Квантовые поправки к проводимости в условиях целочисленного квантового эффекта Холла

© А.А. Грешнов¶

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 24 октября 2011 г. Принята к печати 26 октября 2011 г.)

Изучены квантовые поправки к проводимости двумерного электронного газа в условиях целочисленного квантового эффекта Холла. Показано, что нарушение однопараметрического скейлинга в режиме квантующих магнитных полей, $\omega_c \tau \gg 1$, происходит на уровне теории возмущений. Результаты диаграмматического расчета квантовой поправки находятся в согласии с численными зависимостями пиков продольной проводимости от эффективного размера образца, в отличие от ранних расчетов на основе унитарной нелинейной σ -модели. По этой причине учет квантования Ландау является критичным для корректного описания квантового эффекта Холла.

1. Введение

Хотя первоначальная формулировка гипотезы однопараметрического скейлинга [1] подразумевала ее состоятельность при весьма общих условиях, включая наличие внешнего магнитного поля, открытие явления целочисленного квантового эффекта Холла показало, что диагональная компонента тензора проводимости, σ_{xx} , не может подчиняться уравнению ренормгруппы в одиночку, без σ_{xy} [2–4] (подробнее см. в работе [5]). Этот факт, противоречащий феноменологическим представлениям работы [1] и количественным результатам работы [6], был приписан неким "непертурбативным" поправкам к σ_{xx} и σ_{xy} . Хотя гипотеза двухпараметрического скейлинга, сформулированная в работах [3,4], и дает элегантный рецепт преодоления указанного затруднения. теоретическая модель, на которой базируется гипотеза, обладает рядом недостатков, а следствия из нее понастоящему не проверены. Именно вывод дополнительного члена нелинейной *о*-модели, пропорционального σ_{xy} , требует рассмотрения краевых токов, в противоположность объемной природе формулы Кубо для проводимости, и поэтому не может быть признан бесспорным. Кроме того, на данный момент не существует никаких экспериментальных фактов (или данных численных экспериментов), подтверждающих гипотезу двухпараметрического скейлинга, как обсуждается в работе [7].

В настоящей публикации показано, что нарушение однопараметрического скейлинга происходит в первом неисчезающем порядке теории возмущений в условиях сильного, квантующего магнитного поля, $\omega_c \tau \gg 1$, что типично для экспериментов по квантовому эффекту Холла. Результаты проведенных прямым диаграмматическим методом расчетов квантовой поправки 2-го порядка к σ_{xx} находятся в согласии с численными результатами, в отличие от предсказаний унитарной нелинейной σ -модели, данных в работе [6]. Таким образом, учет квантования Ландау является принципиально важным для корректного описания целочисленного квантового

эффекта Холла, и это является ахиллесовой пято́й теории [4], основанной на двухкомпонентной нелинейной σ -модели.

2. Самосогласованное борновское приближение, проводимость Друде–Андо и диффузон

Для расчетов диагональной компоненты тензора проводимости σ_{xx} мы применим стандартную диаграммную технику усреднения по беспорядку, включающую формулу Кубо в виде^{*}

$$\sigma_{xx} = -\frac{e^2\hbar}{4\pi S} \overline{\operatorname{Tr}\left\{\hat{v}_x(\hat{G}^R - \hat{G}^A)\hat{v}_x(\hat{G}^R - \hat{G}^A)\right\}}, \quad (1)$$

к бесспиновому двумерному электронному газу, описываемому гамильтонианом

$$\hat{H} = \frac{(\hat{\mathbf{p}} - e/c\mathbf{A})^2}{2m} + U(\mathbf{r}).$$
(2)

Здесь *S* — площадь образца, $G^{R,A}$ — точные (неусредненные) функции Грина, горизонтальная черта означает усреднение по конфигурациям рассеивателей, и делается стандартное предположение о гауссовой форме весового функционала случайного потенциала с точечным коррелятором $\overline{U(\mathbf{r})U(\mathbf{r}')} = W\delta(\mathbf{r} - \mathbf{r}')$. Поскольку целочисленный квантовый эффект Холла не требует учета кулоновского и спин-орбитального взаимодействий, мы используем такую модель в качестве минимальной, оговорившись о возможностях вырождения или расщепления спиновых подуровней каждого из уровней Ландау, обобщение на которые, исходя из бесспинового случая, делается тривиально.

Для нахождения функций Грина при больших номерах уровней Ландау, $N \gg 1$, вслед за работами [8] мы используем самосогласованное борновское приближение

[¶] E-mail: a_greshnov@hotmail.com

^{*} Подразумевается, что температура системы позволяет использовать ступенчатую аппроксимацию функции распределения Ферми-Дирака.

Рис. 1. Базовые уравнения и результаты самосогласованного борновского приближения (ССБП) в пределе $\omega_c \tau \gg 1$. *а* — уравнения ССБП для усредненных по беспорядку функций Грина, собственно-энергетической части и диффузона; *b* — плотность состояний (DOS) в форме полукруга; *с* — проводимость Друде–Андо согласно формуле (11).

(ССБП), как показано на рис. 1, *a*. В пределе квантующих магнитных полей, $\omega_c \tau \gg 1$, в правой части уравнения на рис. 1, *a* существенны лишь члены, относящиеся к фермиевскому уровню Ландау *N*, поэтому мы приходим к следующим выражениям, иллюстрируемым рис. 1, *b*:

$$G_{E_{\mathrm{F}}}^{R,A}(\mathbf{r},\mathbf{r}') = \sum_{n} G_{n}^{R,A}(x) K_{n}(\mathbf{r},\mathbf{r}'), \qquad (3)$$

$$G_N^{R,A}(x) = \frac{2}{\Gamma} \left(x \mp i \sqrt{1 - x^2} \right),\tag{4}$$

$$G_{N+\Delta}^{R,A}(x) = -\frac{1}{\Delta\hbar\omega_c} \mp i \, \frac{\Gamma\sqrt{1-x^2}}{2\Delta^2(\hbar\omega_c)^2},\tag{5}$$

$$K_n(\mathbf{r},\mathbf{r}') = \sum_k \Psi_{nk}(\mathbf{r}) \Psi_{nk}^*(\mathbf{r}'), \qquad (6)$$

$$x = \frac{E_{\rm F} - \hbar \omega_c (N + 1/2)}{\Gamma}.$$
 (7)

Здесь N — номер уровня Ландау, соответствующего уровню Ферми, $\Psi_{nk}(\mathbf{r})$ — собственные функции циклотронного движения [9], $-1 \le x \le 1$ — относительное положение Ферми внутри актуального уровня Ландау, а ширина уровней Ландау Г дается формулой

$$\Gamma = \sqrt{\frac{4W}{2\pi l_B^2}} = \sqrt{\frac{2}{\pi}} \frac{\hbar^2 \omega_c}{\tau},\tag{8}$$

где l_B и τ — соответственно магнитная длина и время рассеяния в нулевом магнитном поле, обратно

пропорциональное *W*. Проводимость Друде в режиме квантующих магнитным полей состоит из двух частей, именно $\sigma_0 = \sigma_0^{RR} + \sigma_0^{RA}$, причем общие выражения для них

$$\sigma_0^{RR,RA} = \mp \frac{e^2\hbar}{4\pi S} \operatorname{Tr}\{\hat{v}_x \hat{G}^R \hat{v}_x \hat{G}^{R,A}\} + \text{c.c.}$$
(9)

с учетом уравнений (4), (5) и явных выражений для матричных элементов оператора скорости преобразуются в ответы

$$\sigma_0^{RR,RA} = \left[\frac{(2N+1)(1-x^2)}{2\pi} \pm \frac{x}{\pi} \frac{\hbar\omega_c}{\Gamma}\right] \frac{e^2}{h}.$$
 (10)

Таким образом, σ_0^{RR} и σ_0^{RA} дают равные вклады в конечный ответ для друдевской проводимости в сильном магнитном поле, впервые полученный Андо [8] (см. рис. 1, c),

$$\sigma_0 = \frac{(2N+1)(1-x^2)}{\pi} \frac{e^2}{h},\tag{11}$$

в противоположность случаю нулевого магнитного поля, где σ_0^{RR} параметрически меньше σ_0^{RA} . Более того, при сложении этих вкладов сокращается сомнительный член, малый по параметру $(2N + 1)^{-1}$, но большой по $(\omega_c \tau)^{-1}$. Качественно ответ (11) может быть получен из обычного выражения для друдевской проводимости с использованием замен $k_{\rm F} \rightarrow \sqrt{2N+1}/l_B$, $l_{\rm tr} \rightarrow R_c = \sqrt{2N+1}l_B$, отражающих физику циклотронного движения в режиме квантующих магнитных полей. Действительно, в результате большой параметр $k_{\rm F}l$ превращается в 2N + 1 и хорошо известное выражение для нулевого магнитного поля $\sigma_0 = (1/2)k_{\rm F}l(e^2/h)$ дает уравнение (11) с точностью до множителя, отражающего тонкую структуру самосогласованного уширения уровней Ландау.

Согласно указанному соответствию между $k_F l$ и 2N + 1, квантовые поправки к проводимости в режиме квантующих магнитных полей могут быть классифицированы по малости по параметру $(2N + 1)^{-1}$, по аналогии со случаем нулевого поля. Поскольку приложение магнитного поля подавляет расходимость квантовой поправки 1-го порядка при нулевой температуре (что соответствует $L \to \infty$) из-за ее куперонной сущности, мы сфокусируемся на вкладах 2-го порядка по $(2N + 1)^{-1}$, образованных диффузионными последовательностями. В рамках ССБП диффузон дается обычной геометрической прогрессией, как показано на рис. 1, *a*, в результате

$$D_0(q) = \frac{W}{1 - P},$$
 (12)

$$P = \frac{\Gamma^2}{4} \sum_{n_1, n_2} G_{n_1}^R G_{n_2}^A e^{-w} L_{n_1}(w) L_{n_2}(w), \qquad (13)$$

где $w = q^2 l_B^2/2$. В пределе $\omega_c \tau \gg 1$ главный вклад в *P* происходит от $n_1 = n_2 = N$, и, поскольку $N \gg 1$, мы можем заменить в этих и подобных выражениях полиномы Лагерра на бесселевские функции:

$$P \approx P_N = e^{-w} \left[L_N(w) \right]^2 \approx \left[J_0(t) \right]^2, \tag{14}$$

где $t = \sqrt{2(2N+1)w}$. В пределе малого волнового вектора $P \approx 1 - R_c^2 q^2/2$ и уравнение (12) сводится к стандартной диффузионной форме:

$$D_0(q) \stackrel{q \to 0}{\approx} \frac{\Gamma^2}{4} \frac{1}{2N+1} \frac{2\pi}{q^2/2+\varepsilon},$$
 (15)

в которой транспортная длина l заменена на циклотронный радиус R_c (здесь $\varepsilon \propto L^{-2}$ — обрезающий параметр, имеющий смысл обратного времени дефазировки). Поскольку интегрирование одиноко стоящего диффузона D_0 по волновому вектору **q** приводит к ультрафиолетовой расходимости, полезно ввести усеченные диффузоны $D_m(q)$, в которых суммирование стартует не с одной, а с m + 1 примесных линий,

$$D_m(q) = W \frac{[P_N]^m}{1 - P_N} \approx W \frac{[J_0(t)]^{2m}}{1 - [J_0(t)]^2}.$$
 (16)

Расходящиеся квантовые поправки к проводимости: диффузонные диаграммы

Поскольку каждый диффузон привносит фактор малости $(2N + 1)^{-1}$, все логарифмически расходящиеся вклады в квантовую поправку 2-го порядка $\delta \sigma_2$ даются суммой одно-, двух- и трехдиффузонных наборов диаграмм, приведенных на рис. 2. Для расчета коэффициента перед температурным логарифмом прежде всего необходимо локализовать вклады, происходящие от областей малых величин каждого из волновых векторов, применяя правило

$$\delta\sigma_i^{(q)} = \int \frac{d^2\mathbf{q}}{(2\pi)^2} \int d^2\mathbf{r} e^{i\mathbf{q}\mathbf{r}} D(q) F(\mathbf{q}, \mathbf{r}) \to \int \frac{d^2\mathbf{q}}{(2\pi)^2} D(q)$$
$$\times \int d^2\mathbf{r} F(\mathbf{0}, \mathbf{r}) = \frac{\Gamma^2}{4} \frac{\ln(1/\varepsilon)}{2N+1} \int d^2\mathbf{r} F(\mathbf{0}, \mathbf{r}) \quad (17)$$

ко всем диффузонным волновым векторам, входящим в рассматриваемую диаграмму (q для однодиффузонных диаграмм; q и Q для двухдиффузонных диаграмм; q₁, Q и q + Q для трехдиффузонных диаграмм). Затем следует исключить все возможные интегрирования по промежуточным точкам, используя тождество

$$\int G^{R}(\mathbf{r}_{1},\mathbf{r})G^{A}(\mathbf{r},\mathbf{r}_{2})d^{2}\mathbf{r} = i\mathscr{T}(x)(G^{R}-G^{A}) = G^{B}, \quad (18)$$

где эффективное время рассеяния $\mathscr{T}(x)$ в рамках ССБП при $\omega_c \tau \gg 1$ дается формулой

$$\mathscr{T}(x) = \frac{1}{\Gamma\sqrt{1-x^2}}.$$
(19)

Используя уравнения (4), (5), несложно получить следующие выражения для спектральной функции Грина G^{B} ,

Физика и техника полупроводников, 2012, том 46, вып. 6

Рис. 2. Набор диаграмм для квантовой поправки к проводимости 2-го порядка по параметру $(2N + 1)^{-1}$, расходящихся при нулевой температуре (эквивалентно $\varepsilon = 0$). Сплошные линии с пометками \mathcal{R} и \mathcal{A} обозначают запаздывающую и опережающую функции Грина, волнистая линия подразумевает полноценный диффузон, точечная — логарифмический вклад, происходящий от области малых волновых векторов соответствующего диффузона.

фигурирующей в правой части (18):

$$G^{B}(\mathbf{r},\mathbf{r}') = \sum_{n} G^{B}_{n}(x) K_{n}(\mathbf{r},\mathbf{r}'), \qquad (20)$$

$$G_N^B(x) = \frac{4}{\Gamma^2},\tag{21}$$

$$G_{N+\Delta}^B(x) = \frac{1}{\Delta^2 (\hbar \omega_c)^2}.$$
 (22)

С использованием указанных операций все диаграммы максимально упрощаются, как показано на рис. 3-5.

Рис. 3. Упрощение двухдиффузонных диаграмм за счет выделения вкладов малых импульсов каждого из диффузонов и применения формулы (18). Сплошные линии с пометкой \mathscr{B} обозначают спектральную функцию Грина (20). Определения лестниц RR/AA и вершин $V_{3,4}$ приведены на вставках.

Рис. 4. Упрощение левых вершин трехдиффузонных диаграмм ("квадратных хиками-боксов") при операциях, описанных для рис. 3 (правые вершины преобразуются аналогично и по этой причине не приводятся). Последовательно показаны вклады, происходящие от областей малых величин волновых векторов \mathbf{q} , \mathbf{Q} и $\mathbf{q} + \mathbf{Q}$.

Рис. 5. Аналогично рис. 3 для однодиффузонных диаграмм.

В пределе $\omega_c \tau \gg 1$ пребывание носителей на уровнях Ландау, отличных от фермиевского с номером N, как видно из уравнений (5), (22), дает параметрическую малость, поэтому все электронные линии на каждой из диаграмм на рис. 3–5 содержат индекс N, помимо одной линии в каждой из токовых вершин, соответствующей соседним уровням Ландау, с номерами $N \pm 1$. Технически все диаграммы на рис. 3–5 состоят из парных петель, их геометрических прогрессий (лестниц *RR/AA*), диффузонов и двух типов вершин — V_3 и V_4 (введенных на второй вставке к рис. 3) и, поскольку

Рис. 6. Сокращение однодиффузонных диаграмм со всевозможными комбинациями двух дополнительных примесных линий устраняет ультрафиолетовую расходимость отдельных диаграмм на рис. 2.

все эти структурные элементы являются замкнутыми, становится удобным переход к импульсному представлению. Далее, взаимное сокращение диаграмм с малым часлом линий, собранных на рис. 6, устраняет проблему ультрафиолетовой расходимости отдельных вкладов, приведенных на рис. 3-5. В результате диффузоны в диаграмме (A) следует начинать с трех примесных линий (D₂), в диаграммах (B, C, E–H) — с друх примесных линий (D1). К тому же из трехдиффузонной диаграммы с двумя "чистыми" (без дополнительных линий) хиками-квадратами необходимо вычесть сумму диаграмм (a), (b) и (q), а из диаграмм (R-V) — сумму диаграмм (m-p) и (q). Реализация указанной схемы с использованием выражений (П.1, П.2) для вершин V_{3.4} приводит к ответу для предшествующего логарифму коэффициента С, определяемого формулой

$$\delta\sigma_2 = \frac{C(x)}{2\pi} \frac{\ln(1/\varepsilon)}{2N+1} \frac{e^2}{h}.$$
 (23)

В результате C(x) представляется в виде суммы интегралов

$$C_{\text{ABCD}} = \int_{0}^{\infty} dw \, \frac{P^2 \{ 2F_1(w) - (P^2 - 2P + 3)F_2(\omega) + \\ + (\alpha + \alpha^*)(1 - P)[F_1(w) - F_2(w)] \}}{(1 - P)|1 - \alpha P|^2},$$
(24)

$$C_{\rm EFGHIJ} = -\int_{0}^{\infty} dw \, \frac{P^2 \{ [2(1-P) + \alpha + \alpha^*] F_2(w) + \\ + [2 + (\alpha + \alpha^*)(1-P)] F_3(w) \}}{(1-P)|1 - \alpha P|^2},$$
(25)

 $C_{\text{KLMN}} = -\int_{0}^{\infty} dw$ $\times \frac{P^{2}\{[\alpha^{2} + (\alpha^{*})^{2} - 2(\alpha + \alpha^{*})P + P^{2}]F_{2}(\omega) + +[(\alpha + \alpha^{*})(1 + P^{2}) - 4P]F_{3}(w)\}}{(1 - P)|1 - \alpha P|^{4}},$ (26)

$$C_{\rm OP} = -\int_{0}^{\infty} dw$$

$$\times \frac{P\{[1+P^2 - (1-P)^2|1-\alpha P|^2]F_2(w) + 2PF_3(w)\}}{(1-P)^2|1-\alpha P|^2},$$
(27)

$$C_{\rm Q} = -\int_{0}^{\infty} dw \times \frac{P[(1+P)^2 - |1-\alpha P|^4][2F_2(w) + (\alpha + \alpha^*)F_3(w)]}{2|1-\alpha P|^4},$$
(28)

$$C_{\rm RST} = \int_{0}^{\infty} dw \frac{P^2 \{ [\alpha^2 + (\alpha^*)^2 + 1 - (\alpha + \alpha^*)P]F_1(w) - \frac{-2(\alpha + \alpha^* - P)F_2(w)\}}{|1 - \alpha P|^2},$$
(29)

$$C_{\rm UV} = -\int_{0}^{\infty} dw$$

$$\times \frac{P^2 F_3(w) \{ 2[\alpha^2 + (\alpha^*)^2] - (\alpha + \alpha^*)[\alpha^2 + (\alpha^*)^2 + 3]P + +2[\alpha^2 + (\alpha^*)^2 + 2]P^2 - (\alpha + \alpha^*)P^3 \}}{2|1 - \alpha P|^4},$$
(30)

где $\alpha = (\Gamma^2/4)[G_N^R]^2 = 2x^2 - 1 - 2ix\sqrt{1-x^2}$ происходит от лестниц *RR/AA*, характерных для ССБП (см. последнюю строчку на рис. 2), а функции

$$F_{1}(w) = e^{-w} [(N+1)L_{N}(w)L_{N+1}(w) + NL_{N}(w)L_{N-1}(w)],$$
(31)

$$F_2(w) = 2e^{-w}wL_N^1(w)L_{N-1}^1(w), \qquad (32)$$

$$F_{3}(w) = e^{-w}w\{[L_{N}^{1}(w)]^{2} + [L_{N-1}^{1}(w)]^{2}\}$$
(33)

описывают квантово-механическую динамику носителей на разъединенных уровнях Ландау. Легко видеть, что подынтегральные выражения в C_{ABCD} и C_{OP} ведут себя как $\sim w^{-1}$ при малых w, приводя к поведению $\sim \ln^2 \varepsilon$ для двух- и трехдиффузонных вкладов в случае их независимого вычисления, однако при сложении вкладов

расходимость такого рода пропадает, так как

$$\delta \sigma_2^{(\text{ABCD})} \approx -\delta \sigma_2^{(\text{OP})}$$
$$\approx \frac{1}{8\pi (1-x^2)} \frac{\ln^2 \varepsilon}{2N+1} \frac{e^2}{h} = \frac{\ln^2 \varepsilon}{8\pi^2 \sigma_0}.$$
 (34)

Заметим, что правая часть (34) может быть представлена как функция единственного аргумента σ_0 , что намекает на справедливость скейлинга.[†] Однако ни данный факт, связанный, вероятно, с диффузионной природой этих вкладов (в противоположность баллистической сущности суммарных выражений для коэффициента С), ни сокращение членов типа $\ln^2 \varepsilon$ не доказывают концепцию скейлинга даже в рамках 2-го порядка теории возмущений, в отличие от случая нулевого магнитного поля, впервые рассмотренного в работе [10]. Такое различие напрямую связано с квантованием Ландау, поскольку проводимость Друде-Андо, определяемая формулой (11), зависит не только от номера фермиевского уровня Ландау N (играющего роль эффективного параметра $k_{\rm F}l$), но и от параметра x, дающего относительное положение уровня Ферми внутри данного уровня Ландау. Для того чтобы действительно проверить однопараметрическую скейлинговую гипотезу, рассмотрим далее предел $N \gg 1$.

4. Предел высоких уровней Ландау

Хотя формально все выражения предыдущего раздела были получены для произвольного фермиевского уровня Ландау N (при единственном условии $\omega_c \tau \gg 1$), их практическое использование становится осмысленным лишь в пределе $N \gg 1$ ввиду принципа отбора диаграмм в рамках используемой техники. По этой причине все полиномы Лагерра в формулах (24)–(33) следует заменить функциями Бесселя, а именно $F_1(w) \approx (2N + 1)P$, $F_{2,3}(w) \approx (2N + 1)Q$, $P \approx [J_0(t)]^2$, $Q \approx [J_1(t)]^2$. Поскольку dw = tdt/(2N + 1), дополнительный множитель 2N + 1, возникающий при указанных подстановках, исчезает при переходе к интегрированию по переменной t. Конечный ответ для коэффициента C(x) можно записать в виде

$$C = \int_{0}^{\infty} \frac{(C_0 - 4x^2C_1 + 16x^4C_2 - 64x^6C_3)P^2tdt}{[(1+P)^2 - 4x^2P]^2},$$
 (35)

$$C_{0}(t) = \left[P(1-P)(1+P)^{3}(3-2P) - Q(1+P)^{2}(3+2P+P^{2}-2P^{3})\right]/(1-P)^{2}, \quad (36)$$

$$C_{1}(t) = \left[P(1-P)(1+P)(3+4P-5P^{2}-P^{3}) - Q(3-2P+4P^{2}+P^{3}-3P^{4}+P^{5})\right]/(1-P^{2}), \quad (37)$$

Рис. 7. Зависимости от относительного положения уровня Ферми внутри данного уровня Ландау, *x*: *a* — коэффициента *C* в пределах сильного (*1*) и слабого (*2*) магнитного поля; *b* — проводимости Друде–Андо (*1*) и плотности состояний DOS (*2*).

$$C_2(t) = P(1 + 5P + 2P^2) - Q(3 + P + 2P^2), \quad (38)$$

$$C_3(t) = P(P - Q).$$
 (39)

Хотя приведенные выражения и выглядят громоздко, их несложно проанализировать посредством численного интегрирования. Наиболее интересным является случай уровня Ферми, попадающего в центр одного из уровней Ландау (точка перехода между двумя плато целочисленного квантового эффекта Холла), что соответствует x = 0 (см. рис. 1, *b*). В этой точке все вклады, описываемые формулами (24)–(30), являются величинами порядка 1 или в точности обращаются в нуль, именно

$$C_{ABCD}(x = 0) + C_{OP}(x = 0) \approx -0.53526,$$

 $C_{RST}(x = 0) \approx 0.61274, \quad C_{UV}(x = 0) \approx -0.07862,$
 $C_{E-J}(x = 0) = C_{K-N}(x = 0) = C_Q(x = 0) = 0.$

Однако суммарный коэффициент, равный при x = 0

$$C_{0} = \int_{0}^{\infty} \frac{P^{2}tdt}{1 - P^{2}} \bigg[P(3 - 2P) - \frac{Q(3 + 2P + P^{2} - 2P^{3})}{1 - P^{2}} \bigg],$$
(40)

[†] Множитель $(e^2/h)^2$ опущен в правой части формулы (34) и некоторых других по соображениям компактности.

Рис. 8. Зависимости пиковых величин продольной проводимости, соответствующих уровням Ландау с номерами N = 0, 1, 2,от эффективного размера моделируемого образца: I — численный эксперимент, 2 — теория данной работы, 3 — теория работы [6].

оказывается меньше по величине более чем на 2 порядка, $C_0 \approx -0.00115$. Полная зависимость коэффициента Cот относительного положения уровня Ферми x приведена на рис. 7 вместе с плотностью состояний и проводимостью Друде–Андо. Поведение рассматриваемого коэффициента вблизи краев актуального уровня Ландау (|x| = 1) дается асимптотикой $C(x) \propto -1/[2(1-x^2)]$, так что квантовая поправка к проводимости может быть выражена через σ_0 с коэффициентом, совпадающим с полученным в работах [6,11] и относящимся к пределу неквантующего магнитного поля,

$$\delta\sigma_2 \stackrel{|x| \to 1}{\approx} -\frac{1}{4\pi(1-x^2)} \frac{\ln(1/\varepsilon)}{2N+1} \frac{e^2}{h} = -\frac{\ln L}{2\pi^2 \sigma_0}.$$
 (41)

Однако сопоставление рис. 7 и формулы

$$\delta\sigma_2 = \frac{C(x)}{4\pi} \frac{\ln L}{2N+1} \frac{e^2}{h} = \frac{(1-x^2)C(x)}{\pi^2\sigma_0} \ln L \qquad (42)$$

показывает, что на самом деле скейлинг (по крайней мере однопараметрический) нарушается при любом положении уровня Ферми внутри данного уровня Ландау (помимо выделенных точек |x| = 1, в которых принципиально неприменимым становится ССБП). Таким образом, мы показали, что факт нарушения однопараметрического скейлинга следует из рассмотрения первого неисчезающего порядка теории возмущений и не требует непертурбативного рассмотрения, как утверждалось в работе [4]. Для оценки верхней границы величины $\delta\sigma_2$ при нахождении уровня Ферми в центре рассматриваемого уровня Ландау положим в формуле (42) x = 0, а $\sigma_0 \sim e^2/h$. В итоге

$$|\delta\sigma_2| \sim 10^{-4} \ln L \, \frac{e^2}{h} \lesssim 10^{-3} \, \frac{e^2}{h}$$
 (43)

во всем диапазоне разумных эффективных размеров образца, $L \lesssim 10^5 l_B$.[‡] Данная оценка показывает, что зависимость максимумов продольной проводимости $\sigma_{xx}^{(n)}$ от эффективного размера образца (описываемая в рамках теории возмущений формулой (42) с $C(x = 0) \approx -0.001$) является настолько слабой, что вряд ли может быть обнаружена как в реальном, так и в численном эксперименте, подобном представленному на рис. 8. Опуская подробности численного исследования (описанные в работе [7]), мы констатируем, что плоские зависимости пиков $\sigma_{xx}^{(n)}$ от размера образца, полученные в численном эксперименте (отклонение от горизонтали меньше $0.02e^2/h$ при изменении L от 50l_B до 1000l_B, находятся в отличном согласии с результатами расчетов квантовой поправки диаграммным методом, в противоположность теории, игнорирующей квантование Ландау [6]. Кроме того, принимая во внимание, что лагранжианы эффективной теории поля, использованные в работах [4,6], отличаются лишь членом, пропорциональным σ_{xy} , мы заключаем, что работа [4] также не в состоянии объяснить данные численного эксперимента, в отличие от теории, изложенной в данной публикации.

5. Заключение

Итак, мы изучили расходящиеся в пределе нулевой температуры квантовые поправки к продольной проводимости двумерного электронного газа в режиме квантующих магнитных полей, $\omega_c \tau \gg 1$, типичном для наблюдения целочисленного квантового эффекта Холла. Показано, что наружение однопараметрического скейлинга происходит в первом неисчезающем порядке теории возмущений, в противоположность положениям работы [4], указывающей на непертурбативную природу поправок. Причиной такого расхождения мы полагаем разницу в подходах к учету влияния сильного магнитного поля в данной работе и в рамках нелинейной σ модели. Наше теоретическое рассмотрение подкреплено численными расчетами зависимостей пиков продольной проводимости от эффективного размера образца. Плоские зависимости, полученные для трех нижних уровней Ландау, находятся в отличном согласии с оценкой квантовой поправки к проводимости, в противоположность теории, базирующейся на нелинейной σ -модели [4–6].

[‡] В реальном эксперименте эффективный размер образца определяется температурой. Из соображений скейлинга имеется степенной закон $L \propto T^{-p/2}$ с экспериментально определенным показателем $p \approx 3$. Согласно данным работы [12], эффективный размер L = 64 мкм $\sim 10^4 l_B$ соответствует температуре $T \approx 40$ мК.

Таким образом, мы заключаем, что стандартная диаграммная техника усреднения по беспорядку представляет собой надежный и продуктивный инструмент для исследования транспортных свойств квантово-холловских систем.

Работа выполнена при поддержке Фонда "Династия" и РФФИ (№ 11-02-00573). Автор благодарит И.В. Горного, В.Ю. Качоровского и А.П. Дмитриева за полезные обсуждения.

Приложение

(

Выражения для вершин и расчет диаграмм

В Приложении мы приводим необходимые детали вычисления вкладов в квантовую поправку к проводимости $\delta\sigma_2$. Прежде всего технически очень удобно объединить токовые вершины и некоторые функции Грина в блоки $V_{3,4}$ по причине из замкнутости, что избавляет от фазового множителя, связанного с присутствием магнитного поля, и облегчает переход к импульсному представлению. Явные выражения для $V_{3,4}$ в главном порядке по ($\omega_c \tau$)⁻¹ имеют вид

$$V_{3}^{\{ABC\}}(\mathbf{q}) = \sqrt{\frac{v_{B}}{2}} C_{N} \sqrt{w} e^{-w} L_{N}(w)$$

$$\times \left\{ e^{i\varphi} \left[A_{N} B_{N+1} L_{N}^{1}(w) - A_{N-1} B_{N} L_{N-1}^{1}(w) \right] + e^{-i\varphi} \left[A_{N+1} B_{N} L_{N}^{1}(w) - A_{N} B_{N-1} L_{N-1}^{1}(w) \right] \right\}, \quad (\Pi.1)$$

$$V_{4}^{\{ABCD\}}(q) = \frac{v_{B}^{2}}{2} e^{-w} \Big\{ (N+1)L_{N}(w)L_{N+1}(w) \\ \times (A_{N}B_{N+1}C_{N+1}D_{N} + A_{N+1}B_{N}C_{N}D_{N+1}) \\ + NL_{N}(w)L_{N-1}(w)(A_{N}B_{N-1}C_{N-1}D_{N} + A_{N-1}B_{N}C_{N}D_{N-1}) \\ + wL_{N}^{1}(w)L_{N-1}^{1} \Big[A_{N}C_{N}(B_{N+1}D_{N-1} + B_{N-1}D_{N+1}) \\ + B_{N}D_{N}(A_{N+1}C_{N-1} + A_{N-1}C_{N+1}) \Big] \Big\}, \qquad (\Pi.2)$$

где $v_B = \hbar/ml_B$, **q** — волновой вектор, сопряженный **r**₁₂ для V₃ и **r**₁₃ для V₄ (см. иллюстрацию на второй вставке к рис. 3), множитель $e^{i\varphi} = (q_x + iq_y)/q$ отражает векторную сущность V₃, содержащей в себе лишь одну векторную вершину из двух. Под символами A, B, C, D в формулах (П.1), (П.2) подразумеваются запаздывающая, опережающая или спектральная функции Грина, G^R , G^A и G^B , расстановка которых определяется конкретной диаграммой. Применение этих формул приводит к следующим выражениям для частных вкладов в суммарный коэффициент C(x):

$$C_{\rm A} = 2\Xi \int \frac{d^2 \mathbf{q}}{(2\pi)^2} D_2(q) \mathcal{V}_4^{\{BRBA\}}(q) = -\int dw \; \frac{P^2}{1-P} F_2(w), \tag{II.3}$$

$$C_{\rm BC} = 2\Xi \int \frac{d^2 \mathbf{q}}{(2\pi)^2} D_1(q) \mathcal{V}_4^{\{BRRA\}}(q)$$

$$\times \frac{(\Gamma^2/4) R_N B_N P_N(q)}{1 - \alpha P_N(q)} + \text{c.c.} = \int dw$$

$$\times \frac{P^2}{1 - P} \frac{[2 - (\alpha + \alpha^*) P] F_1(w) - (\alpha + \alpha^* - 2P) F_2(w)}{1 - \alpha P},$$
(II.4)

$$C_{\rm D} = 2\Xi \int \frac{d^2 \mathbf{q}}{(2\pi)^2} D_0(q) V_4^{\{ARRA\}}(q)$$

$$\times \frac{(\Gamma^2/4) R_N B_N P_N(q)}{1 - \alpha P_N(q)} \frac{(\Gamma^2/4) B_N A_N P_N(q)}{1 - \alpha^* P_N(q)}$$

$$= \int dw \, \frac{P^2}{1 - P} \frac{(\alpha + \alpha^*) F_1(w) - 2F_2(w)}{|1 - \alpha P|^2}, \quad (\Pi.5)$$

$$C_{\text{EFGH}} = \Xi \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \frac{D_1(q)}{1 - \alpha P_N(q)} \left[\mathbf{V}_3^{\{ARR\}}(\mathbf{q}) \mathbf{V}_3^{\{RBB\}}(-\mathbf{q}) + \mathbf{V}_3^{\{RAR\}}(\mathbf{q}) \mathbf{V}_3^{\{BRB\}}(-\mathbf{q}) \right] + \text{c.c.} = -\int dw$$
$$\times \frac{P^2 \{ (\alpha + \alpha^* - 2P)F_2(w) + [2 - (\alpha + \alpha^*)P]F_3(w) \}}{(1 - P)|1 - \alpha P|^2}, \tag{II.6}$$

$$C_{IJ} = \Xi \int \frac{d^2 \mathbf{q}}{(2\pi)^2} D_0(q) \frac{1}{1 - \alpha P_N(q)} \frac{1}{1 - \alpha^* P_N(q)} \frac{\Gamma^2}{4} \\ \times B_N^2 P_N(q) \mathcal{V}_3^{\{ARR\}}(\mathbf{q}) \mathcal{V}_3^{\{RAA\}}(-\mathbf{q}) + \text{c.c.} \\ = -\int dw \, \frac{P^2 [2F_2(w) + (\alpha + \alpha^*)F_3(w)]}{(1 - P)|1 - \alpha P|^2}, \tag{II.7}$$

$$C_{\text{KLMN}} = \Xi \int \frac{d^2 \mathbf{q}}{(2\pi)^2} D_0(q) \frac{(\Gamma^2/4) R_N B_N P_N(q)}{[1 - \alpha P_N(q)]^2} [V_3^{\{ARR\}}(\mathbf{q}) \\ \times V_3^{\{RBR\}}(-\mathbf{q}) + V_3^{\{RAR\}}(\mathbf{q}) V_3^{\{BRR\}}(-\mathbf{q})] + \text{c.c.}$$
$$= -\int dw \frac{P^2 \{ [\alpha^2 + (\alpha^*)^2 - 2(\alpha + \alpha^*)P + P^2] F_2(w) + \\ + [(\alpha + \alpha^*)(1 + P^2) - 4P] F_3(w) \}}{(1 - P)|1 - \alpha P|^4},$$
(II.8)

$$C_{\rm OP} = \frac{\Xi}{2\pi l_B^2} \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \left\{ [D_0(q)]^2 [L_1(\mathbf{q}) L_1^*(-\mathbf{q}) + L_2(\mathbf{q}) L_2^*(-\mathbf{q})] - [\mathbf{V}_{3,\mathbf{q}}^{\{ABR\}} \mathbf{V}_{3,-\mathbf{q}}^{\{BRA\}} - \mathbf{V}_{3,\mathbf{q}}^{\{BRA\}} \mathbf{V}_{3,-\mathbf{q}}^{\{BRA\}}] \right\}$$
$$= -\int dw \frac{P[(1+P^2 - (1-P)^2 |1-\alpha P|^2) F_2(w) + 2PF_3(w)]}{(1-P)^2 |1-\alpha P|^2},$$
(II.9)

$$C_{\rm Q} = \frac{\Xi}{2\pi l_B^2} \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \left\{ [D_0(q)]^2 L_3(\mathbf{q}) L_3^*(-\mathbf{q}) - \mathbf{V}_3^{\{RAB\}}(\mathbf{q}) \mathbf{V}_3^{\{ARB\}}(-\mathbf{q}) \right\} = -\frac{1}{2} \int dw$$
$$\times \frac{P[(1+P)^2 - |1-\alpha P|^4] [2F_2(w) + (\alpha + \alpha^*)F_3(w)]}{|1-\alpha P|^4},$$
(II.10)

$$C_{\rm RS} = \Xi W \int \frac{d^2 \mathbf{q}}{(2\pi)^2} V_4^{\{BRRB\}}(q) \frac{\left[(\Gamma^2/4)R_N^2 P_N(q)\right]^2}{1 - \alpha P_N(q)} + \text{c.c.}$$
$$= \frac{1}{2} \int dw \, \frac{P^2 [\alpha^2 + (\alpha^*)^2 - (\alpha + \alpha^*)P]F_1(w)}{|1 - \alpha P|^2},$$
(II.11)

$$C_{\rm T} = \Xi \int \frac{d^2 \mathbf{q}}{(2\pi)^2} V_4^{\{ARRA\}}(q) W B_N^2 P_N(q)$$

$$\times \left(\frac{1}{[1 - \alpha P_N(q)][1 - \alpha^* P_N(q)]} - 1\right)$$

$$= \frac{1}{2} \int dw \frac{P^2(\alpha + \alpha^* - P)[(\alpha + \alpha^*)F_1(w) - 2F_2(w)]}{|1 - \alpha P|^2},$$
(II.12)

$$C_{\rm UV} = \Xi W \frac{\Gamma^2}{4} \int \frac{d^2 \mathbf{q}}{(2\pi)^2} \left(\frac{1}{[1 - \alpha P_N(q)]^2} - 1 \right)$$

× $V_3^{\{BRR\}}(\mathbf{q}) V_3^{\{RBR\}}(-\mathbf{q}) + \text{c.c.} = -\frac{1}{2} \int dw \frac{P^2 F_3(w)}{|1 - \alpha P|^4}$
× $\left\{ 2[\alpha^2 + (\alpha^*)^2] - (\alpha + \alpha^*)[\alpha^2 + (\alpha^*)^2 + 3]P + 2[\alpha^2 + (\alpha^*)^2 + 2]P^2 - (\alpha + \alpha^*)P^3 \right\}, \qquad (\Pi.13)$

где $\Xi = \hbar^2 \Gamma^2 / (4l_B^2)$ — общий для рассматриваемых диаграмм множитель, а функции *P*, *D_m* и *F*_{1,2,3} описываются соответственно формулами (14), (16) и (31)–(33). Вершины *L*_{1,2,3}, фигурирующие в выражениях (П.9), (П.10) (см. рис. 4), даются следующими выражениями:

$$\begin{split} L_{1}(\mathbf{q}) &= \mathrm{V}_{3}^{\{ABR\}}(\mathbf{q}) + \mathrm{V}_{3}^{\{ARR\}}(\mathbf{q}) \frac{(\Gamma^{2}/4)B_{N}R_{N}P_{N}(q)}{1 - \alpha P_{N}(q)} \\ &= -\frac{\sqrt{v_{B}/2}}{\hbar\omega_{c}} \frac{B_{N}R_{N}\sqrt{w}e^{-w}L_{N}(w)}{1 - \alpha P} \\ &\times \Big\{ e^{i\varphi}[L_{N}^{1}(w) + PL_{N-1}^{1}(w)] + e^{-i\varphi}[L_{N-1}^{1}(w) + PL_{N}^{1}(w)] \Big\}, \\ &\qquad (\Pi.14) \end{split}$$

$$\begin{split} L_{2}(\mathbf{q}) &= \mathrm{V}_{3}^{\{BRA\}}(\mathbf{q}) + \mathrm{V}_{3}^{\{ARA\}}(\mathbf{q}) \, \frac{(\Gamma^{2}/4)B_{N}A_{N}P_{N}(q)}{1 - \alpha^{*}P_{N}(q)} \\ &= -\frac{\sqrt{v_{B}/2}}{\hbar\omega_{c}} \, \frac{B_{N}A_{N}e^{-w}\sqrt{w}L_{N}(w)}{1 - \alpha^{*}P} \\ &\times \Big\{ e^{i\varphi}[L_{N}^{1}(w) + PL_{N-1}^{1}(w)] + e^{-i\varphi}[L_{N-1}^{1}(w) + PL_{N}^{1}(w)] \Big\}, \\ &\qquad (\Pi.15) \end{split}$$

$$L_{3}(\mathbf{q}) = V_{3}^{\{ARB\}}(\mathbf{q}) + V_{3}^{\{ARR\}}(\mathbf{q}) \frac{(\Gamma^{2}/4)R_{N}B_{N}P_{N}(q)}{1 - \alpha P_{N}(q)} + V_{3}^{\{ARA\}}(\mathbf{q}) \frac{(\Gamma^{2}/4)A_{N}B_{N}P_{N}(q)}{1 - \alpha^{*}P_{N}(q)} = -\frac{\sqrt{\upsilon_{B}/2}}{\hbar\omega_{c}} \frac{1 - P^{2}}{|1 - \alpha P|^{2}} \times B_{N}\sqrt{w}e^{-w}L_{N}(w) \Big\{ e^{i\varphi}[A_{N}L_{N}^{1}(w) + R_{N}L_{N-1}^{1}(w)] + e^{-i\varphi}[A_{N}L_{N-1}^{1}(w) + R_{N}L_{N}^{1}(w)] \Big\}.$$
(II.16)

Список литературы

- [1] E. Abrahams, P.W. Anderson, D.C. Licciardello, T.V. Ramakrishnan. Phys. Rev. Lett., **42**, 673 (1979).
- [2] B. Huckestein. Rev. Mod. Phys., 67, 357 (1995).
- [3] Д.Е. Хмельницкий. Письма ЖЭТФ, 38 (9), 54 (1983) [JETP Lett., 38, 552 (1983)].
- [4] A.M.M. Pruisken. Phys. Rev. B, 32, 2636 (1985).
- [5] H. Levine, S.B. Libby, A.M.M. Pruisken. Nucl. Phys., B240[FS12], 30 (1984).
- [6] S. Hikami. Phys. Rev. B, 24, 2671 (1981).
- [7] А.А. Грешнов, Г.Г. Зегря, Э.Н. Колесникова. ЖЭТФ, 134 (3), 577 (2008).[JETP, 107, 491 (2008)] А.А. Greshnov, G.G. Zegrya. Physica E, 40, 1185 (2008).
- [8] T. Ando, Y. Uemura. J. Phys. Soc. Jpn., 36, 959 (1974);
 T. Ando. J. Phys. Soc. Jpn., 37, 1233 (1974).
- [9] L.D. Landau, E.M. Lifshitz. *Quantum mechanics* (Pergamon, Oxford, 1977) §112.
- [10] Л.П. Горьков, А.И. Ларкин, Д.Е. Хмельницкий. Письма ЖЭТФ, **30**, 248 (1979) [JETF Lett., **30**, 228 (1979)].
- [11] А.А. Голубенцев. Письма ЖЭТФ, 41, 527 (1985) [JETP Lett., 41, 644 (1985)].
- [12] S. Koch, R.J. Haug, K.v. Klitzing, K. Ploog. Phys. Rev. Lett., 67, 883 (1991).

Редактор Л.В. Шаронова

Quantum corrections to conductivity under conditions of the integer quantum Hall effect

A.A. Greshnov

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Quantum corrections to conductivity of the twodimensional electron gas have been studied under conditions of the integer quantum Hall effect. It is shown that breakdown of the one-parameter scaling occurs perturbatively in the regime of quantizing magnetic fields, $\omega_c \tau \gg 1$. Our diagrammatical results are in agreement with the effective sample size dependencies of the longitudinal conductivity peaks obtained numerically, in contrast to prediction of the unitary non-linear σ -model. We assert that taking into account Landau quantization is vital for correct description of the quantum Hall effect.