Оптические переходы в $MnGa_2Se_4$

© Б.Г. Тагиев, Т.Г. Керимова [¶], О.Б. Тагиев, С.Г. Асадуллаева, И.А. Мамедова

Институт физики Национальной академии наук Азербайджана,

АZ-1143 Баку, Азербайджан

(Получена 8 ноября 2011 г. Принята к печати 21 ноября 2011 г.)

В интервале температур 110–295 К исследована зависимость коэффициента поглощения от энергии падающих фотонов в монокристалле MnGa₂Se₄. С использованием теоретико-группового анализа симметрии электронных состояний и сопоставления симметрии энергетического спектра MnGa₂Se₄ и его изоэлектронных аналогов сделан вывод о характере оптических переходов. Показано, что особенности при 2.31 и 2.45 эВ связаны с внутрицентровыми переходами ${}^{6}A_{1}^{1} \rightarrow {}^{4}T_{2}({}^{4}G)$ и ${}^{6}A_{1}^{2} \rightarrow {}^{4}T_{2}({}^{4}G)$. Состояние ${}^{6}A_{1}$ расщеплено кристаллическим полем.

МпGa₂Se₄ принадлежит к группе соединений типа $A^{II}B_2^{III}C_4^{VI}$ (A — Mn; B — Ga, In; C — S, Se, Te) и является полумагнитным полупроводником. Это соединение впервые синтезировано авторами [1], и в результате рентгенографических исследований показано, что MnGa₂Se₄ кристаллизуется в тетрагональной структуре (пространственная группа S_4^2) с параметрами решетки a = 5.674 Å, c = 10.757 Å, c/a = 1.895. Позднее это соединение было получено авторами [2,3]. Полумагнитные полупроводниковые соединения представляют значительный интерес для использования в полупроводниковом приборостроении, в частности в спинтронике. Поэтому всестороннее исследование физических свойств таких соединений являются одной из актуальных задач физики твердого тела.

Ранее нами были исследованы оптические спектры MnGa₂Se₄ в области края собственного поглощения [4]. Однако из-за отсутствия расчетов зонного спектра были сделаны лишь качественные выводы относительно характера оптических переходов. Позднее в [5] также были проведены исследования края собственного поглощения MnGa₂Se₄ при давлениях до 20ГПа. При 14 ГПа наблюдается фазовый переход в структуру типа NaCl. Авторы утверждают, что край собственного поглощения MnGa₂Se₄ формируется прямыми оптическими переходами. Для ширины запрещенной зоны приводится значение 2.7 эВ. Следует отметить, что в этой работе не указывается, в какой точке зоны Бриллюэна имеется наименьший энергетический зазор и какими неприводимыми представлениями описываются валентная зона и зона проводимости.

В настоящем сообщении приводятся результаты исследований температурной зависимости коэффициента поглощения MnGa₂Se₄ в интервале 110–295 К (рис. 1). Монокристаллы MnGa₂Se₄ были получены методом газотранспортных реакций. В качестве переносчика использовался кристаллический йод. Параметры решетки, определенные рентгенографическим методом, составили a = 5.671 Å, c = 10.754 Å, c/a = 1.9, что согласуется с результатами [1]. Измерения были проведены на образцах толщиной 70–100 мкм. Из рис. 1 видно, что

при 295 К зависимость коэффициента поглощения от энергии падающего излучения плавно возрастает с перегибами при 2.31 и 2.42 эВ. С понижением температуры до 110 К перегибы трансформируются в максимумы, причем вместо перегиба при 2.42 эВ наблюдается максимум при 2.45 эВ. В высокоэнергетической области коэффициент поглощения возрастает до 7 · 10² см⁻¹.

В настоящее время отсутствуют расчеты зонной структуры MnGa₂Se₄. Однако определенные выводы о переходах в области края собственного поглощения этого соединения можно сделать, используя результаты теоретико-групповых исследований симметрии электронных состояний, проведенных для соединений, кристаллизующихся в пространственной группе S_4^2 [6]. MnGa₂Se₄, так же как другие соединения типа $A^{II}B_2^{II}C_4^{VI}$ (CdGa₂S₄, CdGa₂Se₄, ZnGa₂Se₄), кристаллизуется в про-

Рис. 1. Зависимость коэффициента поглощения от энергии падающего излучения в MnGa₂Se₄ при различных значениях температуры (по стрелке): 110, 135, 159, 184, 217, 240, 259, 277, 295 К. На вставке — схема оптических переходов в точке Г(000) зоны Бриллюэна MnGa₂Se₄.

[¶] E-mail: ktaira@physics.ab.az

странственной группе S_4^2 . Для соединений, кристаллизующихся в пространственной группе S_4^2 , характерными особенностями являются наличие двух сортов атомов в катионной подрешетке, упорядоченных катионных вакансий и тетрагональное сжатие решетки вдоль кристаллографической оси *C*.

В [6] теоретико-групповым методом исследована симметрия электронных состояний в соединениях, кристаллизующихся в пространственной группе S_4^2 . Установлена кратность состояний, формирующих вершину валентной зоны и дно зоны проводимости, получены правила отбора для оптических переходов в высокосимметричных точках зоны Бриллюэна. Из анализа экспериментальных результатов совместно с результатами теоретикогрупповых исследований [6] и сопоставления их с результатами для изоэлектронных аналогов — соединений $A^{III}B^V$, $A^{III}B^{IV}C^V$ (GaAs, GaP, ZnGeP₂, ZnGaAs₂) установлено, что оптические переходы в соединениях A^{II}B^{III}C^{VI}₄ (CdGa₂S₄, CdGa₂Se₄, ZnGa₂Se₄) реализуются в центре зоны Бриллюэна. Поскольку MnGa₂Se₄ кристаллизуется в пространственной группе S_4^2 и является изоэлектронным аналогом ZnGa2Se4, можно утверждать, что в этом соединении, так же как в ZnGa₂Se₄, наименьший энергетический зазор локализован в центре зоны Бриллюэна $\Gamma(000)$, вершина валентной зоны и дно зоны проводимости в дипольном приближении формируются состояниями $(\Gamma_3 + \Gamma_4)^v$, Γ_2^v и Γ_1^c . Вершина валентной зоны расщеплена кристаллическим полем. Как отмечено выше, в MnGa₂Se₄ имеют место наличие двух сортов атомов в катионной подрешетке и сжатие решетки c/a = 1.895 вдоль тетрагональной оси, которые создают возмущение. Последнее приводит к расщеплению вершины валентной зоны. Поэтому вклад в кристаллическое расщепление вносят два фактора: разность псевдопотенциалов атомов катионной подрешетки и тетрагональное сжатие решетки вдоль оси С.

Исходя из вышеизложенного можно предложить схему оптических переходов в MnGa₂Se₄ в центре зоны Бриллюэна (см. вставку на рис. 1). Оптические переходы $\Gamma_3 + \Gamma_4 \rightarrow \Gamma_1$ реализуются в поляризации **E** $\perp C$, а $\Gamma_2 \rightarrow \Gamma_1$ в **Е** || *С* (**Е** — электрическое поле волны). В области края собственного поглощения MnGa₂Se₄ при 295 К реализуются прямые оптические переходы при 2.5 эВ с коэффициентом температурного смещения $d\varepsilon/dT = 6.5 \cdot 10^{-4}$ эВ/К. В интервале 295–110 К край собственного поглощения смещается по линейному закону, и, следовательно, в этой температурной области основной вклад в коэффициент температурного изменения ширины запрещенной зоны вносит электронфононное взаимодействие. Энергетическое положение особенностей при 2.31 и 2.42 эВ не зависит от температуры.

Наличие двух близко расположенных особенностей и независимость их энергий от температуры свидетельствуют о расщеплении линии кристаллическим полем. Разность в энергетическом положении особенностей при 2.31 и 2.45 эВ при 110 К составляет 0.14 эВ, и эту

Рис. 2. Схема внутрицентровых переходов в атомах Mn^{2+} в $MnGa_2Se_4$.

величину можно связать с кристаллическим расщеплением Δ_{cr} . Тогда в согласии с [4] следует предположить, что эти линии связаны с внутрицентровыми переходами в атомах $Mn^{2+} {}^{6}A_{1}^{1} \rightarrow {}^{4}T_{2}({}^{4}G)$ и ${}^{6}A_{1}^{2} \rightarrow {}^{4}T_{2}({}^{4}G)$ (рис. 2). Уровень Mn ${}^{6}A_{1}$ расщеплен кристаллическим полем.

Кристаллическое расщепление, связанное с сжатием решетки вдоль тетрагональной оси, можно оценить по формуле [7] $\Delta_{cr} = -(3/2)b[2 - (c/a)]$, рассматривая тройное соединение MnGa₂Se₄ как изоэлектронный аналог соединения A^{III}B^V, сжатого до величины тетрагонального сжатия тройного соединения. В этой формуле *а* и *с* — параметры решетки, *b* — значение деформационного потенциала вершины валентной зоны изоэлектронного аналога A^{III}B^V. Изоэлектронным аналогом MnGa₂Se₄ является GaAs, для которого *b* = -1.7 эВ [8]. Вычисленное значение расщепления есть $\Delta_{cr} = 0.25$ эВ. Эта величина больше наблюдаемого расщепления, проявляющегося в наличии особенностей при 2.31 и 2.45 эВ (при 110 K) и составляющего 0.14 эВ.

Такое различие можно объяснить следующим образом. Выше было отмечено, что в кристаллическое расщепление в тройных пролупроводниках вносят вклад два фактора — сжатие решетки вдоль тетрагональной оси С и разность псевдопотенциалов атомов катионной подрешетки. В MnGa₂Se₄ в катионной подрешетке имеются два сорта атомов. Последнее создает значительную разность псевдопотенциалов. Известно [9], что сжатие решетки вдоль тетрагональной оси и разность псевдопотенциалов атомов катионной подрешетки создают одинаковые по порядку величины и противоположные по знаку расщепления. Следовательно, отличие экспериментально определенного значения Δ_{cr} от вычисленного по формуле связано с влиянием разности псевдопотенциалов атомов катионной подрешетки на величину кристаллического расщепления.

Список литературы

- [1] K.I. Range, H. Hubner. Z. Naturforsch., 316, 886 (1976).
- [2] R. Rimet, S. Schleneer, D. Fuchart. J. Physique, **43**, 1759 (1982).
- [3] R. Tovar, M. Quintero, E. Quintero, P. Bacaronda, J. Ruiz, R. Cadenas, A.E. Mora, L. Huger, J.M. Briceno, H. Raxoto, J.M. Broto, R. Barbaste. Mater. Res. Bull., 37, 1011 (2002).

- [4] Г.Н. Нифтиев, О.Б. Тагиев, Э.З. Зейналов, Б.Д. Алиев. ФТП, 25 (4), 704 (1991).
- [5] J. Gonzalez, R. Rico, E. Calderan, M. Quintero, M. Morocoima. Phys. Status Solidi B, 211 (1), 45 (1999).
- [6] Д.А. Гусейнова, Т.Г. Керимова, Р.Х. Нани. ФТП, 11 (2), 1135 (1977).
- [7] F.M. Polak, M. Cardona. Phys. Rev., 172, 816 (1968).
- [8] I.D. Willey. Sol. St. Commun., 8 (12), 1865 (1970).
- [9] А.С. Попловной, Г.Ф. Капаваев. Изв. АН СССР. Неорг. матер., 4 (2), 196 (1968).

Редактор Л.В. Шаронова

Optical transitions in MnGa₂Se₄

B.G. Tagiyev, T.G. Kerimova, O.B. Tagiyev, S.G. Asadullayeva, I.A. Mamedova

Institute of Physics, National Academy of Sciences of Azerbaijan, AZ-1143 Baku, Azerbaijan

Abstract Optical absorption spectra of MnGa₂Se₄ single crystals have been investigated in the 110–295 K temperature range. By using of the theoretical-group analysis of electron state symmetry and comparing with that for isoelectron analogs it is drown conclusion on nature of optical transitions. It was shown that features at 2.31 and 2.45 eV are connected with intra-center transitions ${}^{6}A_{1}^{1} \rightarrow {}^{4}T_{2}({}^{4}G)$ and ${}^{6}A_{1}^{2} \rightarrow {}^{4}T_{2}({}^{4}G)$. State ${}^{6}A_{1}$ is splitted by crystalline field.