01;03 Волны конечной амплитуды на поверхности вязкой глубокой жидкости

© Д.Ф. Белоножко, А.И. Григорьев

Ярославский государственный университет им. П.Г. Демидова, 150000 Ярославль, Россия e-mail: grig@uniyar.ac.ru

(Поступило в Редакцию 18 июля 2002 г. В окончательной редакции 17 сентября 2002 г.)

Впервые найдено строгое решение задачи о временной эволюции формы периодической волны на поверхности вязкой бесконечно глубокой жидкости в квадратичном по амплитуде волны приближении. Выяснилось, в частности, что величина декремента затухания квадратичной по амплитуде добавки к волне в два раза превышает декремент затухания линейного по амплитуде слагаемого. Показано, что учет вязкости приводит к асимметрии профиля волны.

Несмотря на длительную историю исследования волн конечной амплитуды, до сих пор все строгие исследования сделаны в рамках приближения идеальной жидкости (см., например, [1–7] и указанную там литературу). Наиболее корректные попытки учета влияния вязкости на нелинейную эволюцию формы свободной поверхности вязкой жидкости выполнены в приближении малой вязкости в рамках теории пограничного слоя [8–10], пригодной лишь при больших значениях числа Рейнольдса. Тем не менее вполне реальна корректная аналитическая формулировка задачи определения формы волны, распространяющейся по поверхности бесконечно глубокой вязкой жидкости в приближении, квадратичном по амплитуде волны [11].

Проблема исследования волнового движения конечной амплитуды в вязкой жидкости актуальна в связи с многочисленными академическими, техническими и технологическими приложениями. Так, в [12-14] в линейном приближении по амплитуде волн в вязкой жидкости предсказано существование неустойчивости поверхности жидкости по отношению к упругим напряжениям, по отношению к содержащимся в жидкости инактивным ПАВ (поверхностно активным веществам) и существование колебательной неустойчивости жидкости при конечной скорости перераспределения электрического заряда по поверхности жидкости. Детальный теоретический анализ этих эффектов возможен лишь в приближениях более высокого порядка малости по амплитуде волн, чем первый. В связи со сказанным и была поставлена настоящая задача.

Математическая формулировка задачи

Пусть u = u(x, z, t) и v = v(x, z, t) — горизонтальная и вертикальная компоненты поля скоростей, которые для простоты считаются независимыми от координаты y, а \mathbf{e}_x и \mathbf{e}_z — орты осей Ox и Oz. Тогда профиль волны $\xi = \xi(x, t)$ и поле скоростей $\mathbf{U} = u\mathbf{e}_x + v\mathbf{e}_z$ удовлетворяют начально-краевой задаче

$$\partial_t \mathbf{U} + \operatorname{rot}(\mathbf{U}) \times \mathbf{U} = -\operatorname{grad}\left(\frac{1}{\rho} p + \frac{U^2}{2} + gz\right) + \nu \Delta \mathbf{U}; \ (1)$$

$$\operatorname{div} \mathbf{U} = \mathbf{0}; \tag{2}$$

$$z = \xi : \quad \partial_t \xi + u \partial_x \xi = v; \tag{3}$$

$$p - 2\rho \nu \mathbf{n} \cdot \left((\mathbf{n} \cdot \nabla) \mathbf{U} \right) - P_0 = \gamma \operatorname{div}(\mathbf{n}); \qquad (4)$$

$$\boldsymbol{\tau}((\mathbf{n}\cdot\boldsymbol{\nabla})\mathbf{U}) + \mathbf{n}((\boldsymbol{\tau}\cdot\boldsymbol{\nabla})\mathbf{U}) = \mathbf{0};$$
 (5)

$$z \to -\infty: \quad \mathbf{U} \to \mathbf{0};$$
 (6)

$$t = 0: \quad \xi = F(x); \tag{7}$$

$$z \leq \xi$$
: $\mathbf{U} = \mathbf{U}^0 = \mathbf{U}^0(x, z) = u^0(x, z)\mathbf{e}_x + v^0(x, z)\mathbf{e}_z$. (8)

Здесь t — время; p — давление внутри жидкости; ∂_t и ∂_x — частные производные по времени и координате; τ и **n** — орты касательной и нормали к поверхности, явный вид которых вместе с выражением для дивергенции нормали div (n) приведены в Приложении А. Громоздкость решения задачи (1)–(8) напрямую связана со степенью сложности начальных условий (8). Конкретный вид функций, входящих в (8), в достаточной степени произволен, и для первоначального исследования, которому посвящена данная работа, выбирались такие начальные условия, при которых решение задачи наименее громоздко. Чтобы сохранить стройность рассуждений, вид начальных условий уточняется по мере изложения при обращении к тем этапам решения, на которых становится понятно, как начальные условия влияют на громоздкость решения.

Принцип решения задачи

Для построения аналитического решения задачи (1)–(8) применялся метод возмущений. Обычно перед использованием этого метода основные уравнения задачи обезразмериваются. В проведенном исследовании способ обезразмеривания не конкретизировался. Пусть начальное возмущение периодично по x и образует волнообразный рельеф с длиной волны $\lambda = 2\pi/k$ и амплитудой a. Безразмерный параметр $\varepsilon = ka$ имеет одно и то же значение при любом способе обезразмеривания, а его малость означает приближение волн малой амплитуды. В настоящей работе все соотношения записываются в размерном виде. При этом относительно параметра $a = \varepsilon k^{-1}$ и всех пропорциональных ему величин считается, что они при обезразмеривании преобразуются в безразмерные величины порядка $O(\varepsilon)$ и с этим же порядком указанные величины отождествляются в размерных соотношениях.

При малых є решение задачи (1)-(8) ищется в виде

$$\mathbf{U} = \mathbf{U}_{1} + \mathbf{U}_{2} + O(\varepsilon^{3}); \quad \mathbf{U}_{1} = O(\varepsilon); \quad \mathbf{U}_{2} = O(\varepsilon^{2});$$

$$p = p_{0} + p_{1} + p_{2} + O(\varepsilon^{3}); \quad p_{0} = O(1);$$

$$p_{1} = O(\varepsilon); \quad p_{2} = O(\varepsilon^{2});$$

$$\xi = \xi_{1} + \xi_{2} + O(\varepsilon^{3}); \quad \xi_{1} = O(\xi); \quad \xi_{2} = O(\varepsilon^{2}). \quad (9)$$

Пусть начальный профиль возмущения свободной поверхности синусоидален в первом по ε приближении

$$F = F_1 + F_2 + O(\varepsilon^3);$$
 $F_1 = a \cos(kx);$ $F_2 = O(\varepsilon^2).$

Вид $F_2(x)$ и функций, входящих в асимптотическое представление начального распределения поля скоростей

$$\mathbf{U}^{0} = \mathbf{U}_{1}^{0} + \mathbf{U}_{2}^{0} + O(\varepsilon^{3}); \quad \mathbf{U}_{1}^{0} = O(\varepsilon); \quad \mathbf{U}_{2}^{0} = O(\varepsilon^{2}),$$

выбирается на следующих этапах решения в рамках идеи получения наименее громоздкого решения.

Подстановка (9) в (1) и (2) приводит к задачам нулевого, первого и второго порядков малости для этих уравнений. В Приложении В описана процедура разделения граничных условий (3)–(5) на соотношения для величин различных порядков малости с учетом разложения этих условий вблизи невозмущенной плоской поверхности.

В нулевом по є приближении задача сводится к определению значения гидростатического давления

$$p_0 = P_0 - \rho g z.$$

В дальнейшем изложении для сокращения записи будут использоваться специальные обозначения для линейных дифференциальных операторов

$$\mathfrak{L} \equiv egin{bmatrix} \partial_t -
u(\partial_{xx} + \partial_{zz}) & 0 & (1/
ho)\partial_x \ 0 & \partial_t -
u(\partial_{xx} + \partial_{zz}) & (1/
ho)\partial_x \ \partial_x & \partial_z & 0 \end{bmatrix};$$
 $\mathfrak{R} \equiv egin{bmatrix} \partial_t & \partial_t & \partial_t & 0 \ -
hoghtarrow g +
u\partial_t & \partial_t & 0 \ \partial_t & \partial_t & \partial_t & \partial_t & 0 \ \partial_t & \partial_t & \partial_t & \partial_t & \partial_t & 0 \ \partial_t & \partial_$

и матриц-столбцов

$$\hat{\mathbf{0}} \equiv \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{bmatrix}; \qquad \hat{Y}_j \equiv \begin{bmatrix} u_j \\ v_j \\ p_j \end{bmatrix}.$$

Оператор \mathfrak{B} действует на объекты типа \hat{Y}_j по правилу: выполняются матричные операции, затем все операции дифференцирования и арифметические действия, после чего полагается z = 0. Результат действия оператора \mathfrak{B} на столбец трех функций, зависящих от переменных x, zи t, -- столбец трех функций, не зависящих от z.

Задача первого порядка малости

Для величин первого по є порядка малости полная математическая формулировка задачи имеет вид

$$\mathfrak{L}\hat{Y}_1 = \hat{\mathbf{0}};\tag{10}$$

$$\mathfrak{B}\hat{Y}_1 + \mathfrak{R}\xi_1 = \hat{\mathbf{0}}; \tag{11}$$

$$z \to -\infty: \quad u_1 \to 0; \quad v_1 \to 0; \quad (12)$$

$$t = 0$$
: $\xi_1 = a \cos(kx);$ $z \le 0$: $\mathbf{U}_1 = \mathbf{U}_1^0.$ (13)

Здесь начальное условие сформулировано для первых двух элементов \hat{Y}_1 , а не для всего этого символьного столбца неизвестных величин, и в выражениях, составляющих начальные условия, не содержится условия на p_1 (третий элемент этого столбца). На самом деле значения величины p_1 в любой момент времени выражаются через компоненты поля U₁ в жидкости и на ее свободной поверхности. Действительно, линеаризованное уравнение Навье–Стокса (первое уравнение системы (10)) можно записать в виде

$$\partial_t \mathbf{U}_1 = -\operatorname{grand}\left(\frac{1}{\rho} p_1\right) + \nu \Delta \mathbf{U}_1$$

Если к обеим частям этого уравнения применить операцию div и учесть, что жидкость несжимаема, значит, $div(U_1) = 0$, а также, что повторные частные производные перестановочны, то несложно прийти к уравнению Лапласа для p_1

$$\Delta p_1 = 0.$$

Линеаризованное граничное условие на нормальные натяжения вместе с условием исчезновения на большой глубине градиента от добавки первого порядка малости к давлению имеют вид

$$z = 0$$
: $p_1 = 2\rho v \partial_z u_1 + \partial_{xx} \xi_1$; $z \to -\infty$: $|\nabla p_1| \to 0$.

Видно, что если известно поле U₁ на поверхности и в объеме жидкости, а также дано выражение для ξ_1 , то p_1 удовлетворяет задаче Дирихле в неограниченной области, решение которой существует и единственно. Проведенные рассуждения оправдывают отсутствие в формулировке задачи (10)–(13) условия на p_1 . Следуя [15], несложно найти комплексное решение задачи (10)–(13) и, выделив действительную часть, получить следующее решение задачи первого порядка малости:

$$\xi_1 = a\cos(\Theta)\exp(T); \tag{14}$$

$$u_{1} = a \left(\left(S_{2} \exp(kz) - 2\nu k \left(q_{2} \cos(q_{2}z) + q_{1} \sin(q_{2}z) \right) \right) \\ \times \exp(q_{1}z) \right) \cos(\Theta) + \left(D \exp(kz) \right) \\ - 2\nu k \left(q_{1} \cos(q_{2}z) - q_{2} \sin(q_{2}z) \right) \\ \times \exp(q_{1}z) \right) \sin(\Theta) \exp(T);$$
(15)

$$v_1 = a\left(\left(D_2 \exp(kz) - 2\nu k^2 \cos(q_2 z) \exp(q_1 z)\right)\cos(\Theta)\right)$$

$$-\left(S_2 \exp(kz) - 2\nu k^2 \sin(q_2 z)\right) \exp(q_1 z)\right) \sin(\Theta) \exp(T);$$
(16)
$$n_1 = a_2 k^{-1} \left(\left(-S_1 D_1 + S_2^2\right) \cos(\Theta)\right)$$

$$p_{1} = a\rho\kappa^{-1}((-S_{1}D + S_{2})\cos(\Theta) + 2S_{2}(S_{1} + \nu\kappa^{2})\sin(\Theta))\exp(kz)\exp(T); \quad (17)$$

$$v^2(k^2+q^2)^2 - 4v^2k^3q + \left(kg + \frac{k^3\gamma}{\rho}\right) = 0;$$
 (18)

$$q_1 = \operatorname{Re} q \ge 0; \quad q_2 = \operatorname{Im} (q) \ge 0;$$
 (19)

$$S = v(q^2 - k^2);$$
 $S_1 = \text{Re }S;$ $S_2 = \text{Im }S;$ (20)

$$\Theta = S_2 t - kx; \quad T = S_1 t; \quad D = S_1 + 2\nu k^2.$$
 (21)

Здесь q вычисляется как корень дисперсионного уравнения (18), подчиненный условиям (19). Первое из них с необходимостью следует из (12), а второе означает, что в качестве решения выбрана прогрессивная волна, распространяющаяся вдоль Ox. Известно (см., например, [15,16]), что таким условиям удовлетворяет лишь один корень уравнения (18). Это обеспечивает единственность процедуры вычисления комплексной частоты S.

С помощью решения (14)-(17) строится подстановка

$$\xi = a\cos(\Theta)\exp(T) + \xi_1^*; \qquad \hat{Y}_1^* = \begin{bmatrix} u_1 \\ v_1 \\ p_1 \end{bmatrix} + \begin{bmatrix} u_1^* \\ v_1^* \\ p_1^* \end{bmatrix},$$

сводящая (10)–(13) к задаче с изначально невозмущенной поверхностью

$$\begin{aligned} \mathfrak{L}\hat{Y}_{1}^{*} &= \hat{0}; \quad \mathfrak{B}_{1}\hat{Y}_{1}^{*} + \mathfrak{R}\xi_{1}^{*} &= \hat{0}; \\ z \to -\infty: \quad u_{1} \to 0; \quad v_{1} \to 0; \\ t &= 0: \quad \xi_{1}^{*} &= 0; \quad z \leq 0: \quad \mathbf{U}_{1}^{*} &= \mathbf{U}_{1}^{0} - \mathbf{U}_{1}. \end{aligned}$$
(22)

Форма свободной поверхности представляется в виде суперпозиции функции ξ_1 , совпадающей при t = 0 с начальным искажением поверхности, и функции ξ_1^* , совпадающей в начальный момент времени с равновесной поверхностью ($\xi_1^* = 0$ при t = 0). Преследуя цель получить наименее громоздкое решение, имеет

смысл ограничиться условием остутствия начального распределения скоростей в задаче (22).

$$t = 0: \quad \mathbf{U}_1^0 - \mathbf{U}_1 = 0.$$
 (23)

Отсюда следует, что решение задачи (22) нулевое, а соотношения (14)–(21) представляют искомое решение задачи первого порядка малости с начальным условием (23), где компоненты U_1^0 рассчитываются по формулам (14), (15) при t = 0.

Задача второго порядка малости

Порядок решения. После разделения уравнений (1) и (2) на соотношения для величин различных порядков малости с помощью выражений (9) для величин второго порядка малости получаются уравнения

$$\partial_t \mathbf{U}_2 + \operatorname{grad}\left(\frac{1}{\rho}p_2\right) - \nu\Delta\mathbf{U}_2$$

= $-\frac{1}{2}\operatorname{grad}\left(U_1^2\right) - \operatorname{rot}(\mathbf{U}_1) \times \mathbf{U}_1;$ (24)

$$\operatorname{div} \mathbf{U}_2 = \mathbf{0}. \tag{25}$$

Граничные условия к ним получены в Приложении В: (72), (78) и (81). Все эти соотношения содержат слагаемые, зависящие от произведения величин первого порядка малости, которые превращаются в конкретные выражения после подстановки в них решения задачи первого порядка малости (14)–(21). В результате этого задача (24), (25), (72), (78), (81) с неопределенными пока начальными условиями может быть сформулирована в новом виде

$$\mathfrak{L}\hat{Y}_{2} = a^{2}\operatorname{Re}\left(\left(\hat{A}_{1}\exp(2q_{1}z) + \hat{A}_{2}\exp(kz) + \hat{A}_{3}\exp((k+q)z)\right)\exp(2T) + \hat{A}_{4}\exp((k+q)z)\exp(2(T+i\Theta))\right); \quad (26)$$

$$\mathfrak{B}\hat{Y}_2 + \mathfrak{R}\xi_2 = a^2 \operatorname{Re}\left(\hat{A}_5 \exp(2T) + \hat{A}_6 \exp(2(T+i\Theta))\right); (27)$$

$$z \to -\infty$$
: $u_2 \to 0$; $v_2 \to 0$; (28)

$$= 0: \quad \xi_2 = F_2(x); \qquad z \le 0: \quad \mathbf{U}_2 = \mathbf{U}_2^0, \qquad (29)$$

где $\hat{A}_1 - \hat{A}_6$ — трехэлементные столбцы с комплексными коэффициентами, не зависящими от координат и времени. Выражения для них приведены в приложении *C*.

t

Если найти частное решение \hat{Y}^* , ξ^* задачи (26)–(29), подчиняющееся произвольным начальным условиям, то эта неоднородная задача подстановкой

$$\hat{Y}_{2} = \hat{Y}_{*} + \hat{Y}^{*}; \qquad \hat{Y}_{*} = \begin{bmatrix} u_{*} \\ v_{*} \\ p_{*} \end{bmatrix}; \qquad \hat{Y} = \begin{bmatrix} u^{*} \\ v^{*} \\ p^{*} \end{bmatrix}; \\ \xi_{1} = \xi_{*} + \xi^{*}$$
(30)

преобразуется в однородную

$$\mathfrak{L}\hat{Y}_* = \hat{0}; \tag{31}$$

$$\mathfrak{B}\hat{Y}_* + \mathfrak{R}\xi_* = 0; \tag{32}$$

$$z \to -\infty: \quad u_* \to 0; \qquad v_* \to 0;$$
 (33)

$$t = 0: \quad \xi_* = F_2(x) - \xi^*;$$

$$z \le 0: \quad u_* = u_2^0 - u^*; \qquad v_* = v_2^0 - v^*, \qquad (34)$$

принцип решения которой такой же, как и для задачи первого порядка малости.

Далее ищется частное решение \hat{Y}^* , ξ^* задачи (26)–(28), и нет необходимости выписывать начальные условия и заботится о том, чтобы не потерялась полнота решения. Кроме того, ввиду линейности соотношений (26)–(28) знак Re можно опустить и искать частное решение \hat{Y}^* , ξ^* в комплекснозначной форме, а под физически реализуемым решением понимать действительную часть от найденного комплексного решения.

Построение вспомогательной задачи. Исходя из структуры правой части, частное решение уравнений (26) можно попытаться искать в виде

$$\hat{Y} = a^2 \Big(\left(\hat{C}_1 \exp(2q_1 z) + \hat{C}_2 \exp(2kz) \right. \\ \left. + \hat{C}_3 \exp\left((k+q)z\right) \right) \exp(2T) \\ \left. + \hat{C}_4 \exp\left(k+q\right)z\right) \exp\left(2(T+i\Theta)\right) \Big).$$
(35)

Подстановка (35) в (26) приводит к неоднородной системе линейных алгебраических уравнений для определения коэффициентов, из которых состоят столбцы $\hat{C}_1 - \hat{C}_4$,

$$\hat{\Pi}_1 C_1 = \hat{A}_1; \ \hat{\Pi}_2 C_2 = \hat{A}_2; \ \hat{\Pi}_3 C_3 = \hat{A}_3; \ \hat{\Pi}_4 C_4 = \hat{A}_4.$$
 (36)

Матрицы $\hat{\Pi}_1$, $\hat{\Pi}_2$, $\hat{\Pi}_3$, $\hat{\Pi}_4$ приведены в Приложении С. Зная (35), легко построить замену переменных

$$\hat{Y}_2 = \hat{y}^* + \hat{y}; \qquad \hat{y}^* = \begin{bmatrix} u_2^* \\ v_2^* \\ p_2^* \end{bmatrix},$$
 (37)

преобразующую задачу (26)-(28) в более простую

$$\mathfrak{L}\hat{y}^* = \mathbf{0}; \tag{38}$$

$$\mathfrak{B}\hat{y}^* + \mathfrak{R}\xi_2 + \mathfrak{B}\hat{y}$$

= $a^2 \Big(\hat{A}_5 \exp(2T) + \hat{A}_6 \exp(2(T+i\Theta)) \Big);$ (39)

$$z \to -\infty: \quad u_2^* \to 0; \qquad v_2^* \to 0.$$
 (40)

Теперь вместо неоднородной (26) получилась однородная система уравнений (38). В этом и состоит упрощение. Как и для задачи первого порядка малости, решение задачи (38) выражается через скалярные функции

$$\hat{y}^* = a^2 \begin{bmatrix} \partial_x \varphi_2 - \partial_z \psi_2 \\ \partial_z \varphi_2 + \partial_x \psi_2 \\ f(t) - \rho \partial_t \varphi_2 \end{bmatrix}, \qquad (41)$$

которые в свою очередь являются решениями уравнений

$$\Delta \varphi_2 = 0; \quad \partial_t \psi_2 - \nu \Delta \psi_2 = 0 \tag{42}$$

с ограничением

$$z \to -\infty$$
: $\partial_x \varphi_2 - \partial_z \psi_2 \to 0$; $\partial_z \varphi_2 + \partial_x \psi_2 \to 0$. (43)

При обосновании корректности перехода к φ_2 и ψ_2 используются только свойства уравнений (38) и никак не учитываются остальные соотношения. Благодаря этому удается задействовать методику скаляризации, отработанную на задаче первого порядка малости. В случае задачи (26)–(28) подобный прием неприменим из-за наличия у (26) правой части.

Неразрешимость вспомогательной задачи методом разделения переменных. Чтобы иметь возможность удовлетворить соотношениям (39)-(40) следует искать φ_2 и ψ_2 в виде

$$\varphi_2 = \alpha(z) \exp(2(T+i\Theta)); \quad \psi_2 = \beta(z) \exp(2(T+i\Theta)).$$

Подстановка этих выражений в уравнения (37) приводит к уравнениям для определения $\alpha(z)$ и $\beta(z)$. Решив их, легко получить, что

$$\varphi_2(z) = \lambda \exp(kz) \exp(2(T+i\Theta));$$

$$\psi_2(z) = H \exp(rz) \exp(2(T+i\Theta)); \qquad (44)$$

$$r = \sqrt{2(k^2 + q^2)};$$
 Re $(r) > 0.$ (45)

Найденные φ_2 и ψ_2 удовлетворяют уравнениям (42) при любых значениях комплексных констант λ и *H*. Значит, при подстановке (44) в (41), результирующий столбец

$$\hat{y}^* = a^2 \begin{bmatrix} 0\\0\\f(t) \end{bmatrix} + a^2 2k \begin{bmatrix} -i\\1\\2\rho S \end{bmatrix} \lambda \exp(kz) \exp(2(T+i\Theta)) + a^2 \begin{bmatrix} -r\\-2ik\\0 \end{bmatrix} H \exp(rz) \exp(2(T+i\Theta))$$
(46)

будет решением системы (38) независимо от значений H и λ .

Чтобы при подстановке (46) в левую часть (39) получить выражение, устроенное так же, как правая часть (39), частное решение ξ^* для переменной ξ_2 можно попытаться искать в виде

$$\xi^* = a^2 \xi \exp(2(T + i\Theta)). \tag{47}$$

При подстановке (46) и (47) в (39) выясняется, что левая часть (39) приобретает вид

$$\begin{split} \hat{y}^* + \Re \xi^* + \Re \hat{y} \\ &= a^2 \begin{bmatrix} 0\\f(t)\\0 \end{bmatrix} + a^2 \begin{bmatrix} 0\\C_1[3] + C_2[3] + C_3[3]\\\Lambda \end{bmatrix} \exp(2T) \\ &+ \hat{a}^2 \hat{L} \left(\begin{bmatrix} H\\\lambda\\\xi \end{bmatrix} - \hat{B} \right) \exp(2(T + i\Theta)), \end{split}$$
(48)

где

$$\Lambda = 2C_1[1]q_1 + C_3[1](k+q)$$

а правая часть

$$a^{2}\left(\hat{A}_{5}\exp(2T) + \hat{A}_{6}\exp(2(T+i\Theta))\right)$$
$$= a^{2}\begin{bmatrix}0\\N_{1}\\M_{0}\end{bmatrix}\exp(2T) + a^{2}\begin{bmatrix}\Omega\\N\\M\end{bmatrix}\exp(2(T+i\Theta)) \quad (49)$$

Вид квадратной матрицы L приведен в Приложении С. Там же в развернутом виде выписан трехэлементный столбец В с коэффициентами, зависящими от элементов столбца С₄. Здесь и далее использовано обозначение $C_n[m]$ — *m*-й элемент столбца C_n . Выражения для Ω , M₀, M, N₁ и N также приведены в Приложении С. Если обратить внимание на то, что $\Theta = S_2 t - kx$, то становится ясно, что равенство (48) и (49) при любых значениях x и t означают равенство соответствующих действительных и мнимых частей при любых Θ. Получились равенства рядов Фурье по синусам и косинусам переменной Θ. Они выполняются, только если равны соответствующие коэффициенты фурье-разложения. Поэтому для разрешимости задачи необходимо выполнение равенства $\Lambda = M_0$. Несложно проверить, что если это так, то с помощью подбора констант H, λ , ξ , можно добится, чтобы (48) и (49) стали равны друг другу.

В общем случае $\Lambda \neq M_0$ и поиск решения (38)–(40) в виде (41) приводит к неразрешимой задаче.

Модифицированная вспомогательная задача и ее решение методом разделения переменных. Решение можно спасти, если рассмотреть вспомогательную задачу

$$\mathfrak{L}\hat{y}_h = \mathbf{0}; \tag{50}$$

$$\mathfrak{B}\hat{y}_{h} + \mathfrak{R}\xi_{h} = a^{2} \left(\hat{A}_{5}^{*} \exp(2T) + \hat{A}_{6}^{*} \exp(2(T + i\Theta)) \right)$$
$$- \mathfrak{B}\hat{y} + \begin{bmatrix} 0\\ 0\\ \Lambda - M_{0} \end{bmatrix}; \qquad (51)$$

 $z \to -\infty$: $u_h \to 0$; $v_h \to 0$. (52)

Рассуждая так же, как при решении (38)–(40), придем к этапу, на котором в предыдущем случае возникало

условие $\Lambda \neq M_0$, превращающее задачу в неразрешимую. Для задачи (50)–(52) после подстановки в нее

$$\hat{y}_{h} = a^{2} \begin{bmatrix} 0\\0\\f(t) \end{bmatrix}$$

$$+ a^{2}2k \begin{bmatrix} -i\\1\\-2\rho S \end{bmatrix} \lambda \exp(kz) \exp(2(T+i\Theta))$$

$$+ a^{2} \begin{bmatrix} -r\\-2ik\\0 \end{bmatrix} H \exp(rz) \exp(2(T+i\Theta)); \quad (53)$$

$$\xi_{h} = a^{2}\xi \exp(2(T+i\Theta)) \quad (54)$$

получается система равенств

$$\Lambda = \Lambda;$$

$$f(t) = (N_1 - C_1[3] - C_2[3] - C_3[3]) \exp(2T); \quad (55)$$

$$\hat{L} \begin{bmatrix} H \\ \lambda \\ \xi \end{bmatrix} = \begin{bmatrix} C_4[2] + \Omega \\ 2C_4[2]\rho\nu(k+q) - C_4[3] + N \\ 2iC_4[2]k - C_4[1](k+q) + M \end{bmatrix}.$$
 (56)

Первое из них является тождеством. Второе однозначно определяет f(t). Равенство (56) представляет собой неоднородную систему линейных алгебраических уравнений относительно H, λ, ξ . Вид матрицы $\hat{\Lambda}$ и выражения для Ω, N и M можно найти в Приложении С. Найденные H, λ, ξ и подставляются в (53), (54).

Вторая вспомогательная задача и ее решение. Теперь замена переменных

$$\hat{Y}_2 = \hat{Y}_{lpha} + \hat{y} + \hat{y}_h; \qquad \xi_2 = \xi_{lpha} + \xi_h$$

преобразует (26)-(28) в задачу

$$\mathfrak{L}\hat{Y}_{\alpha}=0; \tag{57}$$

$$\mathfrak{B}\hat{Y}_{\alpha} + \mathfrak{R}\xi_{\alpha} = a^2 \begin{bmatrix} 0\\ 0\\ M_0 - \Lambda \end{bmatrix} \exp(2T); \qquad (58)$$

$$z \to -\infty$$
: $u_{\alpha} \to 0$; $v_{\alpha} \to 0$. (59)

Если переписать ее в традиционном виде

$$\partial_t \mathbf{U}_{\alpha} + \operatorname{grad} \left(\frac{1}{\rho} p_{\alpha} \right) - \nu \Delta \mathbf{U}_{\alpha} = \mathbf{0}; \quad \operatorname{div} \mathbf{U}_{\alpha} = \mathbf{0};$$
$$z = \mathbf{0}: \quad \partial_t \xi_{\alpha} - \nu_{\alpha} = \mathbf{0}; \quad p_{\alpha} - 2\rho \nu \partial_z \nu_{\alpha} + \partial_{xx} \xi_{\alpha} = \mathbf{0};$$
$$\partial_z u_{\alpha} + \partial_x \nu_{\alpha} = a^2 (M_0 - \Lambda) \exp(2T);$$
$$z \to -\infty: \quad u_{\alpha} \to \mathbf{0}; \quad \nu_{\alpha} \to \mathbf{0},$$

то можно заметить, что она обладает частным решением с $\xi_{\alpha} = 0$; $p_{\alpha} = 0$; $v_{\alpha} = 0$. Действительно, в этом случае из уравнения неразрывности следует, что $\partial_x u_{\alpha} \equiv 0$ и, значит, u_{α} может зависеть только от z и t. В результате

задача преобразуется в хорошо известную задачу математической физики

$$\partial_t u_\alpha - \nu \partial_{zz} u = 0; \tag{60}$$

$$z = 0: \quad \partial_z u_\alpha = a^2 (M_0 - \Lambda) \exp(2S_1 t) \tag{61}$$

с дополнительным условием:

$$z \to -\infty : \quad u_{\alpha} \to 0.$$
 (62)

Она обладает решением при начальном условии

$$t = 0: \quad u_{\alpha} = 0; \qquad v_{\alpha} = 0.$$
 (63)

Согласно [12], таким решением является

$$u_{\alpha} = a^{2}(M_{0} - \Lambda)\sqrt{\frac{\nu}{\pi}}$$

$$\times \int_{0}^{t} \exp\left(-\frac{z^{2}}{4\nu(t-\tau)}\right) \exp(2S_{1}\tau)d\tau. \quad (64)$$

Легко показать, что условие (62) при этом выполняется.

Результат решения задачи второго порядка малости. Проведенные рассуждения позволяют сформулировать алгоритм вычисления переменных

$$\xi^{*} = a^{2} (\xi_{1} \cos(2\Theta) - \xi_{2} \sin(2\Theta)) \exp(2S_{1}t);$$

$$\xi_{1} = \operatorname{Re}(\xi); \quad \xi_{2} = \operatorname{Im}(\xi); \quad (65)$$

$$\hat{Y}^* = \operatorname{Re}(\hat{y} + \hat{y}_h) + \begin{bmatrix} u_\alpha \\ 0 \\ 0 \end{bmatrix}.$$
(66)

Из системы линейных алгебраических уравнений (36) определяются столбцы величин C_1, C_2, C_3, C_4 . Из них с помощью (35) строится ŷ. Элементы столбца C₄ и величины Ω , *N*, *M*, вычисленные по формулам из Приложения С, используются для построения правой части (56). Неоднородная система линейных алгебраических уравнений (56) решается относительно H, λ и ξ . Функция f(t) вычисляется по формуле (55), а по формуле (53) вычисляется столбец \hat{y}_h . Найденные ξ , \hat{y}, \hat{y}_h вместе с выражением (64) для u_{α} подставляются в (65), (66). Отдельные этапы алгоритма представляют собой решение систем линейных уравнений и их можно выполнять как аналитически, так и численно. Ситуации, когда решения какой-либо из задействованных в вычислениях системы не существует, здесь не рассматриваются.

Пользуясь тем, что \hat{y} — частное решение уравнений (36), \hat{y}_h и ξ^* разрешают задачу (50)–(52), а $\xi_\alpha = 0$ и \hat{Y}_α — решение задачи (57)–(59), несложно проверить, что подстановка (30), в которой \hat{Y}^* и ξ^* построены с помощью (65), (66), преобразует задачу (26)–(29) в более простую (31)–(34). Можно заметить, что если в качестве начальных условий выбрать

$$t = 0$$
: $F_2(x) = \xi^*; \ z = 0$: $u_2^0 = u^*; \ v_2^0 = v^*,$ (67)

то решение задачи (31)–(34) нулевое, а (65)–(66) — решение задачи (26)–(28) с начальными условиями (67).

Профиль нелинейной волны на поверхности глубокой вязкой жидкости

Аналитическое выражение для профиля волны. При сложении (14) и (65) получается выражение для профиля волны, верное с точностью $O(\varepsilon^2)$,

$$\xi = a \cos(\Theta) \exp(S_1 t) + a^2 (\xi_1 \cos(2\Theta) - \xi_2 \sin(2\Theta)) \exp(2S_1 t).$$
(68)

Здесь ξ_1 и ξ_2 — действительная и мнимая части переменной ξ , которая вычисляется в процессе построения (65), (66), который описан непосредственно после этих выражений. Аналитические выражения для ξ_1 и ξ_2 слишком громоздки и потому неинформативны. Величины S_1 , S_2 и Θ вычисляются с помощью соотношений (18)–(21).

Сравнение найденного решения с известными. Полученное решение интересно сравнить с результатами А.Х. Найфе, который исследовал аналогичную задачу, сформулированную для идеальной жидкости [4]. В этом случае, согласно [4], прямое разложение решения в квадратическом по амплитуде отклонении поверхности от равновесной формы приближения приводит к следующему результату:

$$\xi = a \cos(\Theta_0) + a^2 \Lambda_0 \cos(2\Theta_0);$$

$$\Lambda_0 = \frac{(\rho g k + \gamma k^3)}{2(\rho g - 2\gamma k^2)}; \qquad \Theta_0 = kx - \omega_0 t; \qquad (69)$$

Если $\gamma = 0$, то решение (69) превращается в волну Стокса [1,2]. Несложно показать, что при $\nu \rightarrow 0$ выражение для профиля волны в вязкой жидкости (68) переходит в соответствующее для идеальной жидкости (69).

При сравнении решений для вязкой жидкости (68) и для идеальной жидкости (69) выяснилось, что они наиболее существенно различаются при значениях безразмерных параметров, соответствующих резонансному взаимодействию мод. Для невязкой жидкости из (69) видно, что при $\gamma k^2 = 0.5\rho g$ добавка, квадратичная по амплитуде волны первого приближения, становится бесконечно большой, и получается, что главная мода резонансно раскачивает волну с вдвое меньшей длиной.

На рис. 1 в безразмерных переменных, в которых $k = g = \rho = 1$, построены амплитуды вторых слагаемых решений (68) и (69) при безразмерных значениях $v = 10^{-3}$ и a = 0.01 в зависимости от безразмерного поверхностного натяжения γ . Выбранный набор безразмерных переменных позволяет сравнить вязкую и невязкую модели межмодового резонанса для волны на поверхности воды с длиной 2.4 ст и амплитудой 0.3 mm. Из рисунка видно, что в далекой по γ от резонанса области безразмерных параметров решения (68) и (69) совпадают. Вблизи резонансного безразмерного значения $\gamma = 0.5$ в решении задачи с учетом вязкости становится отличным от нуля коэффициент Λ_2 при sin(2 Θ). Это смещает фазу волны, найденной во втором порядке приближений, по отношению к фазе основной волны. Амплитуда квадратичной добавки $\sqrt{\Lambda_1^2 + \Lambda_2^2}$ остается меньше амплитуды основной волны a = 0.01 даже при резонансном значении $\gamma = 0.5$. Это означает, что решение (68) в данном случае пригодно при всех значениях γ , тогда как решение (69), основанное на приближении невязкой жидкости, предсказывает резонансно высокую амплитуду.

Примеры расчета профиля волны. Расчеты показали, что на воде профили волн неоколорезонансной длины: $\lambda \neq 2.4 \pm 0.1$ сm, полученные по формуле (69), и профили, рассчитанные при тех же значениях параметров в момент вренени t = 0 по формуле (68), раз-

Рис. 1. Зависимости входящих в (6.1) и (6.2) амплитуд безразмерных квадратичных добавок $W(\gamma)$ к профилю волны от величины безразмерного поверхностного натяжения. I — для идеальной жидкости $W(\gamma) = a^2 \Lambda_0(\gamma)$; 2, 3 — для вязкой жидкости $W(\gamma) = a^2 \Lambda_1(\gamma, \nu), W(\gamma) = a^2 \Lambda_2(\gamma, \nu)$ соответственно при $\nu = 10^{-3}$.

Рис. 2. Профили волн длины $\lambda = 2 \text{ cm}$ на воде, рассчитанные по формуле (61) при $\rho = 1 \text{ g/cm}^3$; $\gamma = 72 \text{ dyn/cm}$; $\nu = 0.01 \text{ cm}^2/\text{s}$; $g = 981 \text{ cm/s}^2$ в различные моменты времени: t = 0 (1), 5 s (2). По оси абсцисс отложена характерная длина в системе отсчета, связанной с волной. Единицы измерения по вертикальной и горизонтальной осям — ст.

Рис. 3. Профили волн на воде с длиной $\lambda = 2.5$ сm, близкой к резонансной 2.4 сm, рассчитанные по формулам (61) при t = 0 (сплошная кривая) и по (62) (штриховая).

личаются весьма незначительно, но с течением времени различие в высоте волн (68) и (69) быстро растет. Благодаря вязкости значение амплитуды волны (69) снижается, причем амплитуда составляющей первого порядка малости уменьшается пропорционально $\exp(-S_1 t)$, где S₁ < 0, а амплитуда добавки второго порядка малости уменьшается как квадрат этой экспоненты. В результате с течением времени кроме снижения значения амплитуды волны отмечается еще и изменение формы ее профиля. На рис. 2 приведен пример профиля нелинейной волны на воде с длиной $\lambda = 2 \,\mathrm{cm}$ и $a = 0.3 \,\mathrm{cm}$. Кривая 1 — профиль, рассчитанный без учета вязкости по формуле (69). Он с точностью до толщины линий рисунка совпадает с профилем, найденным в момент времени t = 0 по формуле (68), учитывающей вязкость. Согласно (68), за время $t = 5 \, \text{s}$ амплитуда уменьшится примерно вдвое (профиль, показанный кривой 2). Кроме того, нижняя впадина профиля за это время поднимается над нулевым уровнем, изменяя характер профиля.

Из рис. З видно, что оба выражения (68) и (69) непригодны для описания профиля околорезонансной волны, длина которой в данном случае $\lambda = 2.5$ сm. Действительно, при a = 3 mm добавка, которая должна иметь второй порядок малости, дает вклад, увеличивающий амплитуду почти до 3 сm. Эта ситуация требует отдельного исследования, которое будет выполнено в дальнейших работах.

Влияние вязкости на симметрию профиля волны. В приближении идеальной жидкости (69) профиль волны — последовательность больших и малых горбов, симметричных относительно вертикали, проходящей через их вершину. Можно сказать, что передний и задний (по отношению к направлению распространения волны) склоны горбов имеют одинаковую крутизну. Благодаря вязкости симметрия нарушается. Но обнаружить это удается только при довольно больших

Рис. 4. Профили волны длины $\lambda = 2.6$ cm на поверхности жидкости при $\rho = 1 \text{ g/cm}^3$; $\gamma = 60 \text{ dyn/cm}$; $g = 981 \text{ cm/s}^2$, рассчитанные по формулам (61) при t = 0 (сплошная кривая) и по (62) (штриховая). ν , cm²/s: a = 0.1, b = 0.5.

значениях вязкости. Из рис. 4 видно, что для жидкости, близкой по свойствам к воде, но с $v = 0.1 \,\mathrm{cm}^2/\mathrm{s}$ (это в десять раз больше, чем у воды) асимметрия горбов становистя заметной, а при v = 0.5 — значительной. Из рис. 4 видно, что у волны с длиной $\lambda = 2.6 \,\mathrm{cm}$ для большого горба задний склон круче переднего, а для малого — наоборот. Вязкости жидкостей, имеющих в нормальных условиях плотности, близкие к плотности воды, и поверхностные натяжения, близкие к 50 dyn/cm, могут существенно различаться: от 0.01 cm²/s для воды до 7 cm²/s для глицерина. По-видимому, раствор со свойствами, при которых построен рис. 4, можно получить, смешивая в определенных пропорциях жидкости с разными вязкостями.

Заключение

Полученное корректное в квадратичном по амплитуде волн приближении асимптотическое решение задачи распространения волн по поверхности бесконечно

3* Журнал технической физики, 2003, том 73, вып. 4

глубокой жидкости произвольной вязкости позволяет обобщить понятие "волны Стокса" (определенное для идеальной жидкости) на случай вязкой жидкости. Сравнение найденного решения с решением для идеальной жидкости показывает, что даже малая вязкость играет существенную роль в формировании профиля волны, причем роль вязкости в исследованни временной эволюции нелинейных волн повышается с ростом порядка малости, в котором ищется решение. Учет вязкости приводится к существенному изменению картины реализации резонансного межмодового взаимодействия волн и нарушает симметрию профиля волны.

Работа выполнена при поддержке Президента РФ (грант № 00-15-9925).

Приложение А. Нормальный и касательный орты к свободной поверхности жидкости. Дивергенция нормального орта

Уравнение искаженной волновым движением плоской свободной поверхности жидкости имеет вид $z - \xi = 0$, $\xi = \xi(x, z, t)$. Поэтому орт нормали вычисляется с помощью соотношения

$$\mathbf{n} = \frac{\mathbf{\nabla}(z-\xi)}{|\mathbf{\nabla}(z-\xi)|} = \frac{-\mathbf{e}_x \partial_x \xi + \mathbf{e}_z}{\sqrt{1+(\partial_x \xi)^2}}.$$
(70)

Единичный вектор τ , определенный как

$$\boldsymbol{\tau} = \frac{\mathbf{e}_x + \mathbf{e}_z \partial_x \boldsymbol{\xi}}{\sqrt{1 + (\partial_x \boldsymbol{\xi})^2}},\tag{71}$$

удовлетворяет условию $\tau \cdot \mathbf{n} \equiv 0$ и поэтому является касательным ортом к искаженной волновым движением поверхности.

Средняя кривизна поверхности, как известно, равна дивергенции орта внешней нормали

$$div(\mathbf{n}) = \frac{-\partial_{xx}\xi}{\sqrt{1 + (\partial_x\xi)^2}} + \frac{(\partial_x\xi)^2 \partial_{xx}\xi}{(1 + (\partial_x\xi)^2)^{\frac{3}{2}}} = \frac{-\partial_{xx}\xi}{\sqrt{1 + (\partial_x\xi)^2}} \left(-1 + \frac{(\partial_x\xi)^2}{1 + (\partial_x\xi)^2}\right) = -\frac{\partial_{xx}\xi}{(1 + (\partial_x\xi)^2)^{\frac{3}{2}}} = -\partial_{xx}\xi + O(\xi^3).$$
(72)

Приложение В. Граничные условия для величин различных порядков малости

Кинематическое граничное условие (3). Раскладывая (3) в ряд в окрестности невозмущенной поверхности жидкости $\xi = 0$, считая здесь и далее, что $u \sim O(\varepsilon)$, можно получить асимптотику этого условия с ошибкой порядка $O(\xi^3)$

$$z = 0: \quad \partial_t \xi + u \partial_x \xi = v + \xi \partial_z v. \tag{73}$$

Подставляя сюда соотношения $\xi = \xi_1 + \xi_2$; $u = u_1 + u_2$; $v = v_1 + v_2$, в которых индекс означает порядок малости индексированной величины по ε , можно разделить (73) на соотношения для величин различных порядков малости.

$$z = 0: \quad \partial_t \xi_1 - v_1 = 0;$$
 (74)

$$\partial_t \xi_2 - v_2 = \xi_1 \partial_z v_1 - u_1 \partial_x \xi_1. \tag{75}$$

Условие для касательных натяжений на свободной поверхности. Если для ортов нормали \mathbf{n} и $\boldsymbol{\tau}$ воспользоваться формулами (70), (71), то, обозначая

$$\chi = \left(1 + (\partial_x \xi)^2\right)^{-1/2},$$

несложно найти, что

$$(\mathbf{n} \cdot \nabla)\mathbf{U} = \mathbf{e}_{x}(\mathbf{n} \cdot \nabla)u + \mathbf{e}_{z}(\mathbf{n} \cdot \nabla)v$$

$$= \chi \mathbf{e}_{x}(-\partial_{x}\xi\partial_{x}u + \partial_{z}u) + \chi \mathbf{e}_{z}(-\partial_{x}\xi\partial_{x}v + \partial_{z}v);$$

$$(\boldsymbol{\tau} \cdot \nabla)\mathbf{U} = \mathbf{e}_{x}(\boldsymbol{\tau} \cdot \nabla)u + \mathbf{e}_{z}(\boldsymbol{\tau} \cdot \nabla)v$$

$$= \chi \mathbf{e}_{x}(\partial_{x}u + \partial_{x}\xi\partial_{z}u) + \chi \mathbf{e}_{z}(\partial_{x}v + \partial_{x}\xi\partial_{z}v):$$

$$\boldsymbol{\tau}((\mathbf{n} \cdot \nabla)\mathbf{U}) = \chi^{2}(-\partial_{x}\xi\partial_{x}u + \partial_{z}u - (\partial_{x}\xi)^{2}\partial_{x}v + \partial_{x}\xi\partial_{z}v);$$

$$\mathbf{n}((\boldsymbol{\tau} \cdot \nabla)\mathbf{U}) = \chi^{2}(-\partial_{x}\xi\partial_{x}u - (\partial_{x}\xi)^{2}\partial_{z}u + \partial_{x}v + \partial_{x}\xi\partial_{z}v).$$

С помощью двух последних равенств условие (5) можно переписать в виде

$$z = \xi: \quad (\partial_x v + \partial_z u) \left(1 - (\partial_x \xi)^2 \right) - 2(\partial_x u - \partial_z v) \partial_x \xi = 0.$$
(76)

Разложение (76) в ряд по ξ в окрестности z = 0 приводит с ошибкой порядка $O(\xi^3)$ к аппроксимационному выражению

$$z = 0: \quad \partial_x v + \partial_z u + \xi \partial_z (\partial_x v + \partial_z u) = 2(\partial_x u - \partial_z v) \partial_x \xi.$$

Подставляя сюда необходимые выражения из (10), несложно получить для величин первого по ε порядка малости выражение

$$z = 0: \quad \partial_x v_1 + \partial_z u_1 = 0, \tag{77}$$

а для второго порядка соотношение

$$\partial_x v_2 + \partial_z u_2 + \xi_1 \partial_z (\partial_x v_1 + \partial_z u_1) = 2(\partial_x u_1 - \partial_z v_1) \partial_x \xi_1,$$

которое упрощается с помощью условия неразрывности, записанного в виде $\partial_x u_1 = -\partial_z v_1$, до выражения

$$z = 0: \quad \partial_x v_2 + \partial_z u_2 = -4\partial_z v_1 \partial_x \xi_1 - \xi_1 \partial_z (\partial_x v_1 + \partial_z u_1).$$
(78)

Условие для давления на возмущенной поверхности (4). Если воспользоваться формулой (70) и определением $\mathbf{U} = \mathbf{e}_x u + \mathbf{e}_z v$, то с ошибкой порядка $O(\xi^3)$ можно получить выражения

$$z = \xi : \quad \mathbf{n} = (-\partial_x \xi + O(\xi^3))\mathbf{e}_x + (1 + O(\xi^2))\mathbf{e}_z;$$
$$(\mathbf{n} \cdot \nabla)\mathbf{U} = (-\partial_x \xi \partial_x u + \partial_z u + O(\xi^3))\mathbf{e}_x$$
$$+ (-\partial_x \xi \partial_x v + \partial_z v + O(\xi^3))\mathbf{e}_z;$$

$$\mathbf{n}\big((\mathbf{n}\cdot\boldsymbol{\nabla})\mathbf{U}\big)=-\partial_x\xi\partial_z u-\partial_x\xi\partial_x v+\partial_z v+O(\xi^3).$$

Разложение (4) в ряд по ξ в окрестности $\xi = 0$ с ошибкой порядка $O(\xi^3)$ имеет вид

$$z = 0: \quad p + \xi \partial_z p + \frac{1}{2} \xi^2 \partial_{zz} p - 2\rho \nu \partial_z \nu - 2\rho \nu \xi \partial_{zz} \nu + 2\rho \nu \partial_x \xi (\partial_z u + \partial_x \nu) - P_0 = \gamma \operatorname{div}(\mathbf{n}).$$
(79)

Если учесть, что

$$p = p_0 + p_1 + p_2 + O(\xi^3); \quad p_1 = O(\varepsilon); \quad p_2 = O(\varepsilon^2);$$

$$\xi = \xi_1 + \xi_2 + O(\varepsilon^3); \quad \varepsilon_1 = O(\varepsilon); \quad \xi_2 = O(\varepsilon^2),$$

$$\operatorname{div}(\mathbf{n}) = -\partial_{xx}\xi + O(\varepsilon^3)$$

и что $p_0 = P_0 - \rho g z$, а значит $\partial_z p_0 = -\rho g$ и $\partial_{zz} p_0 = -\rho g$, то (79) распадается на соотношения для величин различных порядков малости

$$z = 0: \quad p_0 = P_0;$$

$$-\rho g \xi_1 + p_1 - 2\rho v \partial_z v_1 + \gamma \partial_{xx} \xi_1 = 0;$$

$$-\rho g \xi_2 + p_2 - 2\rho v \partial_z v_2 + \gamma \partial_{xx} \xi_2 = 2\rho v \xi_1 \partial_{zz} v_1$$

$$- 2\rho v \partial_x \xi_2 (\partial_z u_1 + \partial_x v_1).$$

Последнее выражение с учетом (77) упрощается

$$-\rho g \xi_2 + p_2 - 2\rho v \partial_z v_2 + \gamma \partial_{xx} \xi_2 = 2\rho v \xi_1 \partial_{zz} v_1 - \xi_1 \partial_z p_1.$$

Приложение С. Вспомогательные матрицы-столбцы, возникающие в задаче второго порядка малости

Значния величин S, S_1 , S_2 , q, q_1 , q_2 , D, входящих в соотношения этого Приложения, вычисляются с помощью выражений (18)–(21).

Матрицы-столбцы $\hat{A}_1 - \hat{A}_6$, входящие в (26), (27),

$$\begin{split} \hat{A}_{1} &= -4\nu^{2}k^{3}q_{1} \begin{bmatrix} q_{2} \\ k \\ 0 \end{bmatrix}; \quad \hat{A}_{2} = \begin{bmatrix} 0 \\ -k(S_{2}^{2}+D^{2}) \\ 0 \end{bmatrix}; \\ \hat{A}_{3} &= \nu k \begin{bmatrix} 2(\bar{S}+2\nu k^{2})q_{1}q_{2}+(S_{2}+iD)(q_{2}^{2}-q_{1}^{2}+k^{2}) \\ -2ik(k+q)(S_{2}+iD) \\ 0 \end{bmatrix}; \\ \hat{A}_{4} &= \begin{bmatrix} -i\nu k(q-k)^{2}(S+2\nu k^{2}) \\ 0 \\ 0 \end{bmatrix}; \\ \hat{A}_{5} &= \begin{bmatrix} 0 \\ N_{1} \\ M_{0} \end{bmatrix}; \quad \hat{A}_{6} = \begin{bmatrix} \Omega \\ N \\ M \end{bmatrix}; \quad \begin{array}{c} \Omega = \Omega_{1}+i\Omega_{2}; \\ N = N_{1}+iN_{2}; \\ M = M_{1}+iM_{2}, \end{array}$$

где \bar{S} — величина комплексно сопряженная к S, а N_1 , N_2 , Ω_1 , Ω_2 , M_1 , M_2 вычисляются по формулам

$$\Omega_1 = k(D - 2\nu kq_1); \qquad \Omega_2 = k(S_2 - 2\nu kq_2);$$

Журнал технической физики, 2003, том 73, вып. 4

1

$$N_{1} = \rho \nu k^{2} \left(D + 2\nu (q_{2} - q_{1}^{2}) \right) + \frac{1}{2} \rho (S_{1}D - S_{2}^{2});$$

$$N_{2} = \rho \nu k^{2} (S_{2} - 4q_{1}q_{2}\nu) + \rho S_{2} (S_{1} + \nu k^{2});$$

$$M_{0} = k \left(2k(S_{2} - 2\nu kq_{2}) - kS_{2} - q_{2}\nu (-k^{2} + q_{2}^{2} - 3q_{1}^{2}) \right);$$

$$M_{1} = -k \left(2k(S_{2} - 2\nu kq_{2}) + kS_{2} + q_{2}\nu (-k^{2} + q_{2}^{2} - 3q_{1}^{2}) \right);$$

$$M_{2} = k \left(2k(D - 2\nu kq_{1}) + kS_{1} + \nu (2k^{3} - k^{2}q_{1} + 3q_{1}q_{2}^{2} - q_{1}^{3}) \right).$$

Квадратные матрицы $\Pi_1 - \Pi_4$, входящие в (36),

$$\begin{split} \hat{\Pi}_1 &= \begin{bmatrix} 2(S_1 - 2\nu k^2) & 0 & 0 \\ 0 & 0 & 2q_1\rho^{-1} \\ 0 & 2q_1 & 0 \end{bmatrix}; \\ \hat{\Pi}_2 &= \begin{bmatrix} 2(S_1 - 2\nu k^2) & 0 & 0 \\ 0 & 0 & 2q_1\rho^{-1} \\ 0 & 2k & 0 \end{bmatrix}; \\ \hat{\Pi}_3 &= \begin{bmatrix} 2S_1 - \nu(k+q)^2 & 0 & 0 \\ 0 & 0 & k+q \\ 0 & k+q & 0 \end{bmatrix}; \end{split}$$

 $\hat{\Pi}_4 =$

 $\begin{bmatrix} 2S + \nu(3k^2 - 2kq - q^2) & 0 & -2ik\rho^{-1} \\ 0 & 2S + \nu(3k^2 - 2kq - q^2) & (k+q)\rho^{-1} \\ -2ik & k+q & 0 \end{bmatrix}.$

Матрицы \hat{L} , \hat{B} и величина Λ , входящие в (48),

$$\begin{split} \hat{L} &= \begin{bmatrix} 2ik & -2k & 2S \\ 4i\rho\nu kr & -2\rho(S+4\nu k^2) & -(\rho g+4\gamma k^2) \\ -(r^2+4k^2) & -8ik^2 & 0 \end{bmatrix};\\ \hat{B} &= \begin{bmatrix} C_4[2] \\ 2C_4[2]\rho\nu(k+q) - C_4[3] \\ 2iC_4[2]k - C_4[1](k+q) \end{bmatrix};\\ \Lambda &= 2C_1[1]q_1 + C_3[1](k+q). \end{split}$$

Список литературы

- [1] Стокер Дж. Волны на воде. М.: ИЛ, 1959. 617 с.
- [2] Уизем Дж. Линейные и нелинейные волны. М.: Мир, 1977. 622 с.
- [3] Гольдитейн Р.В., Городцов В.А. Механика сплошных сред. Ч. 1. М.: Наука, 2000. 256 с.
- [4] Nayfeh A.H. // J. Fluid Mech. 1971. Vol. 48. P. 385-395.
- [5] Shugan I., Voliak K. // J. Fluid Mech. 1998. Vol. 368. P. 321– 338.
- [6] Trulsen K., Kliakhandler I. // Phys. Fluids. 2000. Vol. 12. N 10. P. 2432–2437.
- [7] Long-Higgins M.S. // J. Fluid Mech. 2000. Vol. 423. P. 275– 291.
- [8] Миндлин И.М. // Изв. РАН. МЖГ. 1994. № 3. С. 135–143.
- [9] Нестеров С.В. // Изв. РАН. МЖГ. 1995. № 4. С. 116–121.
- [10] Fedorov A.V., Melvil W.K. // J. Fluid Mech. 1998. Vol. 354. P. 1–42.

- [11] Ширяева С.О., Белоножко Д.Ф., Световой В.Б., Григорьев А.И. Препринт ИМИ РАН. Ярославль, 2001. № 31. 87 с.
- [12] Ширяева С.О., Григорьев А.И., Коромыслов В.А. // Письма в ЖТФ. 1996. Т. 22. Вып. 4. С. 89–94.
- [13] Ширяева С.О., Белоножко Д.Ф., Григорьев А.И. // ЖТФ. 1998. Т. 68. Вып. 2. С. 22–29.
- [14] Белоножко Д.Ф., Григорьев А.И. // Письма ЖТФ. 1999.
 Т. 25. Вып. 22. С. 1–6.
- [15] Левич В.Г. Физико-химическая гидродинамика. М.: Изд-во АН СССР, 1952. 539 с.
- [16] Полянин А.Д. Справочник по линейным уравнениям математической физики. М.: Физматлит, 2001. 576 с.