12

Оптические фононы в объеме и на поверхности нанопроволок ZnO и ZnTe/ZnO в спектрах комбинационного рассеяния света

© В.С. Виноградов¹, В.Н. Джаган², Т.Н. Заварицкая¹, И.В. Кучеренко¹, Н.Н. Мельник¹, Н.Н. Новикова³, Е. Janik⁴, Т. Wojtowicz⁴, О.С. Пляшечник¹, D.R.T. Zahn⁵

 ¹ Физический институт им. П.Н. Лебедева РАН, Москва, Россия
 ² Институт физики полупроводников им. В.Е. Лашкарева НАН Украины, Киев, Украина
 ³ Институт спектроскопии РАН, Троицк, Московская обл., Россия
 ⁴ Институт физики Польской академии наук, Варшава, Польша
 ⁵ Semiconductor Physics, Chemnitz University of Technology, Chemnitz, Germany
 E-mail: kucheren@sci.lebedev.ru, vvs@sci.lebedev.ru, melnik@sci.lebedev.ru

(Поступила в Редакцию 5 марта 2012 г.)

Измерены спектры комбинационного рассеяния света нанопроволок ZnO и сердцевина-оболочка ZnTe/ZnO в условиях нерезонансного и резонансного возбуждений Ar⁺ и He-Cd-лазерами. Определены частоты оптических колебаний, характерные для вюрцитной структуры кристаллов ZnO. Продольные оптические фононы, активные в комбинационном рассеянии света, во всех структурах имеют смешанную A_1 и E_1 симметрию. Обнаружены поверхностные оптические моды с частотами $460-470 \text{ cm}^{-1}$. Для анализа поверхностных оптических мод однослойных нанопроволок использовались расчеты предшествующей работы P.M. Chassaing и других, а для двухслойных — соотношения, полученные в данной работе. Определен размер неоднородностей нанопроволок вдоль их оси.

Работа выполнена при поддержке РФФИ (проект № 10-02-00809а), программы президиума РАН "Квантовая физика конденсированных сред 10.4" и Фонда фундаментальных исследований Украины (Ф 40.2/068, 41.1/017), а также Фонда Александра фон Гумбольдта.

1. Введение

Окись цинка ZnO является прямозонным широкозонным полупроводником ($E_g = 3.37 \, \text{eV}$ при $T = 300 \, \text{K}$) типа II-VI. ZnO кристаллизуется в виде гексагональной структуры вюрцитного типа. Рост кристаллов происходит по оси *с* [1]. Так как элементарная ячейка ZnO содержит четыре атома, то в его спектре имеется двенадцать колебательных мод: три акустических (одна продольная и две поперечных) и девять оптических. Дисперсия оптических фононов в Г-точке зоны Бриллюэна представлена оптическими модами $2E_2 + 2E_1 + 2A_1 + 2B_1$. Моды E_1, E_2 и A_1 активны в комбинационном рассеянии света (КРС). Моды Е1 и А1 активны в инфракрасной спектроскопии, B_1 — "молчащие моды". Оптические E_1 и А1-моды расщепляются в Г-точке на поперечную и продольную макроскопическим кристаллическим полем. Расщепление между E_1 - и A_1 -модами вызвано анизотропией кристалла ZnO. Так, колебания A1 параллельны кристаллографической оси с, а E_1 — перпендикулярны ей. Неполярные оптические моды с симметрией Е2 имеют две частоты: E_2 (high) и E_2 (low). E_2 (low) связана с колебаниями тяжелой подрешетки Zn, а E2 (high) с колебаниями ионов кислорода [2,3]. Все приведенные выше моды проявлялись в спектрах КРС объемных

кристаллов ZnO [2]. Закон дисперсии оптических и акустических мод в кристаллах ZnO был исследован экспериментально методам рассеяния медленных нейтронов в основных направлениях высокой симметрии кристалла [3,4]. Здесь же приведены теоретические расчеты.

Окись цинка является интересным материалом для исследований и практических применений благодаря широкой запрещенной зоне и большой энергии связи экситона при комнатной температуре (60 meV). В контексте практических применений учитывается также и то, что ZnO значительно более дешевый материал по сравнению с широкозонными GaN, InGaN. Наноструктуры на основе ZnO широко используются для создания электронных приборов (светодиодов и лазерных диодов) на голубую и ультрафиолетовую область спектра, прозрачных фильтров для защиты от ультрафиолетового излучения, газовых сенсоров и даже в спинтронных приборах. На основе гетеропереходов ZnTe/ZnO создаются солнечные батареи. Большое значение имеет тот факт, что нелегированный ZnTe имеет *p*-тип, а ZnO *п*-тип проводимости. Весьма перспективным является использование поверхностных оптических мод для обнаружения примесей на поверхности нанообъектов.

Несмотря на практическую важность этого полупроводника, знания о колебательных модах наноструктур

Номер образца	Образец	Ориентация НП по отношению к подложке	Средний диаметр (d) и длина (1) НП ZnO и ZnTe и кристаллитов ZnO, nm	Технология роста структур
1	NWs ZnO/(100)Si N 1205-5	Преимущественно перпендикулярно подложке	d = 98.3 l = 503.2	Химическое осаждение из паровой фазы
2	NWs ZnO/(100)Si N 0908-15	Произвольная	d = 59.8 l = 371.2	То же
3	NWs ZnO/Ni	»	d = 125 l = 5100	Углеродно-термический синтез
4	NWs Сердцевина—оболочка ZnTe/ZnO (111) Si, N010908A	Преимущественное направление — перпендикулярно подложке	20 (ZnTe) 5–10 (ZnO)	МЛЭ (ZnTe) АСЭ (ZnO)
5	NWs Сердцевина—оболочка ZnTe/ZnO (111) GaAs, N040908A	Перпендикулярно подложке	20 (ZnTe) 20 (ZnO)	МЛЭ (ZnTe) АСЭ (ZnO)

Таблица 1. Параметры образцов с нанопроволоками ZnO и ZnTe/ZnO

ZnO весьма ограничены. При уменьшении размеров до области нанометров электрические и механические свойства сильно изменяются из-за большого отношения поверхности к объему. К новым колебательным свойствам наноструктур относятся поверхностные оптические фононы (SOP) и интерфейсные оптические фононы (IOP), если наноструктуры погружены в твердую матрицу. Поверхностные моды были обнаружены на поверхности цилиндрических наночастиц ZnO в спектрах КРС [5] и спектрах фотолюминесценции пленок ZnO [6]. В нанопроволоках (НП) GaP поверхностные фононы были обнаружены в спектрах комбинационного рассеяния света [7]. Интерфейсные оптические фононы наблюдались нами в ИК-спектрах отражения и пропускания в коллоидных квантовых точках CdTe и ядро-оболочка CdTe/CdSe [8], а также в нанопроволоках ZnTe/ZnMgTe [9]. Ранее спектры КРС нанопроволок ZnO измерялись в [10], а НП ZnTe/ZnO — в [11]. В последнем случае структура возбуждалась Ar⁺-лазером $(\lambda = 488 \, \text{nm})$, когда моды ZnO практически не видны. Полную информацию об оптических фононах дают измерения как в нерезонансных, так и в резонансных условиях.

В данной работе исследуются спектры КРС при комнатной температуре структур с нанопроволоками (НП) ZnO, а также структур сердцевина–оболочка ZnTe/ZnO при возбуждении Ar⁺-лазером с длинами волн 514.5 nm и 488 nm (нерезонансное КРС), а также He–Cd-лазером с длиной волны 325 nm (резонансное КРС). В нанопроволоках ZnO были определены частоты оптических фононов E_2 (low), E_2 (high), поперечных оптических фононов A_{1T} и продольных оптических мод, имеющих смешанную симметрию $A_{1L}-E_{1L}$. Во всех структурах с

Физика твердого тела, 2012, том 54, вып. 10

НП ZnO обнаружены поверхностные оптические моды (SOP). В структурах ZnTe/ZnO при возбуждении He-Cd-лазером обнаружены поперечная и продольная моды ZnTe и ZnO.

2. Методика эксперимента и образцы

Спектры комбинационного рассеяния света (КРС) образцов с нанопроволоками (НП) ZnO при возбуждении Ar⁺-лазером с длинами волн 514.5 и 488 nm регистрировались при комнатной температуре спектрометром U-1000, соединенным с микроскопом, в геометрии обратного рассеяния с разрешением $1.5 \,\mathrm{cm}^{-1}$. Спектры КРС при возбуждении Не-Сd-лазером с длиной волны 325 nm регистрировались спектрометром LabRam. Мощность излучения, падающего на образец, составляла 0.12 mW. Технология роста образцов и диаметры НП представлены в табл. 1. Образцы 1 и 2 были выращены методом химического осаждения из паровой фазы (CVD), катализатором в образце 1 служили поликристаллические зерна ZnO, а в образце 2 островки Аи [12]. В образце 1 НП ориентированы преимущественно вдоль нормали к подложке Si. В образце 2 ориентация нитей произвольная. Нанопроволоки ZnO в образце 3 выращены на подложке Ni методом углеродно-термического синтеза. Катализатором роста в данном случае является пленка оксида никеля [13]. НП ZnTe/ZnO были выращены в два этапа: сердцевина ZnTe — методом молекулярно-лучевой эпитаксии (МЛЭ) на подложках (111) Si (образец 4) и (111) GaAs (образец 5) в присутствии катализатора Аu. Затем методом атомно-слоевой эпитаксии (АСЭ) вокруг сердцевины ZnTe выращивали оболочку ZnO при температуре 200-300°С. Эта оболочка представляет собой набор кристаллитов ZnO. Размер кристаллитов в образце 4 составляет 5-10 nm, а в образце 5 около 20 nm [14]. Морфология поверхности структур была исследована на сканирующем электронном микроскопе (SEM). Структурные свойства изучались с помощью дифракции рентгеновских лучей и на просвечивающем электронном микроскопе (TEM).

Результаты эксперимента и их обсуждение

Спектр КРС образца с НП ZnO/Ni (образец 3) при нерезонансном возбуждении Ar⁺-лазером с длиной волны 514.5 nm показан на рис. 1. На спектре видны полосы, соответствующие модам E_2 (low) при частоте 98 cm⁻¹, E_2 (high) при частоте 437 cm⁻¹, мо-

Рис. 1. Спектр КРС нанопроволок ZnO/Ni (образец 3) при резонансном возбуждении Ar⁺-лазером с $\lambda = 514.5$ nm.

Рис. 2. Спектр КРС нанопроволок ZnO/Ni (образец 3) при возбуждении Не–Сd-лазером с $\lambda = 325$ nm.

Рис. 3. Спектр КРС нанопроволок ZnO/Si (образец 1) при возбуждении Ar⁺-лазером с $\lambda = 514.5$ nm.

да при частоте 382 cm⁻¹, которую мы связываем с поперечной модой A_{1T} , и моды второго порядка при частотах 334 и 560 ст⁻¹, а также интенсивная мода при частоте 1147 ст⁻¹, которая является LO-модой второго порядка 2LO ($A_{1L} = 574 \,\mathrm{cm}^{-1}$ в объемном ZnO). Как видно из рисунка, при нерезонансном возбуждении в спектре КРС доминируют неполярные моды Е2. На рис. 2 показан спектр КРС этого же образца при возбуждении He-Cd-лазером с длиной волны 325 nm. Энергия возбуждения в данном случае превышает ширину запрещенной зоны ZnO объемного материала на 440 meV. Таким образом, реализуются условия резонанса по входящему свету. Из рисунка видно, что многофононные повторения LO-моды с частотой 575 cm⁻¹ налагаются на широкую полосу люминесценции. Частота этой моды очень близка к моде A1L объемного ZnO. Мы полагаем, что процесс взаимодействия горячих электронов с LOфононами происходит в рамках каскадной модели. На этом же графике видна мода при частоте $459\,\mathrm{cm}^{-1}$. Мы приписываем эту моду поверхностным оптическим фононам (SOP). На рис. 3 приведен спектр КРС образца с НП ZnO/Si (образец 1 в табл. 1) при возбуждении Ar⁺-лазером ($\lambda = 514.5 \text{ nm}$). На этом спектре видны интенсивные моды E_2 (low) при частоте $100 \,\mathrm{cm}^{-1}$, E_2 (high) при частоте 438 cm⁻¹, LO- и 2LO-моды при частотах 580 cm⁻¹ и 1150 cm⁻¹, оптический фонон, связанный с подложкой Si, при частоте 521 ст-1 и его второй порядок в виде широкой полосы при частоте 940 cm^{-1} . Интенсивная полоса при 303 cm^{-1} , также, очевидно, связана с Si. Как видно из рисунка, при нерезонансном возбуждении в спектре КРС доминируют неполярные моды E2. При возбуждении лазером He-Cd (рис. 4) видны многофононные повторения LO-фононов с частотой 577.8 cm⁻¹. На врезке рис. 4 отчетливо видна мода при частоте 460 cm⁻¹, которую мы также связываем с поверхностными оптическими фононами. Разброс значений частот LO-фононов, измеренных в

Номер образца	Образцы	$\lambda_{ m las},$ nm	$E_2 \text{ (low),} \\ cm^{-1}$	E_2 (high), cm ⁻¹	LO, cm ⁻¹	TO, cm ⁻¹	SO-мода, cm ⁻¹
1	NWs ZnO/Si N 1205-5	514.5 325	100	438	$580 \\ 577 \pm 2$		461 ± 1
2	NWs ZnO/(100)Si N 0908-15	325			576		472
3	NWs ZnO/Ni	488 514.5 325	98 98.3	437 438	575 ± 1.0	382	462 ± 2
4	NWs ZnTe/ZnO N 010908A	488 325	101		572	408	

Таблица 2. Усредненные по поверхности образцов частоты оптических мод в структурах с нанопроволоками ZnO и ZnTe/ZnO

разных точках образца, составляет $\pm 2 \text{ cm}^{-1}$ (табл. 2). В этом образце в спектрах КРС проявляется продольная мода смешанной симметрии $A_{1L}-E_{1L}$. Частота LO-моды не изменяется и в том случае, когда образец повернут на 90°. На спектрах ИК-пропускания и отражения этого образца в *s*- и *p*-поляризованном свете видна поперечная мода с частотой 407 cm⁻¹, имеющая симметрию E_{1T} [12].

Спектр КРС-образца с НП ZnO/Si (2, табл. 1) при возбуждении Не–Cd лазером представлен на рис. 5. Частота LO-фонона равна 576 сm⁻¹. Поверхностная мода имеет частоту 470 сm⁻¹. В табл. 2 приведены усредненные по поверхности образцов частоты оптических фононов и поверхностных мод в структурах с НП ZnO и ZnTe/ZnO. Из таблицы видно, что в КРС нанопроволок ZnO активны продольные оптические фононы с симметрией, близкой к A_{1L} . Аналогичные результаты получены при исследовании тонких слоев и микрокристаллитов

Рис. 4. Спектр КРС нанопроволок ZnO/Si (образец 1) при возбуждении He–Cd-лазером с $\lambda = 325$ nm.

Рис. 5. Спектр КРС нанопроволок ZnO/Si (образец 2) при возбуждении Не–Сd-лазером с $\lambda = 325$ nm.

ZnO [6,15,16]. Мы полагаем, что при мощности излучения на образце 0.1 mW можно исключить локальный нагрев ансамбля НП. Мы варьировали эту мощность в пределах 0.12 mW–0.012 mW и не заметили изменений частот LO-фононов.

Спектр КРС-образца сердцевина-оболочка ΗП ZnTe/ZnO при возбуждении Ar⁺-лазером с $\lambda = 514.5$ nm приведен на рис. 6. На спектре видны только узкие линии LO фононных повторений ZnTe ($\omega_{1LO} = 203.8 \, \text{cm}^{-1}$) на фоне горячей люминесценции. При возбуждении Не-Сd-лазером с $\lambda = 325 \, \text{сm}^{-1}$ (рис. 7) в спектре КРС видны многофононные повторения LO-фононов ZnO с частотой 572 cm⁻¹, налагающиеся на широкую полосу люминесценции. Кроме того, в спектре видны моды при частотах 176, 205 и 408 ст-1. Эти частоты с хорошей точностью соответствуют ТО- и LO-фононам ядра ZnTe и TO-фонону кристаллитов ZnO соответственно. Красный сдвиг на $2 \,\mathrm{cm}^{-1}$ LO-фононов ZnO, возможно,

Рис. 6. Спектр КРС нанопроволок сердцевина–оболочка ZnTe/ZnO (образец 5) при возбуждении Ar⁺-лазером с $\lambda = 514.5$ nm.

Рис. 7. Спектр КРС нанопроволок сердцевина–оболочка ZnTe/ZnO (образец 4) при возбуждении He–Cd-лазером с $\lambda = 325$ nm.

Рис. 8. Спектр ИК-отражения нанопроволок сердцевинаоболочка ZnTe/ZnO (образец 4) (экспериментальные данные и расчет).

связан с деформацией растяжения из-за разницы в постоянных решетки ZnTe и ZnO. На спектре видна особенность при частоте 457 cm⁻¹, которую мы связываем с интерфейсной модой.

Спектр отражения этого образца в ИК-области представлен на рис. 8. Здесь же приведена расчетная кривая, основанная на частотной зависимости диэлектрической функции структуры [9, формула 1]. Для подложки Si получены следующие значения: $\varepsilon_{\infty} = 12.5$ и плазменная частота $\omega_p = 110.4$ сm⁻¹. Частоты ТО-фононов сердцевины ZnTe и оболочки ZnO равны 175.2 и 407 сm⁻¹ соответственно, что находится в хорошем согласии с данными КРС.

4. Поверхностные моды. Теория

Поверхностные оптические фононы возникают в нанообъектах на границе двух сред. Поверхностные оптические фононы имеют дисперсию: их частота зависит от волнового вектора k_z , измеренного вдоль поверхности. Для любого значения k_z частота SO-моды находится в зазоре между частотами TO- и LO-фононов с k = 0объемных материалов. Частота поверхностной моды (SOP) определяется диэлектрическими свойствами материалов с обеих сторон от поверхности: полупроводника и диэлектрического окружения, а также формой наноструктуры.

Для расчета частот колебательных мод (ω) однослойных НП использовались соотношения, полученные в работе [5]. В квазиэлектростатическом приближении решения уравнения Пуассона для потенциала $\varphi(\rho, \theta, z)$ в цилиндрических координатах (z — ось НП) искались в виде

$$\varphi(\rho, \theta, z) = \sum_{m, k_z} C_{m, k_z}(\rho) \exp(im\theta) \exp(ik_z z).$$
(1)

Коэффициенты разложения определялись из граничных условий: равенства потенциалов и нормальных компонент индукции на цилиндрической поверхности НП с радиусом $\rho = \rho_0$. Функции $C_{m,k_z}(\rho)$ во внешней среде $(\rho > \rho_0)$, характеризуемой диэлектрической функцией ε_{μ} , имеют вид $C_{m,k_z}(\rho) \sim K_m(\rho k_z)$, а внутри НП $(\rho < \rho_0)$: $C_{m,k_z}(\rho) \sim I_m(g(\omega)^{1/2}\rho k_z)$, где I_m , K_m — модифицированные функции Бесселя. Здесь $g(\omega) = \varepsilon_{\parallel}(\omega)/\varepsilon_{\perp}(\omega)$ учитывает отличие дэилектрических функций в направлениях вдоль ($\parallel c$) и поперек ($\perp c$) оси *c* вещества НП. Предполагается, что ось *c* материала (ZnO) совпадает с осью НП.

Условие, определяющее при данном значении параметра $x = \rho_0 k_z$ частоты локализованных на поверхности НП колебательных мод, имеет вид

$$\Psi_1(x,\omega) = 0, \tag{2}$$

где

$$\Psi_1(x,\omega) = \varepsilon_{\perp}(\omega)g(\omega)^{1/2} - \varepsilon_{\mu} \left[I_m (g(\omega)^{1/2}x) K'_m(x) \right] / \left[I'_m (g(\omega)^{1/2}x) K_m(x) \right].$$

Здесь штрихами обозначены производные от фукнций I_m, K_m по их аргументам.

Неосциллирующие (локализованные) в направлении радиуса ρ НП решения уравнения $\Psi_1(x, \omega) = 0$ реализуются в тех областях частот, где $g(\omega) \ge 0$. В численных расчетах, чтобы избежать осложнений с мнимыми аргументами, функция $g(\omega)^{1/2}$ заменялась единицей в областях, где $g(\omega) < 0$ (|| ТО– \bot ТО, || LO– \bot LO).

Рассмотрим теперь решения уравнения $\Psi_1(x, \omega) = 0$ (2) для однослойных НП ZnO. Будем использовать следующие значения параметров диэлектрической функции

$$\varepsilon_{j}(\omega) = \varepsilon_{\infty j} + (\varepsilon_{0j} - \varepsilon_{\infty j}) / [1 - (\omega/\omega_{0j})^{2}] \quad (j = \bot, \parallel):$$

$$\omega_{0\perp} \equiv \omega_{\mathrm{TO}\perp} = 407 \,\mathrm{cm}^{-1}, \quad \varepsilon_{0\perp} = 7.46, \quad \varepsilon_{\infty\perp} = 3.6;$$

$$\omega_{0\parallel} \equiv \omega_{\mathrm{TO}\parallel} = 380 \,\mathrm{cm}^{-1}, \quad \varepsilon_{0\parallel} = 8.59, \quad \varepsilon_{\infty\parallel} = 3.76.$$

При малых $x = \rho_0 k_z$ частота колебаний симметричных мод (m = 0) стремится к частоте $\omega_{\text{TO}\perp}$. Поверхностная мода с такой частотой вряд ли может быть выделена из фона собственных ТО-мод проволоки. При увеличении x мода с частотой $\omega_{\text{TO}\perp}$ трансформируется в поверхностную оптическую моду с частотой ω_{SO} . При x = 0.55 и $\varepsilon_{\mu} = 1$ частота SO-моды $\omega_{\text{SO}} = 461 \text{ cm}^{-1}$. Эта величина хорошо согласуется с частотой 460 сm⁻¹, полученной в эксперименте. Из соотношения $\rho_0 k_z = \rho_0 2\pi/\lambda = 0.55$ можно оценить размер неоднородности проволоки (λ) вдоль ее длины. Он равен приблизительно шести ее диаметрам.

На рис. 9 изображена функция $\Psi_1(x, \omega)$ в зависимости от частоты ω для двух значений параметра x = 0.2(точки) и x = 0.55 (сплошная кривая); $\dot{\varepsilon}_{\mu} = 1$.

Для такой сложной структуры, как структура с нанопроволоками, следовало ожидать нарушения правил отбора, справедливых для КРС в объемных образцах. По этой причине мы произвели также расчет частот несимметричных мод с m = 1 и получили следующие величины: при x = 0.1 $\omega = 551$ сm⁻¹, а при x = 1 $\omega = 540$ сm⁻¹. Однако эти моды на эксперименте не наблюдались. По-видимому, они не активны в КРС.

Мы не нашли в литературе расчетов колебательных мод для двухслойной НП, поэтому провели их сами. Наша модель двухслойной НП отличается от однослойной тем, что в ее сердцевине помещался цилиндрический слой (ZnTe) с изотропной диэлектрической функцией $\varepsilon_i(\omega)$. Решения во внутреннем слое (ZnTe) и внешнем (ZnO)-слое брались соответственно в виде

$$C_{m,k_z}(\rho) \sim I_m(\rho k_z),$$

 $C_{m,k_z}(\rho) \sim AI_m(g(\omega)^{1/2}\rho k_z) + BK_m(g(\omega)^{1/2}\rho k_z)$

Рис. 9. Функция $\Psi_1(x, \omega)$ для однослойной нанопроволоки ZnO в зависимости от частоты ω для двух значений параметра $x = \rho_0 \ k_z = 0.2$ и x = 0.55; k_z — волновой вектор вдоль нанопроволоки, ρ_0 ее радиус; $\varepsilon_{\mu} = 1$. Нули функции $\Psi_1(x, \omega)$ определяют значения частот поверхностных мод при данном значении $x = \rho_0 k_z$.

а во внешней среде $C_{m,k_z}(\rho) \sim K_m(\rho k_z)$. Применяя граничные условия на двух поверхностях раздела вместо одной, получим

$$\Psi_{2}(x,\omega) = [c \varepsilon_{\perp}(\omega)g(\omega)^{1/2} - c \mathbf{1}\varepsilon_{i}(\omega)]$$

$$\times [b\varepsilon_{\perp}(\omega)g(\omega)^{1/2} - b\mathbf{1}\varepsilon_{\mu}(\omega)] - [a\varepsilon_{\perp}(\omega)g(\omega)^{1/2} - a\mathbf{1}\varepsilon_{i}(\omega)][d\varepsilon_{\perp}(\omega)g(\omega)^{1/2} - d\mathbf{1}\varepsilon_{\mu}(\omega)].$$
(3)

Здесь $a = i_1 k_4 D^{-1}$, $b = k_2 k_3 D^{-1}$, $c = i_1 i_4 D^{-1}$, $d = k_2 i_3 D^{-1}$,

$$a1 = di_1 dk_4 D 1^{-1}, \quad b1 = dk_2 dk_3 D 1^{-1},$$

$$c1 = di_1 di_4 D 1^{-1}, \quad d1 = dk_2 di_3 D 1^{-1};$$

величины a, b, c, d, a1, b1, c1, d1 являются функциями x, ω , например,

$$\begin{split} a &\equiv a(x, \omega), \quad a1 \equiv a1(x, \omega); \\ D &= i_{3}k_{2} - i_{4}k_{3}, \quad D1 = di_{3}dk_{2} - di_{4}dk_{3}; \\ i_{j} &= I_{m}(x_{j}), \quad di_{j} = I'_{m}(x_{j}), \\ k_{j} &= K_{m}(x_{j}), \quad dk_{j} = K'_{m}(x_{j})(j = 1 - 4); \\ x_{1} &= x, \quad x_{2} = xr, \quad x_{3} = xg^{1/2}, \\ &= xrg^{1/2}; \quad g \equiv g(\omega), \quad r = \rho_{e}/\rho_{i}, \quad x = \rho_{i}k_{z}. \end{split}$$

Так же, как и в случае однослойных НП, частоты колебаний поверхностных мод двухслойной проволоки получаются из условия $\Psi_2(x, \omega) = 0$.

 x_4

При расчете частот колебательных мод двухслойной НП ZnTe/ZnO, где сердцевиной был слой ZnTe, использовались следующие значения параметров. Для

Рис. 10. То же, что и на рис. 9, но для двухслойной нанопроволоки ZnTe/ZnO и двух значений параметра $x = \rho_i$ $k_z = 0.3$ и x = 1; ρ_i радиус внутреннего слоя нанопроволоки (ZnTe); $\varepsilon_{\mu} = 2.5$ (диэтилцинк).

диэлектрической функции ZnTe: $\omega_{0i} \equiv \omega_{TOi} = 177 \, \mathrm{cm}^{-1}$, $\varepsilon_{0i} = 10.4$, $\varepsilon_{\infty i} = 7.8$, для диэлектрической функции окружающей среды $\varepsilon_{\mu} = 2.5$ (диэтилцинк), для радиусов соответственно внутреннего и внешнего слоев $\rho_i = 10 \, \text{nm}, \ \rho_e = 20 \, \text{nm}.$ Для частот симметричных мод m = 0 при $x = \rho_i$ $k_z = 0.3$ получили значения $\omega 1 = 178.6 \text{ cm}^{-1}, \ \omega 2 = 407 \text{ cm}^{-1}.$ При x = 1 мода $\omega 1$ расщеплялась на две компоненты 178 и $185 \,\mathrm{cm}^{-1}$, вместо моды $\omega 2 = 407 \,\mathrm{cm}^{-1}$ возникала мода поверхностных колебаний $\omega_{\rm SO} = 456.7 \, {\rm cm}^{-1}$, которая наблюдается в эксперименте (рис. 7). Расчетная мода с частотой 537 ст⁻¹ в эксперименте не наблюдалась. На рис. 10 изображена функция $\Psi_2(x, \omega)$ в зависимости от частоты *ω* для двух значений параметра *x* = 0.3 (точки) и *x* = 1 (сплошная кривая); $\varepsilon_{\mu} = 2.5$. Мода $\omega 1 = 178.6 \,\mathrm{cm}^{-1}$, а также ее компоненты 178 и $185 \,\mathrm{cm}^{-1}$ при x = 1обязаны колебаниям, локализованным на границе ZnO-ZnTe. Они располагаются в интервале между достаточно интенсивными полосами TO- и LO-колебаний в слое ZnTe и не видны в экспериментальном спектре (рис. 7). SO-мода проявляется в спектре КРС в виде плеча 457 cm^{-1} между пиками 408 cm^{-1} и 572 cm^{-1} (рис. 7). Расчет несимметричных мод дает близкую картину. Отличие состоит лишь в том, что при x = 0.3 мода $\omega 1$ расщепляется больше. Кроме того, появляется мода с частотой 374 cm⁻¹, которая на эксперименте не наблюдалась.

5. Заключение

В спектрах структур с нанопроволоками ZnO и ZnTe/ZnO наблюдались колебательные моды различной симметрии (A_1, E_1, E_2) и характера (TO, LO), обусловленные колебаниями объема НП. Кроме того, наблюдались поверхностные оптические моды, локализован-

ные на поверхностях раздела вакуум — ZnO (в случае НП ZnO) и диэтилцинк — ZnO (в случае НП ZnTe/ZnO). Для анализа спектров однослойных нанопроволок ZnO применялись соотношения работы [5], а для двухслойных — соотноошения, полученные в данной работе. Эти соотношения связывают частоты колебаний поверхностных оптических мод с волновым вектором, направленным вдоль НП, и позволяют по частоте поверхностных колебаний определить размер неоднородности НП. Эта неоднородность может быть связана как с несовершенством структуры НП, так и с модуляцией ее сечения вдоль длины.

Список литературы

- [1] C. Kligshirn. Phys. Stat. Sol. B 244, 3027 (2007).
- [2] J.M. Calleja, M. Cardona. Phys. Rev. B 16, 3753 (1977).
- [3] J. Serrano, A.H. Romero, F.J. Manjon, R. Lauck, M. Cardona, A. Rubio. Phys. Rev. **B 69**, 094306 (2004).
- [4] J. Serrano, F.J. Manjon, A.H. Romero, A. Ivanov, R. Lauck, M. Cardona, M. Krisch. Phys. Stat. Sol. B 244, 1478 (2007).
- [5] P.M. Chassaing, F. Demengeot, V. Paillard, A. Zwick, N. Combe, C. Pages, M.L. Kahn, A. Maisonnant, B. Chaudret. Phys. Rev. B 77, 153 306 (2008).
- [6] V.V. Ursaki, I.M. Tiginyanu, V.V. Zalamai, E.V. Rusu, G.A. Emelchenko, V.M. Masalov, E.N. Samarov. Phys. Rev. B 70, 155 204 (2004).
- [7] Rajeev Gupta, Q. Xiong, G.D. Mahan, P.C. Eklund. Nano Lett. 3, 1745 (2003).
- [8] Р.Б. Васильев, В.С. Виноградов, С.Г. Дорофеев, С.П. Козырев, И.В. Кучеренко, Н.Н. Новикова. ФТТ **49**, 523 (2007).
- [9] В.С. Виноградов, И.В. Кучеренко, Н.Н. Новикова, В.А. Яковлев, Е. Janik, Т. Wojtowicz. ФТТ **54**, 99 (2012).
- [10] H.T. Ng, B. Chen, J. Li, J. Han, M. Meyyapan, J. Wu, S.X. Li, E.E. Haller. Appl. Phys. Lett. 82, 2023 (2003).
- [11] K. Gas, E. Janik, W. Zaleszczyk, I. Pasternak, E. Dynowska, A. Fronc, V. Kolkovsky, S. Kret, J.F. Marhange, A. Reszka, M. Wiater, W. Caliebe, G. Karczewski, B.J. Kowalski, W. Szuszkiewicz, and T. Wojtowicz. Acta Phys. Pol. A 119, 612 (2011).
- [12] S.Y. Pung, K.L. Choy, E. Vinogradov, N.N. Novikova, V.A. Yakovlev, J. Cryst. Growth **312**, 2220 (2010).
- [13] W. Zalesczyk, K. Fronk, E. Przezdziecka, E. Janik, A. Presz, M. Czapkiewicz, J. Wrobel, W. Paszkowicz, L. Klopotwski, G. Karczewski, T. Wojtowicz. Acta Phys. Pol. **114**, 1451 (2008).
- [14] E. Janik, A. Wachnicka, E. Guziewicz, M. Godlewski, S. Kret, W. Zaleszczyk, E. Dynowska, A. Presz, G. Karczewski, T. Wojtowicz. Nanotechnol. 21, 1 (2010).
- [15] H.F. Liu, S. Tripathy, G.X. Hu, H. Gong. J. Appl. Phys. 105, 053 507 (2009).
- [16] Hou Tee Ng, Bin Chen, Jun Li, Jie Han, M. Meyyappan, J. Wu, S.X. Li, E.E. Haller. Appl. Phys. Lett. 82, 2023 (2003).