Исследование *p*-*n*-переходов на основе 4*H*-SiC, изготовленных имплантацией бора, методом нестационарной емкостной спектроскопии

© П.А. Иванов[¶], А.С. Потапов, Т.П. Самсонова, О. Korol'kov*, N. Sleptsuk*

Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

* Tallinn University of Technology (Department of Electronics),

19086 Tallinn, Estonia

(Получена 23 марта 2011 г. Принята к печати 28 марта 2011 г.)

Методом нестационарной емкостной спектроскопии (DLTS) исследованы p-n-переходы, изготовленные имплантацией бора в эпитаксиальные пленки 4*H*-SiC *n*-типа проводимости с концентрацией доноров $(8-9) \cdot 10^{14}$ см⁻³. Обнаружен "аномальный" по знаку сигнал DLTS, который связывается с перезарядкой глубоких компенсирующих "борных" центров в *n*-области вблизи металлургической границы p-n-перехода.

1. Введение

Локальная имплантация бора как способ формирования планарных *p*-*n*-переходов в 4*H*-SiC успешно использовалась нами ранее для изготовления высоковольтных диодов Шоттки с охранными *р*-кольцами [1–3], а также интегрированных диодов Шоттки-(p-n), в которых области Шоттки перемежаются с локальными *p*-*n*-переходами [4]. В настоящей работе приведены результаты исследований *p*-*n*-переходов, изготовленных имплантацией бора в эпитаксиальные пленки 4H-SiC с концентрацией доноров $(8-9) \cdot 10^{14} \, \mathrm{сm}^{-3}$, методом нестационарной емкостной спектроскопии (DLTS). Измеренные спектры DLTS показали "аномальный" характер релаксации неравновесной емкости *p*-*n*-перехода: после приложения обедняющего напряжения емкость не растет, как это обычно бывает при выбросе с глубоких уровней (ГУ) основных носителей тока, а падает. В работе наблюдаемая аномалия объясняется перезарядкой глубоких компенсирующих "борных" центров (акцепторных) вблизи металлургической границы *p*-*n*перехода со стороны п-области.

2. Образцы и методика измерений

Исследованные диоды (рис. 1) изготавливались на основе коммерческих эпитаксиальных 4*H*-SiC-*n*- n_s^+ структур: концентрация доноров в базовом *n*-слое $N_D = (8-9) \cdot 10^{14}$ см⁻³, толщина *n*-слоя d = 34 мкм. Суммарная доза внедренных атомов бора в *p*-областях составляет $9 \cdot 10^{13}$ см⁻². Постимплантационный отжиг проводился в атмосфере аргона при температуре 1500°C в течение 1 ч. В качестве контактов к шлифованной с обратной стороны подложке и к имплантированному *p*-слою использовался алюминий, осажденный магнетронным распылением в вакууме. С помощью фотолитографии из сплошного алюминиевого покрытия на имплантированном *p*-слое были сформированы анодные контакты с размерами 0.7×0.7 мм. Далее сухим травлением в плазме SF₆ были сформированы мезаструктуры с целью формирования дискретных изолированных *p*-*n*-переходов. Измерения вольт-фарадных характеристик (ВФХ) проводились с помощью цифрового LCR-измерителя E7-12, а спектров DLTS — с помощью стандартной установки DLTS-83D (Венгрия). Для контроля был также измерен спектр DLTS промышленного кремниевого диода Шоттки.

3. Результаты и обсуждение

На рис. 2 показаны типичные спектры сигнала DLTS $\Delta C/C$ исследованных диодов, измеренные при переключениях напряжения на аноде от нуля до отрицательного значения (сканирование по частоте *f* при разных фиксированных температурах *T*). График Аррениуса для скорости эмиссии носителей с ГУ (рис. 3) дает энергию активации 0.58 эВ. Ожидалось, что сигнал DLTS будет отрицательным по знаку, так же как и для контрольного кремниевого диода. Однако в спектрах 4*H*-SiC-диодов

Рис. 1. Поперечное сечение изготовленных 4*H*-SiC-диодов с *p*-*n*-переходом.

[¶] E-mail: Pavel.Ivanov@mail.ioffe.ru

Рис. 2. Спектры DLTS исследованных p-n-переходов (частотное сканирование). Температура T, K: 1 - 280, 2 - 290, 3 - 300.

Рис. 3. График Аррениуса для скорости эмиссии дырок с глубоких уровней. f_{max} — положение максимума при частотном сканировании. Энергия активации 0.58 эВ.

сигнал DLTS оказался положительным. Это означает, что измеряемая неравновесная емкость в ходе релаксации не увеличивается, как это происходит в том случае, когда ловушки захватывают и выбрасывают основные носители, а уменьшается.

Аномальный по знаку сигнал DLTS наблюдался ранее в диодах на основе разных полупроводниковых материалов [5–8]. Было показано, что этот эффект может быть связан с разными причинами. Одна из таких причин влияние большого последовательного сопротивления на результат измерений [9,10]. Если последовательное сопротивление велико, то часть прикладываемого к переходу измерительного переменного напряжения падает на этом сопротивлении, и в результате измеряется не истинная емкость перехода C_{p-n} , а емкость параллельной схемы замещения $C_{\parallel},$ которая связана с C_{p-n} формулой

$$C_{\parallel} = C_{p-n} \frac{1}{1 + (\omega R C_{p-n})^2},$$
(1)

где R — последовательное сопротивление, а ω — круговая частота измерительного сигнала. Как видно, зависимость C_{\parallel} от C_{p-n} немонотонная и имеет максимум при $R = 1/(\omega C_{p-n})$. Если $R > 1/(\omega C_{p-n})$, то емкость C_{\parallel} падает, когда C_{p-n} растет. Именно этим обстоятельством и объясняют аномальный сигнал DLTS. Важно, однако, отметить, что большое последовательное сопротивление должно приводить и к изменению формы ВФХ: зависимость измеряемой емкости C от приложенного обратного напряжения должна быть немонотонной. Однако в нашем случае этого не наблюдается (см. рис. 4, a).

Мы полагаем, что в исследованных диодах аномалия сигнала DLTS связана с другой причиной, а именно с сильной компенсацией доноров глубокими акцепторами в *n*-слое у металлургической границы *p*-*n*-перехода (измерения профилей распределения бора в импланти-

Рис. 4. Вольт-фарадная характеристика 4*H*-SiC-*p*-*n*-перехода в координатах C(V) (*a*) и $C^{-2}(V)$ (*b*).

Рис. 5. Профиль концентрации нескомпенсированных доноров. SCR — область пространственного заряда.

Рис. 6. Энергетические диаграммы p-n-перехода: a - t = 0-; $b - t = 0+; c - t \to \infty$. E_c — зона проводимости, E_v валентная зона, E_F — уровень Ферми, E_{Fn} и E_{Fp} — квазиуровни Ферми для электронов и дырок, E_A — уровень акцепторов.

рованных слоях 4*H*-SiC, проведенные методом вторичноионной масс-спектрометрии [11,12], показывают наличие довольно протяженных диффузионных "хвостов", которые возникают благодаря радиационно-ускоренному механизму диффузии). На рис. 4, *b* показана ВФХ C(V), построенная в координатах $C^{-2}(V)$. При обратных напряжениях V > 20 B эта характеристика линейна, а ее наклон соответствует концентрации доноров в исходном материале $8.4 \cdot 10^{14} \text{ см}^{-3}$. При меньших напряжениях наклон увеличивается, что отражает уменьшение (вследствие компенсации) концентрации нескомпенсированных доноров у p-n-перехода. Рассчитанный из характеристики $C^{-2}(V)$ профиль концентрации нескомпенсированных доноров $N_D - N_A$ показан на рис. 5.

На качественном уровне роль компенсирующих центров в процессе релаксации неравновесной емкости сводится к следующему (см. рис. 6). Пусть имеется асимметричный *p*-*n*-переход, в котором доноры в *п*-области скомпенсированы глубокими акцепторами. В момент времени t = 0 на переход подается обратное напряжение. В равновесных условиях (до подачи смещения, в момент времени t = 0-) в части области пространственного заряда (ОПЗ) есть слой толщиной x_a , в пределах которого акцепторы не ионизованы, т.е. не заполнены электронами (рис. 6, а). Сразу после подачи обедняющего смещения (в момент времени t = 0+) ОПЗ расширяется до толщины w_{0+} , при этом акцепторы в слое толщиной $x_a - x'_a$ (там, где их уровень оказывается ниже квазиуровня Ферми для дырок E_{Fp}) оказываются в состоянии неравновесного заполнения (рис. 6, b). По мере их ионизации (т.е. по мере захвата электронов из валентной зоны E_v на акцепторы) плотность положительного объемного заряда, создаваемого донорами в слое $x_a - x'_a$, падает, что приводит к расширению ОПЗ при $t
ightarrow \infty$ до толщины w_∞ и соответственно к уменьшению емкости (рис. 6, с).

Оценим, каким должно быть изменение относительной емкости диода $(\Delta C/C)$ при описанной выше схеме перезарядки глубоких акцепторов (в зависимости от их концентрации и энергии ионизации). Будем считать для простоты, что: 1) p-n-переход — резкий и асимметричный (вся ОПЗ толщиной w_{0-} сосредоточена в *n*-области); 2) *n*-область однородно легирована мелкими донорами с концентрацией N_D ; 3) доноры в *n*-области компенсированы акцепторами с концентрацией N_A ($N \equiv N_D - N_A$), имеющими энергию ионизации ΔE_A ; 4) слой $x_a - x'_a$ тесно прилегает к металлургической границе перехода ($x'_a \rightarrow 0$).

Толщина x_a может быть определена путем решения уравнения Пуассона для момента времени t = 0-. Нетрудно показать, что x_a является корнем приведенного квадратного уравнения

$$x_a^2 + p_1 x_a + p_2 = 0, (2)$$

в котором

$$p_1 = \frac{2N}{N_D} x_b,$$
$$= \frac{N}{N_D} (x^2 - w_{\perp}^2)$$

$$p_2 = \frac{1}{N_D} (x_p - w_{bi}), \tag{3}$$

(2)

$$x_b = w_{0-} - x_a = \sqrt{\frac{2\varepsilon(V_{bi} - \Delta E_A/q)}{qN}},\tag{4}$$

$$w_{bi} = \sqrt{\frac{2\varepsilon V_{bi}}{qN}},\tag{5}$$

где q — элементарный заряд, ε — диэлектрическая проницаемость полупроводника, V_{bi} — диффузионная разность потенциалов p-n-перехода.

Толщина ОПЗ w_{0+} может быть определена путем решения уравнения Пуассона для момента времени t = 0+, когда акцепторы в слое толщиной x_a еще не ионизованы. Нетрудно показать, что

$$w_{0+} = \sqrt{w_{\infty}^2 - x_a^2 \left(\frac{N_D}{N} - 1\right)},$$
 (6)

где w_{∞} — стационарная толщина ОПЗ, которая определяется в свою очередь путем решения уравнения Пуассона для момента времени $t \to \infty$:

$$w_{\infty} = \sqrt{\frac{2\varepsilon(V+V_{bi})}{qN}}.$$
 (7)

Расчеты w_{∞} и w_{0+} по формулам (2)–(7) позволяют рассчитать относительное изменение емкости диода в ходе перезарядки акцепторов:

$$\Delta C/C = 1 - \frac{w_{0+}}{w_{\infty}}.$$
(8)

На рис. 7 показаны результаты расчета относительного изменения емкости. Использовались следующие параметры: V = 5 B, $V_{bi} = 2.5$ B, $N_D = 8.4 \cdot 10^{14}$ см⁻³. В расчетах варьируемыми параметрами были концентрация компенсирующих акцепторов N_A и энергия их ионизации ΔE_A . В нашем случае $\Delta E_A = 0.58$ эВ (см. график Аррениуса на рис. 3), а величина $\Delta C/C = 0.02 - 0.025$, что соответствует концентрации акцепторов $N_A \approx 8 \cdot 10^{14}$ см⁻³. Полученная величина N_A

Рис. 7. Расчетные зависимости относительного изменения емкости от концентрации компенсирующих акцепторов. ΔE_A , эВ: 1 - 0.58, 2 - 0.058, 3 - 0.0058.

близка, как и ожидалось, к концентрации доноров N_D (поскольку p-n-переход по сути диффузионный, т.е. получен перекомпенсацией доноров).

4. Заключение

1. Как следует из проведенного анализа, чем меньше энергия ионизации компенсирующих центров (ΔE_A), тем меньше толщина слоя x_a , в котором они изначально не ионизованы, и тем меньше оказывается величина $\Delta C/C$ (рис. 7), т.е. в случае совсем мелких компенсирующих центров эффект их перезарядки при использовании обедняющих импульсов напряжения проявляться не будет (для выявления таких центров необходима инжекция неосновных носителей из *p*-эмиттера).

2. С бором в 4*H*-SiC связывают два энергетических уровня: $E_v + 0.3$ эВ (примесь замещения) и $E_v + (0.5-0.6)$ эВ (*D*-центры, которые представляют собой дефектные комплексы, связанные с бором) [13]. Очевидно, что обнаруженные в данной работе компенсирующие акцепторы представляют собой не что иное, как *D*-центры. Важный практический вывод состоит в том, что при имплантации бора в 4*H*-SiC *n*-типа проводимости с концентрацией доноров меньше 10^{15} см⁻³ p-*n*-переход образуется за счет перекомпенсации доноров не мелкой примесью замещения, а именно *D*-центрами.

Список литературы

- И.В. Грехов, П.А. Иванов, Н.Д. Ильинская, О.И. Коньков, А.С. Потапов, Т.П. Самсонова. ФТП, 42 (2), 211 (2008).
- [2] П.А. Иванов, И.В. Грехов, А.С. Потапов, Т.П. Самсонова. ФТП, 42 (7), 878 (2008).
- [3] П.А. Иванов, И.В. Грехов, Н.Д. Ильинская, Т.П. Самсонова, А.С. Потапов. ФТП, 43 (4), 527 (2009).
- [4] П.А. Иванов, И.В. Грехов, А.С. Потапов, Н.Д. Ильинская, Т.П. Самсонова, О.И. Коньков. ФТП, 43 (9), 1249 (2009).
- [5] Е.Н. Агафонов, У.А. Аминов, А.Н. Георгобиани, Л.С. Лепнев. ФТП, 35 (1), 48 (2001).
- [6] М.Ю. Барабаненков, А.В. Леонов, В.Н. Мордкович, Н.М. Омельяновская. ФТП, **32** (5), 523 (1998).
- [7] M. Gong, C.V. Reddy, C.D. Beling, S. Fung, G. Brauer, H. Wirth, W. Skorupa. Appl. Phys. Lett., **72** (21), 2739 (1998).
- [8] S.W. Johnston, J.A.M. AbuShama, R. Noufi. 2005 MRS Spring Meeting Proc. (2005) v. 862–884, F5.35.
- [9] I. Thurzo, F. Dubecky. Phys. Status Solidi A, **89**(2), 693 (1985).
- [10] Е.В. Астрова, А.А. Лебедев, А.А. Лебедев. ФТП, 19 (8), 1382 (1985).
- [11] M.K. Linnarsson, M.S. Janson, A. Schöner, B.G. Svensson. Mater. Res. Soc. Symp. Proc. (2003) v. 742, K 6.1.1.
- [12] M.S. Janson, M.K. Linnarsson, A. Hallen, B.G. Svensson, H. Bleichner. Appl. Phys. Lett., 76 (11), 1434 (2000).
- [13] S.W. Huh, J.J. Sumakeris, A.Y. Polyakov, M. Skowronski, P.B. Klein, B.V. Shanabrook, M.J. O'Loughlin. Mater. Sci. Forum, **527–529**, 493 (2006).

Редактор Л.В. Шаронова

DLTS study of 4H-SiC based p-n junctions fabricated by boron implantation

P.A. Ivanov, A.S. Potapov, T.P. Samsonova, O. Korol'kov*, N. Sleptsuk*

Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia * Tallinn University of Technology, Department of Electronics, 19086 Tallinn, Estonia

Abstract 4*H*-SiC p-n junctions made from boron implanted *n*-type epilayers ((8–9) \cdot 10¹⁴ cm⁻³ doping) have been investigated by deep level transient spectroscopy (DLTS). DLTS signal with an anomalous sign was found, that attributed to recharging of deep boron related centers in *n*-region near metallurgical boundary.