Об импедансной спектроскопии структур с потенциальным барьером

© В.В. Брус¶

Институт проблем материаловедения им. И.М. Францевича Национальной академии наук Украины, Черновицкое отделение, 58001 Черновцы, Украина

(Получена 11 января 2012 г. Принята к печати 15 января 2012 г.)

Проведен детальный анализ спектральных зависимостей действительной и мнимой компонент измеренного импеданса смоделированного кремниевого p-n-перехода в рамках общепринятой эквивалентной схемы (параллельная R_dC_b цепочка и последовательное сопротивление R_s). Предложен простой способ определения истинного значения барьерной емкости структур с потенциальным барьером (при отсутствии поверхностных электрически активных состояний) на основе анализа спектральной зависимости мнимой части измеренного импеданса.

1. Введение

Исследование емкостных свойств полупроводниковых структур с потенциальным барьером представляет значительный интерес и является эффективным инструментом для определения электрических свойств полупроводниковых приборов и их компонент [1,2].

Широко применяются емкостные измерения для определения величины контактной разности потенциалов V_{bi} и концентрации легирующей примеси N на основе анализа вольт-фарадных характеристик контактов металлполупроводник, резких асимметричных p-n-гомо- и гетеропереходов [3–7]. Однако простая, на первый взгляд, методика требует детального анализа для избегания возможной неверной интерпретации экспериментальных результатов.

Известно, что полупроводниковую структуру с потенциальным барьером, в простейшем случае, можно рассматривать в рамках эквивалентной схемы, состоящей из параллельной ветки сопротивления обедненной области R_d и барьерной емкости C_b , а также последовательно включенного сопротивления R_s [1,8–10].

В ряде работ [11-15] было подробно показано, что наличие последовательного сопротивления R_s структур с потенциальным барьером может привести к тому, что измеренное значение емкости полупроводниковой структуры будет сильно зависеть от частоты переменного сигнала и существенно отличаться от истинной барьерной емкости. Таким образом, при анализе вольт-фарадных характеристик экспериментальные данные должны быть откорректированы с учетом влияния последовательного сопротивления. В недавней работе [14] был предложен метод коррекции измеренной емкости *p*-*n*-переходов на основе анализа их вольт-импедансных характеристик. Эта методика заключается в расчете истинной барьерной емкости С_b, пользуясь экспериментально измеренными значениями последовательного сопротивления R_s , действительной Z' и мнимой Z'' компонент импеданса исследуемой полупроводниковой структуры.

В данной работе предложен простой метод определения истинного значения барьерной емкости полупро-

2. Компоненты эквивалентной схемы

Как отмечалось выше, смоделированный кремниевый p-n-переход будет рассматриваться в рамках общепринятой эквивалентной схемы, изображенной на рис. 1.

Стоит отметить, что сопротивление обедненной области и барьерная емкость p-n-перехода зависят от приложенного напряжения. Известно, что вольт-амперную характеристику p-п-перехода можно представить следующим выражением [3]:

$$I_d = I_0 \left[\exp\left(\frac{qV}{nkT}\right) - 1 \right], \tag{1}$$

где I_0 — ток насыщения, n — коэффициент неидеальности, который принимает значения от 1 до 2 в зависимости от доминирующего механизма токопереноса. Таким образом, выражение для сопротивления области про-

Рис. 1. Эквивалентная схема p-n-перехода.

водниковой структуры с потенциальным барьером (на примере кремниевого p-n-перехода), рассмотренной в рамках общепринятой эквивалентной схемы. Предложенный метод основан на анализе спектральной зависимости только мнимой части импеданса исследуемой структуры $Z''(\omega)$, в отличие от выше упомянутой методики. Поскольку мнимая часть измеренного импеданса определяется лишь параллельной R_dC_b цепочкой, то определение истинного значения барьерной емкости можно провести без учета влияния последовательного сопротивления R_s .

[¶] E-mail: victorbrus@mail.ru

странственного заряда R_d можно записать в виде [10,14]:

$$R_d = \frac{1}{dI/dV} = \frac{nkT}{qI_0 \exp\left(\frac{qV}{nkT}\right)}.$$
 (2)

В свою очередь выражение для барьерной емкости C_b имеет следующий вид [1,3]:

$$C_b = A \sqrt{\frac{q \varepsilon_{\rm Si} \varepsilon_0 N_A N_D}{2(V_d - V)(N_A + N_D)}},\tag{3}$$

где A — площадь p-n — перехода, N_A и N_D — концентрация акцепторной и донорной примеси в p- и n-области, соответственно.

3. Спектральная зависимость измеренного импеданса

Известно, что импеданс системы изображенной на рис. 1 определяется выражением [1]:

$$Z = R_s + \frac{R_d}{1 + i\omega C_b R_d},\tag{4}$$

где $\omega = 2\pi v$ — циклическая частота. После преобразований выражение (1) принимает вид [1,14]

$$Z = R_s + \frac{R_d}{1 + \omega^2 C_b^2 R_d^2} - i \frac{\omega R_d^2 C_b}{1 + \omega^2 C_b^2 R_d^2} = Z' + i Z'', \quad (5)$$

где Z' и Z'' — действительная (активная) и мнимая (реактивная) части импеданса, соответственно:

$$Z' = \left[R_s + \frac{R_d}{1 + \omega^2 C_b^2 R_d^2} \right],\tag{6}$$

$$Z'' = \left[-\frac{\omega R_d^2 C_b^2}{1 + \omega^2 C_b^2 R_d^2} \right]. \tag{7}$$

Для анализа спектральной зависимости действительной и мнимой компонент измеренного импеданса смоделированного кремниевого диода будем использовать значения электрических свойств кремния и энергетических параметров p-n-перехода, рассмотренных в работе [14]: $A = 7.5 \cdot 10^{-2}$ см², $R_s = 120$ Ом, $N_A N_D / (N_A + N_D) = 9 \cdot 10^{14}$ см⁻³, $V_{bi} = 0.42$ В, $I_0 =$ $= 4 \cdot 10^{-9}$ А, n = 1.2, $\varepsilon_{\rm Si} = 11.3$, T = 300 К.

При отсутствии внешнего смещения (V = 0), с учетом выше приведенных параметров, сопротивление обедненной области и барьерная емкость смоделированного кремниевого диода, согласно выражениям (2) и (3), примут значения: $R_d = 7.76$ МОм и $C_b = 10^{-9}$ Ф, соответственно.

Сначала проанализируем выражение для спектрального распределения действительной части измеренного импеданса Z' (6). Поскольку барьерная емкость C_b принимает очень маленькое значение, в области низких частот переменного сигнала ($\omega < 20 \,\mathrm{c}^{-1}$) выполняется

Рис. 2. Спектральная зависимость действительной части измеренного импеданса Z' смоделированного кремниевого *p*-*n*-перехода.

Рис. 3. Спектральная зависимость модуля мнимой части измеренного импеданса |Z''| смоделированного кремниевого p-n-перехода.

неравенство $(\omega C_b R_d)^2 \ll 1$, следовательно, действительная часть импеданса перестает зависеть от частоты и определяется как $Z' = R_s + R_d$ (рис. 2). В случае высоких частот возбуждающего сигнала ($\omega > 2 \cdot 10^5 \,\mathrm{c}^{-1}$) можно записать, что $(\omega C_b R_d)^2 \ll R_d$, поэтому кривая спектральной зависимости Z' также выходит на насыщение ($Z' = R_s$), как показано на рис. 2.

Перед анализом, спектральной зависимости мнимой компоненты измеренного импеданса Z'', стоит отметить, что последовательное сопротивление R_s не входит в выражение (7). Это обстоятельство, как будет показано далее, позволяет очень просто определить истинное значение барьерной емкости полупроводникового диода без необходимости учитывать влияние паразитного последовательного сопротивления.

Рис. 4. Производная от спектральной зависимости мнимой части измеренного импеданса $dZ''/d\omega$.

Из выражения (7) видно, что спектральное распределение мнимой компоненты измеренного импеданса Z'' является кривой с минимумом (рис. 3). Для количественного определения частоты переменного сигнала ω_{\min} , при которой мнимая часть импеданса принимает минимальное значение Z''_{\min} , возьмем производную $dZ''/d\omega$ (рис. 4):

$$\frac{dZ''}{d\omega} = \frac{\omega^2 C_b^3 R_d^4 - C_b R_d^2}{(1 + \omega^2 C_b^2 R_d^2)^2}.$$
(8)

Из последнего выражения видно, что производная $dZ''/d\omega = 0$, когда $\omega^2 C_b^3 R_d^4 - C_b R_d^2 = 0$. На основе этого условия получим выражение для циклической частоты ω_{\min} при которой мнимая составляющая измеренного импеданса принимает минимальное значение:

$$\omega_{\min} = \frac{1}{C_d R_d} = \frac{1}{\tau},\tag{9}$$

где $\tau = C_b R_d$ — характеристическое время.

Подставив ω_{\min} в уравнение (7) и учитывая (9), легко видеть, что модуль минимального значения реактивной составляющей импеданса $|Z''_{\min}|$ равен половине сопротивления области пространственного заряда R_d :

$$Z_{\min}'' = -\frac{\omega_{\min} R_d^2 C_b}{1 + \omega_{\min}^2 C_b^2 R_d^2} = -\frac{R_d}{2}.$$
 (10)

Подставив определенное значение сопротивления области пространственного заряда R_d из спектрального распределения мнимой части импеданса Z'' (рис. 3) в уравнение (9), можно легко рассчитать истинное значение барьерной емкости C_b :

$$C_b = \frac{1}{\omega_{\min}R_d} = \frac{1}{2\omega_{\min}|Z''_{\min}|}.$$
 (11)

Стоит отметить, что определенные значения сопротивления обедненной области $R_d = 2|Z''_{\min}| = 7.76 \text{ MOm}$ и барьерной емкости $C_b = 10^{-9} \Phi$ на основе анализа

спектрального распределения мнимой части измеренного импеданса смоделированного кремниевого p-n-перехода точно совпадают со значениями, рассчитанными по формулам (2) и (3) соответственно, что подтверждает достоверность предложенного подхода. Аналогично можно определить истинное значение барьерной емкости C_b исследуемой полупроводниковой структуры при произвольном внешнем смещении.

4. Заключение

Проанализированы спектральные зависимости действительной и мнимой частей измеренного импеданса смоделированного кремниевого *p*-*n*-перехода в рамках общепринятой эквивалентной схемы.

Показано, что из анализа спектральной зависимости действительной составляющей измеренного импеданса можно определить значение последовательного сопротивления и сопротивления области пространственного заряда путем экстраполяции соответствующих прямолинейных участков до пересечения с осью сопротивлений.

Предложен простой метод определения истинного значения барьерной емкости структур с потенциальным барьером (которые можно моделировать в рамках рассматриваемой эквивалентной схемы) на основе анализа спектрального распределения мнимой части измеренного импеданса.

Список литературы

- [1] [Л.С. Берман. Емкостные методы исследования полупроводников (Л., Наука, 1972).
- [2] А.А. Лебедев, А.А. Лебедев, Д.В. Давыдов. ФТП, 34, 113 (2000).
- [3] S.M. Sze, K.N. Kwok. *Physics of semiconductor devices* (N.J., Wiley, 2007).
- [4] Б.Л. Шарма, Р.К. Пурохит. Полупроводниковые гетеропереходы (М., Сов. радио, 1979) [Пер. с англ.: В.L. Sharma, R.K. Purohit Semiconductor heterojunctions (Pergamon Press, 1974)].
- [5] А. Милнс, Д. Фойхт. Гетеропереходы и переходы металл-полупроводник (М., Мир, 1975) [Пер. с англ.: A.G. Milnes, D.L. Feucht, Heterojunctions and Metal-Semiconductor Junctions (Academic Press, 1972)].
- [6] S.R. Vishwakarma, Rahmatullah, H.C. Prasad. Sol. St. Electron., 36, 1345 (1992).
- [7] V.M. Nikale, S.S. Shinde, A.R. Bardar, C.H. Bhosale, K.Y. Rajpure. Solar Energy, 85, 1336 (2011).
- [8] H. Bayhan, A.S. Kavasoglu. Solar Energy, 80, 1160 (2011).
- [9] I.S. Yahia, M. Fadel, G.B. Sakr, S.S. Shenouda, F. Yankuphanoglu, W.A. Farooq. Acta Phys. Polon. A, **120**, 563 (2011).
- [10] A. Donmez, H. Bayhan. ΦΤΠ, 46, 262 (2012).
- [11] Ю.А. Гольдберг, О.В. Иванова, Т.В. Львова, Б.В. Царенков. ФТП, 17, 1068 (1983).
- [12] Ю.А. Гольдберг, О.В. Иванова, Т.В. Львова, Б.В. Царенков. ФТП, 18, 1472 (1984).
- [13] О.В. Константинов, О.А. Мезрин. ФТП, 17, 305 (1983).

- [14] A.S. Kovasoglu, N. Kovasoglu, S. Oktik. Sol. St. Electron., 52, 990 (2008).
- [15] P. Chttopadhyay, D.P. Haldar. Appl. Surf. Sci., 171, 207 (2001).

Редактор Т.А. Полянская

On impedance spectroscopy of structures with a potential barrier

V.V. Brus

Frantsevich Institute for Problems of Materials Science, National Academy of Sciences of Ukraine, Chernivtsi Department, 58001 Chernivtsi, Ukraine

Abstract A detailed analysis of the spectral dependences of the real and imaginary components of the measured impedance of a simulated silicon p-n-junction was carried out in the scope of the generally accepted equivalent circuit (a parallel R_dC_b chain and serial resistance R_s). A simple technique was proposed in order to determine the actual value of the barrier capacitance C_b of structures with a potential barrier (in the absence of electrically active interface states) on the basis of the analysis the spectral distribution of the imaginary part of the measured impedance.