Экситонные состояния в квазинульмерных полупроводниковых наносистемах

© С.И. Покутний

Институт металлофизики им. Г.В. Курдюмова Национальной академии наук Украины, 03680 Киев, Украина

(Получена 28 апреля 2011 г. Принята к печати 15 июня 2011 г.)

Вариационным методом, в рамках модифицированного метода эффективной массы получен энергетический спектр основного состояния экситона, движущегося в объеме квантовой точки, помещенной в матрицу боросиликатного стекла, как функция радиуса квантовой точки. Показано, что коротковолновые сдвиги пиков спектров поглощения и низкотемпературной люминесценции такой наносистемы обусловлены размерным квантованием энергетического спектра основного состояния экситона, движущегося в объеме квантовой точки.

1. Введение

Достижения твердотельной технологии привели к получению квазинульмерных наноструктур, представляющих собой полупроводниковые квантовые точки (КТ) сферической формы с радиусом $a \approx 1-10$ нм, выращенные в прозрачных диэлектрических (или полупроводниковых) матрицах [1-10]. Такие линейные размеры a КТ сопоставимы с дебройлевской длиной волны электрона и дырки или (и) с их боровскими радиусами. Последнее обстоятельство приводит к тому, что явления пространственного размерного квантования носителей заряда играют существенную роль в оптических и электрооптических процессах в таких наносистемах [8–16].

Поскольку энергетическая щель полупроводникового материала, который содержит в своем объеме КТ, существенно меньше, чем в диэлектрических (полупроводниковых) матрицах, движение носителей заряда в сферической КТ ограничено во всех трех направлениях объемом КТ (т.е. носители заряда двигаются в трехмерной сферической потенциальной яме КТ). Последнее обстоятельство приводит к тому, что квазичастицы (электрон, дырка и экситон) в КТ не обладают квазиимпульсом. Поэтому можно говорить только о состояниях квазичастиц в КТ. В дальнейшем под экситоном в КТ будем понимать такое экситонное состояние, которое не имеет квазиимпульса [11,15,16].

Оптические и электрические свойства таких квазинульмерных наноструктур в значительной мере определяются энергетическим спектром пространственно ограниченной электронно-дырочной пары (экситона) [1–16]. Энергетический спектр носителей заряда в КТ, начиная с размеров *а* порядка боровского радиуса электрона a_e или дырки a_h и менее, будет полностью дискретным [1–9]. Поэтому такие КТ называют "сверхатомами" [9]. В этих условиях влияние сферической поверхности раздела "КТ–диэлектрическая матрица" может вызвать размерное квантование энергетического спектра электрона и дырки в КТ, связанное как с чисто пространственным ограничением области квантования [1–7], так и с поляризационным взаимодействием носителей заряда с поверхностью КТ [11–16].

В большинстве теоретических моделей, в которых рассчитывались энергетические спектры квазичастиц в КТ, авторами использовалось приближение эффективной массы, которому приписывалась применимость к КТ по аналогии с массивными монокристаллами [11–14]. Вопрос о применимости приближения эффективной массы к описанию полупроводниковых КТ является до сих пор не решенным [15–22].

В работе [15] предложен новый модифицированный метод эффективной массы, с помощью которого описывался энергетический спектр экситона в полупроводниковых КТ с радиусами $a \approx a_{ex}^0$ (a_{ex}^0 — боровский радиус экситона в полупроводниковом материале, который содержится в объеме КТ). Показано, что в рамках модели, в которой КТ описывалась бесконечно глубокой потенциальной ямой, приближение эффективной массы можно применять к описанию экситона в КТ с радиусами a, сравнимыми с боровским радиусом экситона a_{ex}^0 , считая, что приведенная эффективная масса экситона $\mu = \mu(a)$ является функцией радиуса a КТ.

В экспериментальной работе [10] исследовались оптические свойства образцов боросиликатного стекла, содержащих КТ селенида цинка. Средние радиусы таких КТ находились в диапазоне $\bar{a} \approx 2.0 - 4.8$ нм и были соизмеримы с боровским радиусом экситона $a_{\mathrm{ex}}^0 \approx 3.7\,\mathrm{mm}$ в монокристалле ZnSe. При малых концентрациях КТ, когда оптические свойства образцов в основном определялись оптическими свойствами одиночных КТ в матрице боросиликатного стекла, были обнаружены сдвиги максимумов (пиков) спектров поглощения и низкотемпературной люминесценции в коротковолновую область (по отношению к ширине запрещенной зоны E_g^0 монокристалла селенида цинка). Авторы [10] предполагали, что такие сдвиги обусловлены размерным квантованием энергетических спектров электрона и дырки, локализованных вблизи сферической поверхности КТ. При этом оставался неизученным вопрос,

[¶] E-mail: Pokutnyi_Sergey@inbox.ru

размерное квантование каких именно состояний электрона и дырки (локализованных на внешней сферической поверхности раздела "КТ-диэлектрическая матрица" или же локализованных в объеме КТ) вызывало такие сдвиги пиков спектров поглощения и люминесценции.

В настоящей работе развита теория энергетического спектра экситона в полупроводниковой КТ в условиях, когда поляризационное взаимодействие электрона и дырки со сферической поверхностью раздела "КТ-диэлектрическая матрица" играет доминирующую роль. Вариационным методом в рамках модифицированного метода эффективной массы [15] получен энергетический спектр основного состояния экситона, движущегося в объеме КТ ZnSe, как функция радиуса а КТ. Путем сравнения энергетического спектра экситона в КТ со значениями пиков спектров поглощения и люминесценции образцов получены средние радиусы КТ селенида цинка, которые находились в диапазоне средних радиусов КТ, исследованных в услвоиях экспериментов [10]. Показано, что коротковолновые сдвиги пиков спектров поглощения и люминесценции образцов были обусловлены размерным квантованием энергетического спектра основного состояния экситона, движущегося в объеме КТ селенида цинка.

2. Гамильтониан экситона в полупроводниковой квантовой точке

Рассмотрим простую модель квазинульмерной системы: нейтральную полупроводниковую сферическую КТ радиуса a, которая содержит в своем объеме полупроводниковый материал с диэлектрической проницаемостью ε_2 , окруженную средой с диэлектрической проницаемостью ε_1 . В объеме такой КТ движутся электрон eи дырка h с эффективными массами m_e и m_h (\mathbf{r}_e и \mathbf{r}_h — расстояние до электрона и дырки от центра КТ) (рис. 1). Предполагалось также, что зоны электронов и дырок имеют параболическую форму. Характерными размерами задачи являются величины a, a_e , a_h , a_{ex}^0 , где

$$a_e = \frac{\varepsilon_2 \hbar^2}{m_e e^2}, \quad a_h = \frac{\varepsilon_2 \hbar^2}{m_h e^2}, \quad a_{ex}^0 = \frac{\varepsilon_2 \hbar^2}{\mu_0 e^2}$$
(2)

— боровские радиусы электрона, дырки и экситона соответственно в полупроводнике с диэлектрической проницаемостью ε_2 (*e* — заряд электрона, $\mu_0 = m_e m_h / (m_e + m_h)$ — приведенная эффективная масса экситона).

В рамках изучаемой здесь простой модели квазинульмерной системы энергию взаимодействия электрона eи дырки h, находящихся в объеме КТ в точках \mathbf{r}_e и \mathbf{r}_h соответственно, с полем индуцированной этими квазича-

Рис. 1. Схематическое изображение экситона в сферической полупроводниковой квантовой точке. Радиус-векторы \mathbf{r}_e и \mathbf{r}_h определяют расстояния электрона e и дырки h от центра КТ радиуса a. Заряды изображений $e' = (a/r_e)e$ и $h' = (a/r_h)h$ расположены на расстояниях $r'_e = a^2/r_e$ и $r'_h = a^2/r_h$ от центра КТ 0 и представляют собой точечные заряды изображения электрона и дырки соответственно.

стицами полязирации запишем следующим образом [23]:

$$U(\mathbf{r}_{e}, \mathbf{r}_{h}, a) = -\frac{e^{2}\beta}{\varepsilon_{2}a} \left[\left(r_{e}r_{h}/a^{2} \right)^{2} - 2(r_{e}r_{h}/a^{2})\cos\theta + 1 \right]^{-1/2} - \frac{e^{2}\beta}{2(\varepsilon_{2} + \varepsilon_{1})a} \int_{0}^{\infty} \frac{dy(a^{2}/r_{h}y)^{\alpha}\Theta(y - (a^{2}/r_{h}))}{|\mathbf{r}_{e} - y(\mathbf{r}_{h}/r_{h})|} - \frac{e^{2}\beta}{2(\varepsilon_{2} + \varepsilon_{1})a} \int_{0}^{\infty} \frac{dy(a^{2}/r_{e}y)^{\alpha}\Theta(y - (a^{2}/r_{e}))}{|\mathbf{r}_{h} - y(\mathbf{r}_{e}/r_{e})|}, \qquad (2)$$

где параметр $\beta = (\varepsilon_2 - \varepsilon_1)/(\varepsilon_2 + \varepsilon_1)$, угол $\theta = \widehat{\mathbf{r}_e, \mathbf{r}_h}$, а $\Theta(x) - \phi$ ункция Хевисайда.

Энергию поляризационного взаимодействия $U(\mathbf{r}_e, \mathbf{r}_h, a)$ (2) при относительной диэлектрической проницаемости $\varepsilon = (\varepsilon_2/\varepsilon_1) \gg 1$ можно представить в виде алгебраической суммы энергий взаимодействия дырки и электрона со своими, $V_{hh'}(r_h, a)$, $V_{ee'}(r_e, a)$, и "чужими", $V_{eh'}(\mathbf{r}_e, \mathbf{r}_h, a) = V_{he'}(\mathbf{r}_e, \mathbf{r}_h, a)$, изображениями соответственно [24–26] (рис. 1):

$$U(\mathbf{r}_{e}, \mathbf{r}_{h}, a) = V_{hh'}(r_{h}, a) + V_{ee'}(r_{e}, a)$$
$$+ V_{eh'}(\mathbf{r}_{e}, \mathbf{r}_{h}, a) + V_{he'}(\mathbf{r}_{e}, \mathbf{r}_{h}, a), \qquad (3)$$

где

$$V_{hh'}(r_h, a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{a^2}{a^2 - r_h^2} + \frac{\varepsilon_2}{\varepsilon_1} \right), \tag{4}$$

$$V_{ee'}(r_e, a) = \frac{e^2}{2\varepsilon_2 a} \left(\frac{e^2}{a^2 - r_e^2} + \frac{\varepsilon_2}{\varepsilon_1} \right), \tag{5}$$

 $V_{eh'}(\mathbf{r}_e,\mathbf{r}_h,a)=V_{he'}(\mathbf{r}_e,\mathbf{r}_h,a)$

$$= -\frac{e^{2}\beta}{2\varepsilon_{2}a} \frac{a}{\left[(r_{e}r_{h}/a)^{2} - 2r_{e}r_{h}\cos\theta + a^{2}\right]^{1/2}}.$$
 (6)

В изучаемой простой модели квазинульмерной структуры в рамках вышеизложенных приближений, а также в приближении эффективной массы с использованием системы триангулярных коородинат [27,28] $\mathbf{r}_e = |\mathbf{r}_e|$, $\mathbf{r}_h = |\mathbf{r}_h|$, $\mathbf{r} = |\mathbf{r}_e - \mathbf{r}_h|$ с началом в центре КТ гамильтониан экситона, движущегося в объеме КТ, принимает вид [15]

$$H(\mathbf{r}_{e}, \mathbf{r}_{h}, a) = -\frac{\hbar^{2}}{2m_{e}} \left(\frac{\partial^{2}}{\partial r_{e}^{2}} + \frac{2}{r_{e}} \frac{\partial}{\partial r_{e}} + \frac{r_{e}^{2} - r_{h}^{2} + r^{2}}{r_{e}r} \frac{\partial^{2}}{\partial r_{e}\partial r} \right)$$
$$- \frac{\hbar^{2}}{2m_{h}} \left(\frac{\partial^{2}}{\partial r_{h}^{2}} + \frac{2}{r_{h}} \frac{\partial}{\partial r_{h}} + \frac{r_{h}^{2} - r_{e}^{2} + r^{2}}{r_{h}r} \frac{\partial^{2}}{\partial r_{h}\partial r} \right)$$
$$- \frac{\hbar^{2}}{2\mu_{0}} \left(\frac{\partial^{2}}{\partial r^{2}} + \frac{2}{r} \frac{\partial}{\partial r} \right) + V_{eh}(\mathbf{r})$$
$$+ U(\mathbf{r}_{e}, \mathbf{r}_{h}, a) + V(r_{e}, r_{h}) + E_{g}^{0}, \qquad (7)$$

где первые три члена являются операторами кинетической энергии электрона, дырки и экситона, E_g^0 — ширина запрещенной зоны в неограниченном полупроводнике с диэлектрической проницаемостью ε_2 . В гамильтониане $H(\mathbf{r}_e, \mathbf{r}_h, a)$ (7) энергия поляризационного взаимодействия $U(\mathbf{r}_e, \mathbf{r}_h, a)$ определяется с помощью формул (3)–(6), а энергия кулоновского взаимодействия между электроном и дыркой $V_{eh}(\mathbf{r})$ описывается формулой

$$V_{eh}(\mathbf{r}) = -\frac{e^2}{\varepsilon_2 \mathbf{r}}.$$
(8)

В гамильтониане экситона (7) потенциал

$$V(r_e, r_h) = \begin{cases} 0, & r_e, r_h \ge a\\ \infty, & r_e, r_h > a \end{cases}$$
(9)

описывает движение квазичастиц в объеме КТ с помощью модели бесконечно глубокой потенциальной ямы.

Вариационный расчет энергетического спектра экситона в полупроводниковой квантовой точке

Вариационную радиальную волновую функцию основного состояния экситона (1*s*-состояния электрона и 1*s*-состояния дырки) в КТ радиуса *а* запишем в следующем виде [15]:

$$\Psi_0(\mathbf{r}_e, \mathbf{r}_h, \mathbf{r}) = A \exp\left[-\frac{\mu(a)}{\mu_0} \frac{r}{a_{\mathrm{ex}}^0}\right] \frac{\sin(\pi r_e/a)}{r_e} \frac{\sin(\pi r_h/a)}{r_h}$$

$$\times \frac{(a^2 - r_e^2)}{a^2} \frac{(a^2 - r_h^2)}{a^2} \frac{r_e}{a} \frac{|\mathbf{r}_e - (a/r_h)^2 \mathbf{r}_h|}{a}.$$
 (10)

Здесь коэффициент A определяется из условия нормировки волновой функции экситона (10)

$$\int_{0}^{a} r_{e} dr_{e} \int_{0}^{a} r_{h} dr_{h} \int_{r}^{r_{e}+r_{h}} \Psi_{0}^{2}(r_{e}, r_{h}, r) r dr = 1,$$

а эффективная приведенная масса экситона $\mu(a)$ является вариационным параметром.

Для определения вариационным методом энергии основного состояния экситона $E_{1,0,0;1,0,0}(a)$ в КТ радиуса *а* запишем среднее значение гамильтониана экситона (7) на волновых функциях (10) в следующем виде:

$$\begin{split} E_{1,0,0;1,0,0}(a,\mu(a)) &= \langle \Psi_0(r_e,r_h,r) | H(r_e,r_h,a) | \Psi_0(r_e,r_h,r) \rangle \\ &= \int_0^a dr_e \int_0^a dr_h \\ &\times \int_r^{r_e+r_h} drr_e r_h r \Psi_0(r_e,r_h,r) H(r_e,r_h,a) \Psi_0(r_e,r_h,r). \end{split}$$
(11)

Расчет зависимости энергетического спектра $E_{1,0,0;1,0,0}(a)$ основного состояния экситона $(n_e = 1, l_e = m_e = 0; n_h = 1, l_h = m_h = 0,$ где n_e, l_e, m_e и n_h, l_h, m_h — главное, орбитальное и магнитное квантовые числа электрона и дырки соответственно) от радиуса КТ a получим путем минимизации функционала $E_{1,0,0;1,0,0}(a, \mu(a))$ (11):

$$\frac{\partial E_{1,0,0;1,0,0}(a,\mu(a))}{\partial \mu(a)} \equiv F(\mu(a),a) = 0.$$
(12)

Не выписывая здесь громоздких выражений для первой производной функционала $\partial E_{1,0,0;1,0,0}(a,\mu(a))/\partial\mu(a) \equiv F(\mu(a),a)$, приведем численное решение уравнения $F(\mu(a),a) \equiv 0$ в виде таблицы. Из таблицы следует, что решением этого

Значения вариационного параметра $\mu(a)$ как функции радиуса *а* КТ селенида цинка

а, нм	$\mu(a)/m_0$
2.0	0.292
2.3	0.263
2.6	0.243
3.0	0.228
3.5	0.216
4.0	0.206
4.5	0.197
5.0	0.188
6.0	0.174
7.0	0.162
8.0	0.152
10.0	0.140
12.0	0.135
14.5	0.132

Рис. 2. Энергетический спектр основного состояния экситона $E_{1,0,0;1,0,0}(a)$ (11) как функция радиуса *а* квантовой точки селенида цинка.

уравнения является функция $\mu(a)$, которая монотонно слабо меняется в пределах

$$0.29 \le \left(\mu(a)/m_0\right) \le 0.132 \tag{13}$$

при изменении радиуса КТ а в области

$$2.0 \le a \le 14.5 \,\mathrm{HM}$$
 (14)

 $(m_0$ — масса электрона в вакууме).

Подставляя значения вариационного параметра $\mu(a)$ (13), взятые из таблицы, одновременно с соответствющими значениями радиуса КТ *а* из интервала (14) в функционал $E_{1,0,0;1,0,0}(a, \mu(a))$ (11), получим энергию основного состояния экситона $E_{1,0,0;1,0,0}(a)$ (11) как функцию радиуса КТ *а*.

Результаты вариационного расчета энергетического спектра экситона $E_{1,0,0;1,0,0}(a)$ (11) в КТ радиуса \bar{a} показаны на рис. 2. Значения функции $\mu(a)$ (13) и результаты вариационного расчета спектра экситона $E_{1,0,0;1,0,0}(a)$ (11) в КТ, радиус которой определялся неравенством (14), здесь получены в условиях экспериментов [10].

Полученный спектр экситона $E_{1,0,0;1,0,0}(a)$ применим только для основного состояния экситона ($n_e = 1$, $l_e = m_e = 0$; $n_h = 1$, $l_h = m_h = 0$), для которого выполняется неравенство

$$\left[E_{1,0,0;1,0,0}(a) - E_g^0\right] \ll \Delta V(a),$$

где $\Delta V(a)$ — глубина потенциальной ямы для электрона в КТ. Для широкого класса полупроводниковых КТ $A^{II}B^{VI}$ в области размеров $a \ge a_{ex}^0$ величина $\Delta V(a) = 2.3 - 2.5$ эВ [7].

В экспериментальной работе [10] исследовались образцы боросиликатных стекол, легированных селенидом цинка с концентрациями от x = 0.003 до 1%, полученных золь–гель методом. Согласно рентгенографическим измерениям, средние радиусы возникающих в образцах

3

Физика и техника полупроводников, 2012, том 46, вып. 2

КТ ZnSe находились в диапазоне $\bar{a} \approx 2.0-4.8$ нм. При этом значения \bar{a} соизмеримы с боровским радиусом экситона $a_{ex}^0 \approx 3.7$ нм в монокристалле селенида цинка. При малых концентрациях КТ (x = 0.003 и 0.03%) их взаимодействием можно пренебречь. Оптические свойства таких наносистем в основном определялись энергетическими спектрами электрона и дырки, локализованных вблизи сферической поверхности одиночных КТ в матрице боросиликатного стекла.

В [10] были обнаружены сдвиги максимума спектра поглощения на величину $\Delta E_1 \approx 352 \,\mathrm{MyB}$, а также максимума спектра низкотемпературной люминесценции на величину $\Delta E_2 \approx 490 \,\mathrm{Mig}$ по отношению к ширине запрещенной зоны монокристалла селенида цинка $(E_g^0 = 2.823 \text{ эB})$ в коротковолновую область при температуре $T = 4.5 \,\mathrm{K}$ в образцах с x = 0.03%. Авторы работы [10] предполагали, что такие сдвиги обусловлены размерным квантованием энергетических спектров электрона и дырки, локализованных вблизи сферической поверхности одиночных КТ, и связаны с уменьшением средних радиусов ā KT ZnSe при малых концентрациях КТ (x = 0.003 и 0.03%). При этом оставался неисследованным вопрос: размерное квантование каких именно состояний электрона и дырки (локализованных на внешней сферической поверхности раздела "КТ-диэлектрическая матрица" или же локализованных в объеме КТ) вызывало такие сдвиги пиков спектров поглощения и люминесценции образцов?

Сравнивая энергетический спектр основного состояния экситона $E_{1,0,0;1,0,0}(a)$ (11), движущегося в объеме КТ, со значениями сдвигов пика поглощения $\Delta E_1 \approx 352 \,\mathrm{Mig}B$ и пика люминесценции $\Delta E_2 \approx 490$ мэВ, получим средние радиусы КТ селенида цинка $\bar{a}_1 \approx 4.2$ нм и $\bar{a}_2 \approx 2.0$ нм (рис. 2). При этом значения радиусов КТ \bar{a}_1 и \bar{a}_2 могут быть несколько завышенными, поскольку вариационный расчет спектра экситона дает завышенные значения энергии [15]. Найденные значения средних радиусов \bar{a}_1 и \bar{a}_2 КТ ZnSe находятся в диапазоне средних радиусов ($\bar{a} \approx 2.0-4.8\,\mathrm{HM}$) КТ, исследованных экспериментально [10]. Следует отметить, что в энергетический спектр основного состояния экситона (11) в КТ с радиусами \bar{a}_1 и \bar{a}_2 , соизмеримыми с боровским радиусом экситона a_{ex}^0 в монокристалле ZnSe, основной вклад вносит энергия поляризационного взаимодействия $U(\mathbf{r}_{e}, \mathbf{r}_{h}, a)$ (3) электрона и дырки с поверхностью КТ [11,16].

Таким образом, коротковолновые сдвиги пиков спектров поглощения и люминесценции образцов вызваны размерным квантованием энергетического спектра основного состояния экситона, движущегося в объеме КТ ZnSe.

В неограниченном полупроводником материале экситон большого радиуса возникает вследствие кулоновского притяжения между электроном и дыркой. В гамильтониан экситона $H(\mathbf{r}_e, \mathbf{r}_h, a)$ (7), движущегося в объеме КТ, кроме кулоновского притяжения между ними $V_{eh}(\mathbf{r})$ (8), будет также вносить вклад некоторое дополнительное эффективное притяжение между электроном и дыркой, вызванное отталкиванием электрона $V_{ee'}(r_e, a)$ (5) и дырки $V_{hh'}(r_h, a)$ (4) от собственных изображений (рис. 1). При этом энергия эффективного отталкивания между электроном и дыркой, которая описывается членами $V_{eh'}(\mathbf{r}_e, \mathbf{r}_h, a)$ и $V_{he'}(\mathbf{r}_e, \mathbf{r}_h, a)$ (6), вызывающими притяжения квазичастиц к поверхности КТ (к "чужим" изображениям, см. рис. 1), будет меньше, чем энергия дополнительного эффективного притяжения [11].

В результате с уменьшением радиуса КТ, $a < a_{ex}^0$ величина такого дополнительного эффективного притяжения между электроном и дыркой будет расти $\propto a^{-1}$ [11]. Такое эффективное поляризационное притяжение приводит к тому, что экситон движется в объеме КТ с эффективной массой $\mu = \mu(a)$, большей, чем значение массы экситона μ_0 в монокристалле с диэлектрической проницаемостью ε_2 . Следовательно, объемный экситон с эффективной массой μ_0 не может образоваться в КТ с размером $a < a_{ex}^0$ [11,15,16]. Под объемным экситоном в КТ подразумевался экситон, структура которого (приведенная эффективная масса, боровский радиус, энергия связи) в КТ не отличалась от структуры экситона в неограниченном полупроводниковом материале.

С ростом радиуса КТ $a > a_{ex}^0$ эффективное притяжение между электроном и дыркой будет уменьшаться $\propto a^{-1}$. Начиная с некоторого радиуса КТ a_c энергия такого эффективного притяжения между электроном и дыркой становится малой по сравнению с энергией связи объемного экситона [11,15,16]:

$$E_{\rm ex} = \mathrm{Ry}_{\rm ex} = \frac{\hbar^2}{2\mu_0(a_{\rm ex}^0)^2}.$$
 (15)

Следовательно, объемный экситон будет возникать только в КТ размером $a > a_{ex}^0$. Образование такого объемного экситона носит пороговый характер и возможно лишь в КТ, размер которой *a* превышает некоторый критический радиус КТ a_c [11, 15, 16].

В таблице приведены численные значения функции $\mu = \mu(a)$. Из поведения функции $\mu(a)$ вытекает, что с ростом радиуса КТ $a > a_{ex}^0$ эффективная масса экситона $\mu = \mu(a)$ уменьшается, приближаясь при a, равном величине критического радиуса КТ $a_c = 3.90a_{ex}^0 \approx 14.5$ нм, к значению эффективной массы экситона $\mu_0 = 0.132m_0$ в монокристалле ZnSe (см. таблицу). Таким образом, объемный экситон возникает в КТ селенида цинка начиная с радисуа КТ $a \ge a_c \approx 3.90a_{ex}^0 \approx 14.5$ нм.

4. Заключение

В настоящей работе развита теория экситонных состояний в полупроводниковой квантовой точке в условиях, когда поляризационное взаимодействие электрона и дырки со сферической поверхностью раздела "квантовая точка-диэлектрическая матрица" играет доминирующую роль. С.И. Покутний

С помощью сравнения зависимости энергетического спектра основного состояния экситона (11) от радиуса КТ *а*, полученной вариационным методом в рамках модифицированного метода эффективной массы [15], с экспериментальными значениями пиков спектров поглощения и низкотемпературной люминесценции [10] найдены средние радиусы КТ селенида цинка. Показано, что коротковолновые сдвиги пиков спектров поглощения и люминесценции образцов обусловлены размерным квантованием энергетического спектра основного состояния экситона, движущегося в объеме КТ селенида цинка.

Прослежен предельный переход энергетического спектра $E_{1,0,0;1,0,0}(a)$ (11) экситона в КТ селенида цинка к спектру объемного экситона начиная с радиуса КТ $a \ge 3.90a_{\text{ex}}^0$.

Список литературы

- А.И. Екимов, А.А. Онущенко. Письма ЖЭТФ, 34 (8), 363 (1981).
- [2] А.И. Екимов, А.А. Онущенко. Письма ЖЭТФ, 40 (8), 337 (1984).
- [3] A.Ekimov, A. Efros. Sol. St. Commun., 56 (11), 921 (1985).
- [4] А.И. Екимов, А.А. Онущенко, Ал.Л. Эфрос. Письма ЖЭТФ, 43 (6), 292 (1986).
- [5] D. Chepik, A. Efros, A. Ekimov. J. Luminecs., 47 (3), 113 (1990).
- [6] A. Ekimov, F. Hache, M.C. Schanne-Klein. J. Opt. Soc. Am., B10 (1), 100 (1993).
- [7] В.Я. Грабовскис, Я.Я. Дзенис, А.И. Екимов. ФТТ, 31 (1), 272 (1989).
- [8] Ж.И. Алфёров. ФТП, **32** (1), 3 (1998).
- [9] Ж.И. Алфёров. УФН, 172 (9), 1068 (2002).
- [10] Н.В. Бондарь, М.С. Бродин. ФТП, 44 (7), 915 (2010).
- [11] С.И. Покутний. ФТП, 39 (9), 1101 (2005).
- [12] S.I. Pokutnyi. J. Appl. Phys., 96 (2), 1115 (2004).
- [13] С.И. Покутний. ФТП, 40 (2), 223 (2006).
- [14] S.I. Pokutnyi. Phys. Lett. A, 342, 347 (2005).
- [15] С.И. Покутний. ФТП, 41 (11), 1341 (2007).
- [16] С.И. Покутний. ФТП, 44 (4), 507 (2010).
- [17] V.N. Soloviev, A. Eeichofer, D. Frenske. Phys. Status Solidi B, 224 (1), 285 (2001).
- [18] R.T. Collins, P.M. Eauchet, M.A. Tischler. Phys. Today, 50 (1), 24 (1997).
- [19] C.Y. Yeh, S.B. Zhang, A. Zunger. Phys. Rev. B, 50 (19), 14405 (1994).
- [20] C. Delerue, G. Allan, M. Lanno. Phys. Rev. B, 48 (15), 11 024 (1993).
- [21] A.J. Read, R.J. Needs, K.J. Nash. Phys. Rev. Lett., 69 (8), 1232 (1992).
- [22] F. Buda, J. Kohanoff, M. Rarrinello. Phys. Rev. B, 69 (8), 1272 (1992).
- [23] S.I. Pokutnyi. Phys. Low-Dim. Structur., 78, 39 (2002).
- [24] Н.А. Ефремов, С.И. Покутний. ФТТ, **32** (6), 1637 (1990).
- [25] С.И. Покутний. ФТП, 25 (4), 628 (1991).
- [26] S.I. Pokutnyi. Phys. Lett. A, 168 (5,6), 433 (1992).
- [27] Y. Kayanuma. Sol. St. Commun., 59 (6), 405 (1986).
- [28] Н.В. Ткач, В.А. Головацкий. ФТТ, 32 (8), 2512 (1990).

Редактор Л.В. Шаронова

Exciton states in semiconductor quasi-zero-dimensional nanosystems

S.I. Pokutnyi

G.V. Kurdyumov Institute for Metal Physics, National Academy of Sciences of Ukraine, 03680 Kiev, Ukraine