплавов, можно получать токи ионов различных элементов, в том числе таких, изготовление чистых острийных эмиттеров из которых крайне затруднительно (как для Hf и Zr) либо вообще невозможно.

Таким образом, применение метода термополевого воздействия на эмиттеры из эмиссионно-активных сплавов типа W–Hf может заметно улучшить эмиссионные свойства подобных эмиттеров и дает возможность создать точечные источники электронов и ионов с уникальными свойствами. Кроме того, процесс термополевого формоизменения такого рода эмиттеров из сплавов, обладая рядом характерных особенностей, интересен сам по себе.

Выводы

Изучено термополевое воздействие на полевые эмиттеры из сплава Hf–W при широкой вариации величин Tи F, показано, что в этом случае наблюдаются в принципе те же стадии термополевого формоизменения эмиттера, что и для чистых металлов, однако с существенными особенностями и при других величинах T и F, что обусловлено поверхностной сегрегацией Hf.

Одновременное воздействие высоких T и F на такие эмиттеры приводит к обогащению поверхности эмиттера гафнием по сравнению с его объемной концентрацией, что и приводит к заметному увеличению эмиссии электронов и ионов.

Термополевое воздействие приводит к значительному повышению локализации эмиссии электронов. Величины α существенно уменьшаются от значений $\alpha = 0.01-0.02$ ster, характерных для эмиттера без термополевой обработки до $\alpha = 0.001-0.002$ ster для эмиттера после обработки.

При термополевом воздействии наблюдается явление высокотемпературного полевого испарения, которое сопровождается эмиссией ионов, преимущественно ионов Hf. В этом случае величины α такие же, как и для эмиссии электронов, а токи эмиссии *i* достигают величин $10^{-11} - 10^{-9}$ Å.

Термополевая обработка эмиссионно-активных сплавов типа W–Hf является эффективным средством точечных электронных и ионных эмиттеров.

Работа выполнена при поддержке РФФИ (проект № 01-02-17803) и программы Министерства науки и технологии Российской Федерации (контракт № 40.012.1.1.1152).

Список литературы

- [1] Шредник В.Н. // Рост кристаллов. М.: Наука, 1980. Т. 13. С. 68–79.
- [2] Власов Ю.А., Голубев О.Л., Шредник В.Н. // Рост кристаллов. 1991. Т. 19. С. 5–21.
- [3] Павлов В.Г., Рабинович А.А., Шредник В.Н. // ФТТ. 1975.
 Т. 17. Вып. 7. С. 2045–2048.
- [4] Шредник В.Н. // ФТТ. 1959. Т. 1. Вып. 7. С. 1134–1139.
- [5] Kontorovich E.L., Loginov M.V., Shrednik V.N. // J. Vac. Sci. Tech. B. Vol. 15. N 2. P. 495–498.
- [6] Логинов М.В., Шредник В.Н. // ЖТФ. 1998. Т. 68. Вып. 3. С. 69–73.
- [7] Миллер М., Смит Г. // Зондовый анализ в автоионной микроскопии. М.: Мир, 1993. 301 с.
- [8] Шредник В.Н. // Поверхность. 1998. № 2. С. 102–110.
- [9] Шредник В.Н. // Ненакаливаемые катоды / Под ред. М.И. Елинсона. М.: Сов. радио, 1974. 335 с.
- [10] Шредник В.Н., Одишария Г.А. // Изв. АН СССР. Сер. физ. 1969. Т. 33. № 3. С. 536–543.
- [11] Swanson L.W., Crouser L.C. // J. Appl. Phys. 1969. Vol. 40.
 N 12. P. 4741–4749.
- [12] Shrednik V.N., Pavlov V.G., Rabinovich A.A. et al. // Phys. Stat. Sol. (a). 1974. Vol. 23. P. 373–378.

- [13] Bill C. // Trans. Metallurg. Soc. AIME. 1962. Vol. 224. N 1. P. 61.
- [14] Фоменко В.С. Эмиссионные свойства материалов. Справочник. Киев: Наукова думка, 1981. 338 с.
- [15] Шредник В.Н. // ФТТ. 1961. Т. З. Вып. 6. С. 1750–1761.
- [16] Гафний // Сб. ст. / Под ред. Л.Н. Комиссаровой. М.: ИЛ, 1962. 234 с.
- [17] Бутенко В.Г., Голубев О.Л., Шредник В.Н. и др. // Письма в ЖТФ. 1992. Т. 18. Вып. 8. С. 86–91.