$_{06;07;12}$ Влияние лазерного облучения с $hv = 1.96 \, \text{eV}$ на свойства контакта титан-кремний при термическом отжиге в азоте

© И.С. Нуприенок, А.Н. Шибко

Научно-производственное коммерческое предприятие "Эльтон" 220012 Минск, Белоруссия e-mail: shibko@inel.bas-net.by

(Поступило в Редакцию 15 марта 2002 г.)

Исследовано влияние лазерного облучения с hv = 1.96 eV ($\lambda = 0.63 \,\mu$ m) на контакт титан-кремний при стационарном термическом отжиге в азоте. Установлено, что происходящее при такой обработке изменение фазового состава контакта обусловливает изменение его электрофизических параметров. Использование лазерного облучения позволяет формировать выпрямляющий контакт титан-кремний с необходимыми, заранее определенными электрофизическими параметрами.

Тугоплавкие металлы, их силициды широко применяются в микроэлектронике, что обусловлено рядом их термодинамических особенностей, электрофизическими свойствами, стабильностью при высоких температурах. Развитие современной науки и техники требует новых материалов с определенным комплексом физикохимических свойств. Перспективным в этом отношении для микроэлектроники являются нитриды — соединения металлов с азотом. По физико-химическим свойствам нитриды характеризуются высокой твердостью, электропроводностью, высокой температурой плавления, способностью переходить к сверхпроводимости при относительно высоких температурах. Одним из способов, позволяющим получать нитриды, является стационарный термический отжиг в азоте. при термическом отжиге пленок, как правило, протекают процессы окисления. Для предотвращения окисления пленки ее облучают во время отжига пучком фотонов с определенной энергией [1,2]. В последнее время широко исследуются процессы нетермического характера, происходящие в тонких металлических пленках при термической обработке и одновременном воздействии пучком фотонов с различной энергией, влияющей на структуру, фазовый состав и, как следствие, на электрофизические параметры пленки [3–5].

В представленной работе проведено исследование фазовых превращений, изменение электрофизических параметров композиции титан–кремний при термическом отжиге в азоте и одновременном лазерном воздействии пучком фотонов с энергией hv = 1.96 eV.

Пленку титана толщиной 100 nm получали методом электронно-лучевого осаждения в вакууме $3 \cdot 10^{-5}$ Ра на кремний *n*-типа ориентации (111) при температуре подложки 100°С. Пластину кремния предварительно обрабатывали по методу, описанному в работе [6]. Нанесенные на кремниевую пластину пленки являлись поликристаллическими, мелкодисперсными, со средним размером зерен 15–20 nm (см. рисунок, *a*).

Полученные пластины скрайбировали, обрузцы размером 5×5 mm помещали в вакуумную установку ВУП-4 и

подвергали термической обработке в атмосфере азота и одновременному лазерному воздействию с помощью лазера ЛГН-215 с $\lambda = 0.63 \,\mu$ m. Температура отжига 500°С, время $\tau = 1$, 5, 15 и 30 min. Мощность лазерного излучения постоянно контролировалась во время всего процесса измерителем ИМО-2 и составляла 55 mW. Азот применялся "особой чистоты" и до поступления в камеру предварительно вымораживался. Предварительные исследования показали, что наиболее интересна для исследования температура отжига $T = 500^{\circ}$ С. При $T < 500^{\circ}$ С фазовых изменений в композиции Ti–Si почти не происходит, при $T > 500^{\circ}$ С пленка окисляется, поэтому трудно изучать процессы окисления и азотирования.

Обработанные образцы исследовались методами электронной микроскопии и электронографии с помощью электронного микроскопа JEM-200CX и методом электронно-спектрального химического анализа (ЭСХА). Для расшифровки электронограмм использовались оригинальные работы и таблицы ASTM. Для определения высоты барьера Шоттки использовали вольт-амперные характеристики (BAX) по методу, описанному в работе [7]. Площадь контакта титан-кремний составляла 0.7 mm².

Проведенные исследования показали, что в процессе термического отжига композиции титан-кремний в вакууме без лазерного облучения в зависимости от времени обработки образуются оксидная фаза ТізО5 и силицид титана TiSi (табл. 1, см. рисунок, b). Образование низшего оксида титана обусловлено взаимодействием пленки титана с кислородом, адсорбированным пленкой при осаждении. Анализ табл. 1 показывает, что при отжиге композиции в течение 1 min на электронограммах присутствуют рефлексы титана, с увеличением времени отжига рефлексы исходной фазы отсутствуют. Это связано со скоростью реакций взаимодействия и окисления. При времени отжига композиции Ti–Si $\tau = 5-30 \min$ на электронограммах присутствуют рефлексы силицида титана. Образование силицидов зависит от диффузии кремния на поверхность образца и реакцией взаимо-

Электронограммы композиции титан-кремний: a — исходный образец, после обработки с $T = 500^{\circ}$ C, $\tau = 15$ min; b — термический отжиг; c — термический отжиг в атмосфере особо чистого азота; d — отжиг и одновременное лазерное воздействие в азоте, $\lambda = 0.63 \,\mu$ m, E = 55 mW.

действия с пленкой титана. Необходимо отметить что при $\tau = 15$ и 30 min рефлексы силицида титана на электронограммах очень сильные.

При комбинированной обработке композиции титанкремний в вакууме $5 \cdot 10^{-5}$ Ра, включающей в себя термический отжиг и одновременное лазерное облучение с $\lambda = 0.63 \,\mu\text{m}$ и $E = 55 \,\text{mW}$, фазовый состав претерпевает изменения. При отжиге с $\tau = 1 \,\text{min}$ на электронограммах присутствуют лишь рефлексы исходной фазы титана. С увеличением времени отжига $\tau = 5-30 \,\text{min}$ на электронограммах появляются рефлексы оксида титана Ti₃O (упорядоченный раствор кислорода в титане) и силицида титана TiSi (табл. 2). При отжиге композиции титан-кремний в атмосфере особо чистого азота на электронограммах наряду с рефлексами оксидов и силицида присутствуют рефлексы нитрида титана (табл. 3, см. рисунок, *c*). Причем если при отжиге $\tau = 1$ min присутствует низший оксид Ti₃O₅, рефлексы исходной фазы — титана и нитрид, обогащенный металлом Ti₂N, то с увеличением времени отжига до 5 min на электронограммах присутствуют рефлексы силицида титана и нитрида TiN. При $\tau = 15-30$ min на электронограммах кроме перечисленных рефлексов фаз появляются рефлексы высшего оксида TiO₂ (рутил).

Особенности реакции взаимодействия металлов с азотом, кинетика насыщения азотом, связь между количеством поглощенного азота и толщиной образующихся нитридных слоев с временем азотирования описаны в работе [8]. Механизм реакции азотирования в общем сводится к диффузионному массопереносу азота в глубь металла и образованию твердого раствора. Обычная

Таблица 1. Изменение фазового состава композиции Ti–Si после термического отжига с $T = 500^{\circ}$ C

d. Å	au, min			
u, 11	1	5	15	30
3.54	Ti ₃ O ₅			
3.14	Ti ₃ O ₅			
2.69	_	TiSi	TiSi	TiSi
2.68	Ti ₃ O ₅			
2.44	_	TiSi	TiSi	TiSi
2.35	Ti	_	_	_
2.34	_	TiSi	TiSi	TiSi
2.24	Ti	_	_	_
2.19	_	TiSi	TiSi	TiSi
1.73	Ti	—	—	—
1.48	Ti	—	—	—

 Π р и м
 е ч а н и е.d — межплоскостные расстояния,
 τ — время обработки.

Таблица 2. Изменение фазового состава композиции Ti–Si после комбинированной обработки с $T = 500^{\circ}$ C и одновременным лазерным воздействием с $\lambda = 0.63 \,\mu$ m, $E = 55 \,\text{mW}$

d Å	au, min				
<i>a</i> , 11	1	5	15	30	
2.69	-	TiSi	TiSi	TiSi	
2.44	-	TiSi	TiSi	TiSi	
2.39	_	Ti ₃ O	Ti ₃ O	Ti ₃ O	
2.35	Ti	_	_	—	
2.34	_	TiSi	TiSi	TiSi	
2.24	Ti	_	_	_	
2.19	_	TiSi	TiSi	TiSi	
2.17	_	Ti ₃ O	Ti ₃ O	Ti ₃ O	
1.73	Ti	_	_	—	
1.68	_	Ti ₃ O	Ti ₃ O	Ti ₃ O	
1.48	Ti	—	—	—	
1.42	—	Ti ₃ O	Ti ₃ O	Ti ₃ O	

Таблица 3. Изменение фазового состава композиции Ti–Si после термического отжига в атмосфере особо чистого азота при $T = 500^{\circ}$ C

d Å	au, min			
<i>a</i> , <i>n</i>	1	5	15	30
3.54	Ti ₃ O ₅			
3.28	_	_	TiO ₂	TiO ₂
3.24	_	_	TiO ₂	TiO ₂
3.14	Ti ₃ O ₅			
2.69	Ti	_	_	_
2.68	Ti ₃ O ₅			
2.56	_	TiSi	TiSi	TiSi
2.48	_	TiN	TiN	TiN
2.44	_	TiSi	TiSi	TiSi
2.34	Ti	_	_	_
2.32	Ti ₂ N	Ti ₂ N	Ti ₂ N	Ti ₂ N
2.25	Ti ₂ N	Ti ₂ N	Ti ₂ N	Ti ₂ N
2.24	Ti	_	_	_
2.19	_	TiSi	TiSi	TiSi
2.16	—	—	TiO ₂	TiO ₂
2.09	—	TiN	TiN	TiN
1.76	Ti ₂ N	Ti ₂ N	Ti ₂ N	Ti ₂ N
1.47	—	TiN	TiN	TiN

гетеродиффузия переходит в реакционную диффузию с образованием нитридных фаз. Скорость образования нитридов лимитируется либо скоростью реакции, либо диффузионным массопереносом азота через слой уже образовавшегося нитрида [9-11]. Как показывает сравнительный анализ, скорость взаимодействия титана с азотом значительно ниже, чем с кислородом. Это обусловлено тем, что при одних и тех же температурах скорость поглощения азота титаном в 7 раз меньше, чем кислорода. Объяснить это явление, по-видимому, можно конфигурацией атомов. Атом кислорода имеет конфигурацию S^2P^4 и стремится ее достроить до S^2P^6 ; у азота конфигурация S²P³, при этом имеется тенденция как к достройке S²P⁶ оболочек, так и к потере одного электрона с образованием SP³, что также служит фактором замедления диффузии по сравнению с кислородом [10]. Следовательно, когда имеется склонность к поверхностному окислению, увеличение содержания кислорода затрудняет азотирование. Азот способен при соединении с металлами принимать их электроны с достройкой до стабильной в энергетическом отношении конфигурации S²P⁶ или отдавать электроны с образованием стабильной конфигурации SP³. В первом случае образующиеся соединения обладают четко выраженной ионной связью, во втором случае — типичной металлической, причем в одном случае им сопутствует большая или меньшая доля ковалентной связи.

Известно, что *d*-переходные металлы IV группы (Ti, Zr, Hf), V группы (V, Nb, Ta) при соответствующих условиях довольно легко взаимодействуют с молекулярным азотом, образуя соответствующие соединения.

Журнал технической физики, 2003, том 73, вып. 2

Температурный коэффициент процессов образования нитридов переходных металлов лежит в пределах 25–35 kcal/mol [12].

При термическом отжиге композиции титан-кремний азоте и одновременном лазерном воздействии в с $\lambda = 0.63 \,\mu m \ (hv = 1.96 \,\text{eV})$ мощностью 55 mW фазовый состав композиции претерпевает значительные изменения. Анализ табл. 4 показывает, что в данном случае при малых временах отжига (1 и 5 min) процессы окисления и азотирования подавляются. С увеличением времени обработки $\tau = 15 \min$ в пленках образуется нитрид титана Ti_2N (см. рисунок, d), а при 30 min — TiN. Отсутствие при отжиге с $\tau = 1$ и 5 min низшего оксида с высокой концентрацией кислорода Ti₃O₅ и нитридов титана обусловлено тем, что дополительное облучение отжигаемой композиции пучком фотонов с энергией $hv = 1.96 \, \text{eV}$ при определенной плотности потока подавляет процессы окисления и азотирования, растворенные атомы кислорода и азота становятся "химически" неактивными [13]. Для полного подавления образования оксидов и нитридов в композиции титанкремний при термическом отжиге в атмосфере азота необходима более высокая мощность падающего лазерного водействия длиной волны $\lambda = 0.63 \,\mu m$ (пучок фотонов $hv = 1.96 \, \text{eV}$), так как в результате термического отжига в азоте происходит взаимодействие кислорода и азота с поверхностью композиции (пленкой титана) и для нейтрализации связей М-О и М-N требуется более высокая плотность потока фотонов. Результаты, полученные методом электронографии, коррелируют с результатами, полученными методом ЭСХА.

Таблица 4. Изменение фазового состава композиции Ti–Si после комбинированной обработки с $T = 500^{\circ}$ C и одновременным лазерным воздействием в азоте с $\lambda = 0.63 \, \mu$ m, $E = 55 \,$ mW

<i>d</i> , Å	au, min				
	1	5	15	30	
3.28	_	_	TiO ₂	TiO ₂	
3.24	_	_	TiO ₂	TiO ₂	
2.71	_	Ti ₂ O ₃	Ti_2O_3	_	
2.69	_	TiSi	TiSi	TiSi	
2.56	Ti	Ti	_	_	
2.48	_	_	_	TiN	
2.44	_	TiSi	TiSi	TiSi	
2.34	Ti	Ti	_	_	
2.33	_	Ti ₃ O	Ti ₃ O	Ti ₃ O	
2.32	_	_	Ti ₂ N	Ti ₂ N	
2.25	_	_	Ti ₂ N	Ti ₂ N	
2.24	Ti	Ti	_	_	
2.19	_	TiSi	TiSi	TiSi	
2.18	_	Ti ₃ O	Ti ₃ O	Ti ₃ O	
2.16	_	_	TiO ₂	TiO ₂	
2.09	_	_	_	TiN	
1.76	_	—	Ti ₂ N	Ti ₂ N	
1.70	_	Ti ₂ O ₃	Ti ₂ O ₃	—	
1.47	-	—	—	TiN	

<i>T</i> , °C	au, min	ϕ, eV	U, V	n	
Исходный образец		0.55	6	1.17	
	П	осле терм	ического	отжига	
500	1	0.56	7	1.16	
	5	0.56	8	1.16	
	15	0.56	9	1.16	
	30	0.57	15	1.12	
	После термического отжига				
	и лазерного воздействия				
500	1	0.56	8	1.16	
	5	0.56	8	1.16	
	15	0.56	9	1.09	
	30	0.57	12	1.07	
	После термического отжига				
		в особо	чистом аз	юте	
500	1	0.54	8	1.17	
	5	0.54	8	1.17	
	15	0.53	10	1.18	
	30	0.52	12	1.19	
	После термического отжига с лазерным				
	воздействием в среде особо чистого азота				
500	1	0.56	8	1.16	
	5	0.56	8	1.16	
	15	0.56	10	1.17	
	30	0.54	12	1.18	

Таблица 5. Электрофизические параметры контакта титанкремний

П р и м е ч а н и е. φ — высота барьера Шоттки, U — напряжение пробоя, n — коэффициент идеальности.

Изменение фазового состава композиции Ti-Si влечет изменение электрофизических параметров контакта. Вольт-амперная характеристика исходного образца контакта имела несимметричную форму, напряжение пробоя 6 V, что свидетельствует о наличии диоксида кремния SiO₂ между кремниевой подложкой и пленкой титана. Резултаты измерения электрофизических параметров контакта после обработки сведены в табл. 5. Термический отжиг контакта стимулирует уменьшение концентрации различных дефектов диэлектрической пленки SiO₂ на границе раздела металл-кремний. Диффузия кислорода приводит к увеличению толщины диэлектрического слоя, о чем свидетельствует увеличение напряжения пробоя. Высота барьера Шоттки при термическом отжиге увеличивается, а при отжиге в атмосфере азота уменьшается. При обработке в контактной области перехода металл-кремний изменяется плотность поверхностных состояний на кремнии, что и оказывает влияние на высоту барьера. Вольт-амперные характеристики контакта оценивались по коэффициенту идеальности n, который определяется по экспериментальным зависимостям [7] (табл. 5). Показано, что при увеличении времени отжига композиции коэффициент идеальности уменьшается, а при отжиге в атмосфере азота он увеличивается. Это связано с изменением диэлектрических параметров оксидного слоя на границе раздела и изменением концентрации электронных ловушек при обработке. Следовательно, на электрофизические параметры контакта влияют изменение фазового состава композиции титан–кремний, образование нитридов и оксидов титана, изменение границы раздела композиции. Граница раздела преобразуется от Ti/SiO₂/Si у исходного образца до Ti_xO_y/TiSi; Ti_xO_y, Ti_mN, TiSi/SiO₂/Si у образцов после различного вида обработки.

Таким образом, комбинированная обработка композиции титан-кремний в азоте позволяет формировать выпрямляющий контакт с определенным фазовым составом и, как следствие, с определенными, заранее заданными электрофизическими свойствами.

Список литературы

- Алимов Д.Т., Тюгай В.К., Хабибулаев П.К. и др. // Журн. физ. химии. 1987. Т. 61. Вып. 11. С. 3065–3067.
- [2] Чапланов А.М., Шибко А.Н. // Изв. АНСССР. Сер. физическая. 1989. Т. 53. № 6. С. 1111–1114.
- [3] Ian W., Boyd I.W. // Appl. Surf. Sci. 1997. Vol. 109–110.
 P. 538–543.
- [4] Zhand I.Y., Boyd I.W. // Appl. Phys. Lett. 1997. Vol. 71.
 P. 2964–2966.
- [5] Нуприенок И.С., Шибко А.Н. // ЖТФ. 2001. Т. 71. Вып. 9. С. 45–48.
- [6] Технология тонких пленок. Справочник / Под ред. Л. Майселла, М. Глэнга. М.: Сов. радио, 1977. Т. 1. 664 с.
- [7] Родерик Э.Х. Контакты металл-полупроводник. М.: Радио и связь, 1982. 208 с.
- [8] Кипарисов С.С., Левицкий Ю.В. Азотирование тугоплавких металлов. М.: Металлургия, 1972. 160 с.
- [9] Sumi H., Inoue H., Sugano Y. // Jap. J. Appl. Phys. Pt 1. 1997.
 Vol. 36. P. 595–600.
- [10] Kheyrandish H., Colligan J.S., Kim J.K. // J. Vacuum Sci. Technol. A. 1994. Vol. 12. N 5. P. 2723–2727.
- [11] Андриевский Р.А., Вольдман Г.М., Леонтьев М.А. // Изв. АНСССР. Сер. неорган. материалы. 1991. Т. 27. № 4. С. 729–732.
- [12] *Лютая М.Д.* // Методы получения, свойства и применение нитридов. Киев, 1972. С. 6–13.
- [13] Чапланов А.М., Шибко А.Н. // Неорган. материалы. 1993.
 Т. 29. № 11. С. 1477–1479.