Определение оптическими методами типа гетероперехода в структурах с квантовыми ямами GaAsSb/GaAs с различной долей сурьмы

© С.В. Морозов^{+,¶}, Д.И. Крыжков⁺, В.И. Гавриленко⁺, А.Н. Яблонский⁺, Д.И. Курицын⁺, Д.М. Гапонова⁺, Ю.Г. Садофьев^{*}, Б.Н. Звонков[‡], О.В. Вихрова[‡]

⁺ Институт физики микроструктур Российской академии наук, 603950 Нижний Новгород, Россия

* Физический институт им. П.Н. Лебедева Российской академии наук,

119991 Москва, Россия

[‡] Научно-исследовательский физико-технический институт

Нижегородского государственного университета им. Н.И. Лобачевского,

603950 Нижний Новгород, Россия

(Получена 25 апреля 2012 г. Принята к печати 25 апреля 2012 г.)

Методом спектроскопии фотолюминесценции и методами время-разрешенной фотолюминесценции проведены исследования по определению типа гетероперехода в гетероструктуре GaAs_{1-x}Sb_x/GaAs при x = 0.36. Для сравнения были проведены исследования гетероструктуры GaAsSb/GaAs с долей сурьмы 15%, для которой можно уверенно говорить о гетеропереходе I типа. По синему сдвигу положения линии фотолюминесценции в зависимости от мощности возбуждения и временам релаксации сигнала фотолюминесценции от квантовой ямы GaAs_{1-x}Sb_x/GaAs, составившим ~ 11 нс, было установлено, что при содержании сурьмы 36% структуры GaAs_{1-x}Sb_x/GaAs представляют собой ярко выраженный гетропереход II типа. Дополнительным свидетельством этого послужили данные, полученные для структур с содержанием сурьмы 15%, в которых не наблюдалось сдвига положения линии фотолюминесценции от мощности накачки, а времена релаксации фотолюминесценции в области сигнала от квантовой ямы составили ~ 1.5 нс.

1. Введение

Оптические свойства гетероструктур с квантовыми ямами (КЯ) GaAs_{1-x}Sb_x/GaAs с долей сурьмы x > 30%активно исследуются на протяжении последнего десятилетия главным образом в связи с возможностью создания вертикально излучающего лазера (VCSEL), работающего вблизи 1.3 мкм [1,2]. Однако, несмотря на довольно интенсивный сигнал фотолюминесценции (ФЛ) в области 1.3 мкм, наблюдающийся в таких структурах при комнатной температуре, и успехи некоторых исследовательских групп в достижении лазерной генерации [3-5], создание эффективно излучающих непрерывных лазеров на базе $GaAs_{1-x}Sb_x/GaAs$ до сих пор остается не решенной задачей. Во-первых, получение оптически качественного материала КЯ затруднено в связи со значительным различием (7.8%) постоянных кристаллической решетки GaAs и GaSb [6]. Во-вторых, для твердого раствора $GaAs_{1-x}Sb_x$ при x примерно от 0.25 до 0.7 предполагается существование зоны несмешиваемости, что должно приводить к негомогенности материала КЯ из-за спинодального распада твердого раствора [7]. Однако понижение температуры роста слоя GaAsSb увеличивает долю встраиваемой сурьмы. Слои GaAsSb с долей сурьмы до 0.5 и приемлемым оптическим качеством были успешно получены методом молекулярно-пучковой эпитаксии (МПЭ) [4-6], что подтверждает возможность получения квантовых ям GaAs_{1-x}Sb_x/GaAs, обеспечивающих эффективную излучательную рекомбинацию вблизи 1.3 мкм ($x \approx 0.35$).

Вместе с тем до сих пор у научного сообщества не сложилось единого мнения об изменении типа зонной структуры гетероперехода GaAsSb/GaAs при увеличении молярной доли сурьмы. В литературе представлены данные, указывающие как на II тип зонной диаграммы [8–11], так и на возможность нулевого разрыва в зоне проводимости [12,13]. В работе [14] представлены данные, указывающие, что тип зонной диаграммы напряженного гетероперехода GaAsSb/GaAs является функцией доли сурьмы, и гетеропереход изменяется от I типа для x < 0.34 ко II типу для x > 0.34. Таким образом, можно ожидать, что в области твердых растворов с долей сурьмы ~ 0.35 зонная диаграмма является переходной от слабо выраженного I до слабо выраженного II типа, при этом квантовая яма GaAsSb, ограниченная барьерами GaAs, может рассматриваться как система с хорошо локализованными дырками и слабо локализованными (или делокализованными) электронами, в особенности при относительно высокой температуре Т (вблизи комнатной), когда тепловая энергия носителей k_BT (k_B постоянная Больцмана) может быть сравнима с глубиной КЯ для электронов в GaAsSb/GaAs.

Цель настоящей работы — определение типа гетероперехода в гетероструктуре $GaAs_{1-x}Sb_x/GaAs$ при x = 0.36 методом спектроскопии ФЛ, в том числе время-разрешенной ФЛ. Учитывая, что x = 0.36 достаточно близко к критическому значению x = 0.34, были проведены сравнительные исследования гетерострукту-

[¶] E-mail: more@ipmras.ru

Рис. 1. Зонная диаграмма и оптические переходы в гетероструктуре II типа: a — непрямые оптические переходы, энергия hv_1 ; b — непрямые и прямые оптические переходы, энергии hv_1 и hv_2 соответственно.

ры GaAsSb/GaAs с долей сурьмы 15%, для которой можно уверенно говорить о I типе гетероперехода [15,16].

Определить тип гетероперехода можно, например, по зависимости спектров ФЛ от мощности накачки. В этом случае при оптическом возбуждении существенными и, возможно, определяющими становятся эффекты изгиба зон, вызванные кулоновским взаимодействием неравновесных носителей заряда. В зависимости от концентрации неравновесных электронов и дырок вид зонной диаграммы гетероперехода GaAs/GaAsSb может меняться от непрямого гетероперехода в случае слабого возбуждения (рис. 1, a) до комбинации непрямого и прямого в пространстве типа гетероперехода в случае высокого уровня возбуждения (рис. 1, b).

Другой способ определения типа гетероперехода, рассматриваемый в настоящей статье, это исследование кинетики ФЛ структуры: принадлежность к типу оптического перехода определяется по временам релаксации сигнала ФЛ, которые, как известно, в случае прямого перехода обычно не превышают 1 нс, а в случае непрямого перехода могут простираться вплоть до 1 мкс.

2. Методика эксперимента

Экспериментально исследовались гетероструктуры с КЯ GaAs_{0.64}Sb_{0.36}/GaAs (#1) и GaAs_{0.85}Sb_{0.15}/GaAs (#2). Обе структуры были выращены на подложке GaAs и специально не легировались. Структура #1 была выращена методом МПЭ и содержала квантовую яму GaAs_{0.64}Sb_{0.36} шириной 7 нм с относительно толстыми (50 нм) спейсерами GaAs по обе стороны слоя GaAsSb. Структура #2 вырашивалась методом газофазной эпитаксии из металлоорганических источников (МОСГФЭ), толшина слоя GaAsSb составляла 6 нм. Затем структура заращивалась покровным слоем GaAs толщиной 50 нм.

Для возбуждения ФЛ в непрерывном режиме использовался Nd: YAG-лазер (длина волны $\lambda_{ex} = 532$ нм, максимальная плотность мощности 10^2 BT/см²). Для анализа спектров ФЛ использовались решеточные монохроматоры (Acton-2300, TriVista Acton Research) либо фурье-спектрометр ВОМЕМ DA3. В качестве приемника использовался охлаждаемый жидким азотом Ge-детектор.

Кинетика релаксации ФЛ во временном интервале от 5 до 100 нс исследовалась с использованием оптического параметрического осциллятора Spectra-Physics MOPO SL, длина волны возбуждения перестраивалась в диапазоне 800-940 нм, частота повторений составляла 10 Гц, длительность импульса ~ 5 нс, максимальная мощность в импульсе 10^6 Вт. Излучение ФЛ разлагалось решеточным монохроматором и регистрировалось фотоэлектронным умножителем Нататаtsu H10330-75 (время отклика ~ 1 нс). Временное разрешение составляло ~ 5 нс, что достаточно при исследовании межзонной рекомбинации, обусловленной непрямыми оптическими переходами.

При исследовании процессов межзонной рекомбинации с временами релаксации < 5 нс для возбуждения ФЛ применялся Ті: Sapphire-лазер "Tsunami" (длительность импульса 130 фс, частота повторений 80 МГц, длина волны 700–950 нм, энергия в импульсе > 0.1 мкДж).

Для измерения кинетики ФЛ использовалась методика коррелированного счета фотонов системой OCOPRS-001 на основе сверхпроводникового детектора, находящегося в криомодуле, поддерживающем температуру 1.8 К. Принцип действия фотодетектирующей системы основан на разрушении сверхпроводящего состояния приемного элемента при поглощении единичного фотона и счете числа импульсов, возникающих в приемной системе в определенный промежуток времени с заданной задержкой относительно импульса синхронизации. Временно́е разрешение, определяемое джиттером (флуктуациями), составляет ~ 40 пс [17,18].

Измерения спектров и временной зависимости интенсивности ФЛ (кинетики ФЛ) проводились при температурах T = 4 и 77 К.

3. Результаты и обсуждение

В настоящей работе проведено исследование спектрокинетических свойств гетероструктуры GaAsSb/GaAs с содержанием сурьмы 36%. Для структуры была характерна интенсивная ФЛ вплоть до комнатной температуры. Длина волны максимума люминесценции при 300 К равна 1.3 мкм. Для определения типа гетероперехода в реальном пространстве была измерена кинетика фотолюминесценции структуры в случае слабого возбуждения (рис. 2). Также была измерена кинетика ФЛ модельной структуры #2 с I типом гетероперехода в реальном пространстве. Измерения проводились с помощью методики коррелированного счета фотонов с использованием сверхпроводникового детектора. Время спада сигнала ФЛ для образца #2 составляло 2 нс, что соответствует переходам I рода. Время спада ФЛ гетероструктуры GaAsSb/GaAs с содержанием сурьмы 36% составляло 11 нс. Таким образом, мы можем заключить,

Рис. 2. Кинетика спада фотолюминесценции (PL) для структур GaAsSb/GaAs #1 с содержанием сурьмы 36% (*I*) и структуры #2 с содержанием сурьмы 15% (*2*). Длина волны возбуждающего излучения 700 нм, температура измерений T = 4 K.

Рис. 3. Нормированные спектры фотолюминесценции (PL) структуры #1 при возбуждении второй гармоникой Nd: YAG-лазера ($\lambda_{ex} = 532$ нм, диаметр пятна 0.2 мм) для различных уровней накачки, мВт: I - 1, 2 - 10, 3 - 60, 4 - 100, 5 - 160, 6 - 240. Температура измерений T = 77 К. На вставке — положение максимума (I) и ширина линии ФЛ (2).

что при малых мощностях возбуждения в структуре реализуется II тип гетероперехода.

Было выполнено исследование влияния заселенности электронных и дырочных состояний (возникающей за счет заполнения КЯ неравновесными носителями) в квантовой яме GaAs_{0.64}Sb_{0.36}/GaAs на вид зонной диаграммы гетероперехода GaAsSb/GaAs. Для этого были измерены спектры ФЛ структуры в зависимости от мощности возбуждения. На рис. 3 представлены нормированные спектры ФЛ структуры #1, измеренные при температуре 77 К и при увеличении уровня непрерывного возбуждения ($\lambda_{ex} = 532 \text{ нм}$) от 1 до 240 мВт. При наименьшей использовавшейся мощности максимум пика ФЛ расположен на длине волны 1228 нм, ширина на полувысоте пика составляет ~ 30 нм. При увеличении мощности возбуждения от 1 до 60 мВт наблюдается сдвиг максимума ФЛ от 1230 до 1200 нм при незначительном увеличении ширины линии. Коротковолновый сдвиг обусловлен ростом концентрации электронов в зоне проводимости и возникающим вследствие этого изгибом зон вблизи интерфейса, как это схематически показано на рис. 1, а. Происходящее в результате кулоновского взаимодействия искривление зоны проводимости приводит к увеличению энергии уровня размерного квантования электронов и соответственно к уменьшению длины волны перехода. При увеличении мощности накачки от 60 до 240 мВт коротковолновый сдвиг замедляется и в дальнейшем прекращается, но проявляется существенное уширение линии ФЛ. По-видимому, это связано с тем, что, когда разница в энергиях непрямого и прямого переходов становится сравнимой с $k_{\rm B}T$, состояния, образованные в искривленном барьере, могут быть заполнены в результате термического заброса (см. рис. 1, b). В этом случае вклад в ФЛ дают как непрямые, так и прямые переходы, что приводит к увеличению ширины линии ФЛ.

На вставке к рис. З представлены зависимости положения максимума линии ФЛ и ширины линии на полувысоте FWHM от мощности оптического возбуждения. Отметим, что характерные точки, при которых заметно увеличение ширины и прекращается коротковолновый сдвиг линии ФЛ, совпадают и соответствуют мощности возбуждения ~ 100 мВт. Подобное поведение положения

Рис. 4. Нормированные спектры фотолюминесценции (PL) структуры #2 при возбуждении второй гармоникой Nd: YAG-лазера ($\lambda_{ex} = 532$ нм, диаметр пятна 0.2 мм) для различных уровней накачки, мВт: I - 0.2, 2 - 2.5, 3 - 15, 4 - 85, 5 - 225. Температура измерений T = 77 К.

Физика и техника полупроводников, 2012, том 46, вып. 11

Рис. 5. Трехмерные картины время-разрешенных спектров $\Phi \Pi$ структур #1 (*a*) и #2 (*b*): горизонтальные оси — время наблюдения τ и длина волны наблюдения $\Phi \Pi$ *l*, вертикальная ось — интенсивность сигнала $\Phi \Pi$ в момент времени τ на длине волны *l*. Длина волны возбуждающего излучения $\lambda_{ex} = 580$ нм, длительность импульса возбуждения 5 нс. Температура измерений T = 77 К.

максимумов и ширин линий ФЛ характерно для гетеропереходов II типа [9].

Для сравнения рассмотрим модельную гетероструктуру #2 с содержанием сурьмы $x \approx 0.2$ в КЯ GaAs_{1-x}Sb_x, в которой реализуется гетеропереход I рода. Отнормированные спектры ФЛ гетероструктуры #2 при 77 К приведены на рис. 4. Длина волны возбуждения 700 нм, диаметр пятна 300 мкм, интервал используемых мощностей от 0.2 до 225 мВт. Виден интенсивный пик с максимумом в районе 930 нм, соответствующий излучательной рекомбинации в КЯ GaAsSb. Положение максимума и форма линии люминесценции не изменялись вплоть до мощности возбуждения 10 мВт, при дальнейшем ро-

сте интенсивности возбуждения наблюдалось уширение линии со стороны коротковолнового плеча, связанное с заполнением основного состояния неравновесными носителями и подключением возбужденных состояний.

Сделанные выше предположения об эволюции типа перехода в структуре #1 в реальном пространстве при изменении уровня оптического возбуждения были подтверждены результатами кинетических исследований. На рис. 5, а, в приведены трехмерные картины время-разрешенных спектров ФЛ во временном интервале до 60 нс при $T = 77 \, \text{K}$, которые были получены при возбуждении импульсным излучением параметрического осциллятора ($\lambda_{ex} = 580$ нм). По одной из осей отложено время наблюдения *т*, по другой — длина волны наблюдения ФЛ *l*, а по вертикальной оси — интенсивность сигнала $\Phi \Pi$ в момент времени τ на длине волны l. Таким образом, сечение этой поверхности в определенный момент времени т дает спектр фотолюминесценции в данный момент времени, а сечение при определенной длине волны *l* — кинетику релаксации сигнала ФЛ на этой длине волны.

Рис. 5, *а*, соответствует зависимости спектров ФЛ структуры #1 от времени при относительно малой мощности импульсной накачки (1 мкВт). Максимуму пика ФЛ отвечает длина волны 1228 нм. Видно, что форма спектра не зависит от времени, а время спада сигнала ФЛ составляет ~ 10 нс. На рис. 5, *b* представлена эволюция спектров ФЛ во времени в случае более высокой мощности возбуждения (30 мкВт). Видно, что при увеличении мощности накачки спектр в начальный момент времени заметно уширяется, а максимум сдвигается в коротковолновую область (1155 нм), что качественно совпадает с результатами, полученными при непрерывной накачке (см. рис. 3). С увеличением времени линия начинает сужаться и при больших временах, *t* > 10 нс, положение максимума и форма линии ФЛ становятся

Рис. 6. Спектры фотолюминесценции (PL) образца #1, измеренные при импульсном возбуждении ($\lambda_{ex} = 580$ нм, мощность возбуждения 30 мкВт, диаметр пятна 5 мм) и различных временах задержки τ .

такими же, как и в случае малой мощности возбуждения. Подобная временная эволюция спектра определяется изменением концентрации фотовозбужденных носителей, которая по мере рекомбинации носителей уменьшается.

На рис. 6 приведены отнормированные спектральные срезы кинетики (рис. 5, b), зафиксированные в различные моменты времени. Видно, что при малых временах τ (т.е. во время действия импульса возбуждения, $\sim 5 \,\text{нc}$) линия $\Phi \Pi$ является широкой (ширина линии составляет 80 нм). Однако уже при задержке $\tau = 8$ нс наблюдается сужение линии ФЛ прежде всего за счет "проседания" ее коротковолнового крыла. При больших задержках линия еще больше сужается, и при этом ее максимум смещается в длинноволновую область, что хорошо соответствует спектрам ФЛ на рис. 3 при малых уровнях возбуждения. Таким образом, трансформация спектра ФЛ при увеличении времени задержки аналогична зависимости спектра от уровня возбуждения при непрерывной накачке и также обусловлена концентрацией неравновесных носителей заряда в соответствующий момент времени.

4. Заключение

Таким образом, в данной работе исследованы спектральные и кинетические характеристики ФЛ гетероструктур с квантовыми ямами GaAs_{0.64}Sb_{0.36}/GaAs, излучающих в диапазоне ~ 1.3 мкм при комнатной температуре. Определены времена релаксации интенсивности ФЛ, составляющие ~ 11 нс, что говорит о II типе гетероперехода при содержании сурьмы 36%. При изменении мощности и длины волны оптического возбуждения, кроме сигнала, связанного с непрямыми переходами в КЯ GaAs_{0.64}Sb_{0.36}/GaAs, было обнаружено подключение прямых переходов, обусловленное эффектом изгиба зон вследствие кулоновского взаимодействия фотовозбужденных электронов и дырок, имеющих, скорее всего, термоактивационную природу.

Работа выполнена при финансовой поддержке программ фундаментальных исследований президиума РАН "Экстремальные световые поля и их приложения" и "Основы фундаментальных исследований нанотехнологий и наноматериалов", грантов РФФИ (№ 10-02-01195-а, 11-02-00645-а), РФ НШ-4756.2012.2 и Министерства образования (ГК № 16.518.11.7018).

Список литературы

- T. Anan, M. Yamada, K. Tokutome, S. Sugou, K. Nishi, A. Kamei. Electron. Lett., 35, 903 (1999).
- [2] P. Dowd, S.R. Johnson, S.A. Feld, M. Adamcyk, S.A. Chaparro, J. Joseph, K. Hilgers, M.P. Horning, K. Shiralagi, Y.-H. Zhang. Electron. Lett., **39**, 987 (2003).
- [3] Seoung-Hwan Park. J. Appl. Phys., 100, 043 113 (2006).
- [4] Hsin-Chieh Yu, Cheng-Tien Wan, Yan-Kuin Su et al. Proc. SPIE, 7598, 759818 (2010).

- [5] N. Hossain, S.R. Jin, S.J. Sweeney et al. Proc. SPIE, 7616, 761 608 (2010).
- [6] I. Vurgaftman, J.R. Meiyer, L.R. Ram-Mohan. J. Appl. Phys., 89, 5815 (2001).
- [7] R. Pesetto, G.B. Stringfellow. J. Cryst. Growth, 62, 1 (1983).
- [8] R. Teissier, D. Sicault, J.C. Harmand, G. Ungaro, G. Le Roux, L. Largeau. J. Appl. Phys., 89, 5473 (2001).
- [9] M. Dinu, J.E. Cunningham, F. Quochi, J. Shah. J. Appl. Phys., 94, 1506 (2003).
- [10] M. Peter, K. Winkler, M. Maier, H. Herres, J. Wagner, D. Fekete, K.H. Bahem, D. Richards. Appl. Phys. Lett., 67, 2639 (1995).
- [11] G. Liu, S.-L. Chuang, S.-H. Park. J. Appl. Phys., 88, 5554 (2000).
- [12] S.R. Johnson, C.Z. Guo, S. Chaparro, Yu.G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu, S.Q. Yu, D. Ding, Y.-H. Zhang. J. Cryst. Growth, **251**, 521 (2003).
- [13] J.-B. Wang, S.R. Johnson, S. Chaparro, D. Ding, Y. Cao, Yu.G. Sadofyev, Y.-H. Zhang, J.A. Gupta, C.Z. Guo. Phys. Rev. B, **70**, 195 339 (2004).
- [14] A.D. Prins, D.J. Dunstan, J.D. Lambkin, E.P. O'Reily, A.R. Adams, R. Pritchard, W.S. Truscott, K.E. Singer. Phys. Rev. B, 47, 2191 (1993).
- [15] Ю.Г. Садофьев, N. Samal, Б.А. Андреев, В.И. Гавриленко, С.В. Морозов, А.Г. Спиваков, А.Н. Яблонский. ФТП, 44 (3), 422 (2010).
- [16] G. Blume, T.J.C. Hosea, S.J. Sweeney, S.R. Johnson, J.-B. Wang, Y.H. Zhang. IEE Proc. Optoelectron., 152, 110 (2005).
- [17] G. Gol'tsman, A. Korneev, I. Rubtsova, I. Milostnaya, G. Chulkova, O. Minaeva, K. Smirnov, B. Voronov, W. Slysz, A. Pearlman, A. Verevkin, R. Sobolewski. Phys. Status. Solidi C, 2 (5), 1480 (2005).
- [18] M.J. Stevens, R.H. Hadfield, R.E. Schwall, S.W. Nam, R. P. Mirin, J.A. Gupta. Appl. Phys. Lett., 89, 031 109 (2006).

Редактор Л.В. Шаронова

Determination of a heterojunction type in GaAsSb/GaAs quantum well structures with different molar Sb fractions by optical methods

S.V. Morozov⁺, D.I. Kryzhkov⁺, V.I. Gavrilenko⁺, A.N. Yablonsky⁺, D.I. Kuritsyn⁺, D.M. Gaponova⁺, Yu.G. Sadofyev^{*}, B.N. Zvonkov[‡], O.V. Vihrova[‡]

⁺ Institute for Physics of Microstructures, Russian Academy of Sciences,
603950 Nizhny Novgorod, Russia
* P.N. Lebedev Physical Institute, Russian Academy of Sciences,
119991 Moscow, Russia
[‡] Physico-Technical Research Institute, Nizhny Novgorod State University,
603000 Nizhny Novgorod, Russia

Abstract In this paper the method of time-resolved photoluminescence spectroscopy and photoluminescence methods were used to determine the type of heterojunction in the heterostructure $GaAs_{1-x}Sb_x/GaAs$ with x = 0.36. For comparison, studies were conducted of GaAsSb/GaAs heterostructure with Sb fraction 15%, for which we can confidently talk about the I type of heterojunction. From the blue shift of the photoluminescence line, depending on the excitation power, and the relaxation times of the photoluminescence signal from the quantum well GaAs_{1-x}Sb_x/GaAs, amounting to ~ 11 ns, it was found that at the Sb content of 36% the $GaAs_{1-x}Sb_x/GaAs$ structure manifested itself as a pronounced II type heterojunction. Further evidence of this was provided by data obtained for structures with 15% Sb, those do not revealed any shift of the line with the pump power rise, and for which the relaxation times of the photoluminescence signal from the quantum well was ~ 1.5 ns.