Четверные твердые растворы $(Feln_2S_4)_x(Mnln_2S_4)_{1-x}$ и фоточувствительные структуры на их основе

© И.В. Боднарь, В.Ю. Рудь*[¶], Ю.В. Рудь⁺, Д.В. Ложкин

Белорусский государственный университет информатики и радиоэлектроники, 220013 Минск, Белоруссия

* Санкт-Петербургский государственный политехнический университет,

195251 Санкт-Петербург, Россия

⁺ Физико-технический институт им. А.Ф. Иоффе Российской академии наук,

194021 Санкт-Петербург, Россия

(Получена 15 декабря 2010 г. Принята к печати 22 декабря 2010 г.)

Методом направленной кристаллизации расплава $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ выращены гомогенные кристаллы напогичного атомного состава во всем интервале показателя состава $1 \ge x \ge 0$. Установлено, что кристаллы непрерывного ряда четверных твердых растворов в диапазоне x = 0-1 кристаллизуются в структуре шпинели, причем параметр элементарной ячейки *a* обнаружил линейную зависимость от значения *x*. Установлена возможность получения фоточувствительных структур $In(Al)/(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$. Получены спектры относительной квантовой эффективности фотопреобразования впервые созданных структур $In(Al)/(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$. Получены спектры относительной квантовой эффективности фотопреобразования впервые созданных структур $In(Al)/(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ при комнатной температуре. Из анализа этих спектров определены энергии прямых и непрямых межзонных переходов для кристаллов твердых растворов (FeIn_2S_4)_x(MnIn_2S_4)_{1-x} и обсуждается зависимость этих параметров от показателя состава позиционно-разупорядоченных фаз указанных твердых растворов. Сделан вывод о возможностях использования кристаллов растворов (FeIn_2S_4)_x(MnIn_2S_4)_{1-x} в широкополосных фотопреобразователях оптического излучения.

1. Введение

Многочисленный класс тройных позиционно-упорядоченных полупроводниковых халькогенидов А^{II}В^{III}С^{VI}₄, где A^{II} — Mn, Fe, Co, Ni; B^{III} — Ga, In; C^{VI} — S, Se, Те, при переходе к созданию на их основе позиционноразупорядоченных фаз может обеспечить дальнейшее расширение возможностей управления их фундаментальными свойствами [1-5]. Комплексные исследования и поиск процессов взаимной растворимости соединений указанного типа открывает новые возможности увеличения диапазона и точности воспроизведения необходимых значений параметров таких материалов. Однако до настоящего времени поиск и обнаружение растворимости в таких материалах оставались практически не тронутыми и, что особенно важно, в плане выяснения детальных зависимостей фундаментальных свойств новых фаз от их атомного состава и обеспечения в них условий, способствующих решению важных прикладных задач путем привлечения новых моделей самоорганизации. Вполне очевидно также, что проявление магнетизма в этих веществах, обусловленное контролируемым растворением в них атомов марганца и железа, может получить широкое применение в спинтронике [6], что уже привело к расширению исследований магнетизма в таких средах [7-10]. Настоящая работа принадлежит этому перспективному направлению и посвящена:

a) поиску и изучению растворимости в системе $FeIn_2S_4\text{--}MnIn_2S_4;$

б) выращиванию кристаллов твердых растворов $(FeIn_2S)_x(MnIn_2S_4)_{1-x}$ в области составов x = 0-1.0;

в) созданию и исследованиям первых фоточувствительных структур на их основе.

Выполненные исследования позволили определить фотоэлектрические параметры новых твердых растворов и структур из них, что дало возможность сформулировать первые заключения относительно прикладного потенциала новых полупроводниковых материалов.

2. Методика эксперимента

Кристаллы тройных соединений FeIn₂S₄, MnIn₂S₄ и твердых растворов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ выращивались методом направленной кристаллизации расплава с горизонтальным расположением тигля. Металлические компоненты (марганец, железо и индий) полупроводниковой степени чистоты, взятые в соотношениях, соответствующих составу соединения или определенному составу твердого раствора, загружались в кварцевый тигель, который располагался в одном из концов кварцевой ампулы. В противоположном ее конце размещалась сера, взятая с таким избытком по отношению к стехиометрии, который обеспечивает давление ее паров над расплавом на уровне ~ 2 атм. После вакуумирования ампулы до остаточного давления $\sim 10^{-3}\,\Pi a$ она отпаивалась от вакуумной системы и размещалась в горизонтальной двухзонной печи таким образом, что тигель с металлическими компонентами находился в "горячей" зоне печи, а сера в "холодной" зоне. Температуру "горячей" зоны устанавливали ~ 1400-1430 К (в зависимости от соединения или состава твердого раствора). Температура "холодной" зоны, где локализовалась сера, поднималась со скоростью ~ 100 К/ч до 680-700 К и выдерживалась

[¶] E-mail: rudvas.spb@gmail.com

x	Мп, ат%		Fe, at%		In, ат%		S, ат%	
	эксперимент	расчет	эксперимент	расчет	эксперимент	расчет	эксперимент	расчет
0.0	14.12	14.29	-	-	28.20	28.57	57.68	57.14
0.2	11.30	11.43	2.92	2.86	28.66	28.57	57.12	57.14
0.4	8.44	8.57	5.90	5.72	28.47	28.57	57.19	57.14
0.5	7.36	7.15	7.03	7.14	28.63	28.57	56.98	57.14
0.6	5.59	5.72	8.70	8.57	28.51	28.57	57.20	57.14
0.8	2.77	2.86	11.60	11.43	28.63	28.57	57.00	57.14
0.0	—	—	13.94	14.29	28.34	28.57	57.71	57.14

Таблица 1. Данные микрозондового рентгеноспектрального анализа соединений $MnIn_2S_4$, $FeIn_2S_4$ и твердых растворов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ при T = 300 К

в течение 2 ч (для обеспечения протекания реакции между металлическими компонентами и парообразной серой). Для достижения более высокой полноты этой реакции температура с такой же скоростью повышалась до 950 К с повторной выдержкой в течение 1 ч. С целью

гомогенизации полученных слитков проводилась их дополнительная термообработка при T = 1020 К в течение 260 ч. Выращенные в изложенных выше условиях кристаллы были крупноблочными со средним размером отдельных блоков $8-10 \times 5 \times 3$ мм.

Рис. 1. Дифрактограммы твердых растворов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ при различных значениях показателя состава x = 0-1.0 (T = 300 K).

x	Тип проводимости	$ ho, \ \Omega \cdot \mathrm{cm}$	S_U^{\max} , B/Bt	ћω _{max} , эВ	<i>δ</i> , эВ	E _G ^{ind} , эВ	$E_{\rm G}^{ m dir},$ m o B	Источник
0.0	п	$7\cdot 10^7$	1600	3.15	> 1.2	1.71	2.22	[10]
0.2	п	$5\cdot 10^9$	50	2.5 - 3.5	> 1.3	1.20	1.46	
0.4	п	$1 \cdot 10^{8}$	10	3.0-3.5	> 1.2	1.27	1.59	
0.6	п	$2 \cdot 10^7$	110	3.0-3.5	> 1.2	1.33	1.57	
0.8	р	$3\cdot 10^6$	0	_	_	_	_	
1.0	р	$10^4 - 10^5$	50	2.2	~ 1.2	1.38	1.68	[9]

Таблица 2. Электрические свойства кристаллов твердых растворов $(Feln_2S_4)_x(MnIn_2S_4)_{1-x}$ и фотоэлектрические параметры структур $In(Al)/(Feln_2S_4)_x(MnIn_2S_4)_{1-x}$ при T = 300 К

Состав выращенных кристаллов определялся с помощью микрозондового рентгеноспектрального анализа. В качестве возбудителя тормозного рентгеновского излучения в образце использовался электронный луч растрового электронного микроскопа Stereoscan-360, а анализатором рентгеновского спектра служил спектрометр Avalon-8000, что обеспечило относительную погрешность определения содержания компонентов ~ 5 ат%.

Равновесность выращенных кристаллов соединений FeIn₂S₄ и MnIn₂S₄, а также гомогенность твердых растворов (FeIn₂S₄)_x (MnIn₂S₄)_{1-x} определялись рентгеновским методом. Угловые положения линий на дифрактограммах регистрировались на рентгеновском аппарате ДРОН-3М в Си K_{α} -излучении с графитовым монохроматором. Запись дифрактограмм проводилась с изменением удвоенных углов отражения 2θ со скоростью 0.5 град/мин. Рентгеновские исследования осуществлялись на порошках, полученных растиранием кристаллов (FeIn₂S₄)_x (MnIn₂S₄)_{1-x} в агатовой ступке. Для снятия механических напряжений, возникающих в процессе измельчения вещества, проводился отжиг порошков при температуре 650 К в течение 2 ч.

3. Экспериментальные результаты

Результаты проведенных микрозондовых рентгеноспектральных измерений представлены в табл. 1, из которой следует, что содержание компонент в выращенных кристаллах (FeIn₂S₄)_x (MnIn₂S₄)_{1-x} достаточно хорошо согласуется с составом компонентов в исходной шихте.

Данные рентгеновских исследований представлены на рис. 1. Индицирования порошкограмм позволили установить, что на всех представленных дифрактограммах присутствуют линии с индексами отражений, характерными для кубической структуры шпинели. Наблюдаемое разрешение высокоугловых линий на полученных дифрактограммах свидетельствует о равновесности кристаллов тройных соединений FeIn₂S₄, MnIn₂S₄ и гомогенности твердых растворов (FeIn₂S₄)_x (MnIn₂S₄)_{1-x}. Параметры элементарной ячейки, рассчитанные методом наименьших квадратов, равны для FeIn₂S₄ *a* = 10.612 ± 0.005 Å, для MnIn₂S₄ *a* = 10.722 ± 0.005 Å. Изменение параметров элементарной ячейки в зависимости от показателя

состава *х* подчиняется закону Вегарда и следует соотношению

$$a [\dot{A}] = 10.612 + 0.110x, \tag{1}$$

что характерно для непрерывной растворимости.

Измерения удельного сопротивления (ρ) кристаллов твердых растворов (FeIn₂S₄)_x (MnIn₂S₄)_{1-x} проводились на образцах в виде прямоугольных параллелепипедов со средним размером $1 \times 2 \times 6$ мм, поверхность которых была подвергнута вначале механической шлифовке на абразивных порошках с различным размером зерна и полировке, а затем обрабатывалась в полирующем травителе. Для ряда составов твердых растворов удалось приготовить образцы со сколотыми зеркальными плоскостями, и тогда дополнительная обработка поверхности не применялась.

По знаку термоэдс монокристаллы с показателями состава x = 0-0.6 имели *n*-тип, а в образцах с

Рис. 2. Зависимости удельного сопротивления (кривая *I*) и значений ширины запрещенной зоны твердых растворов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ для прямых $(E_G^{dir}, кривая 2)$ и непрямых $(E_G^{dir}, кривая 3)$ межзонных переходов в зависимости от показателя состава *x* при *T* = 300 K.

x = 0.8 и 1.0 происходила конверсия типа проводимости $n \to p$ (табл. 2). С учетом того что преднамеренного легирования исходной шихты посторонними примесями не предпринималось, есть основания предположить, что обнаруженная конверсия типа проводимости вызвана изменениями в ансамбле дефектов решетки кристаллов. Следует отметить, что для кристаллов *p*-типа проводимости удельное сопротивление составляет $\rho \approx 10^4 - 10^5$ Ом · см, тогда как в кристаллах *n*-типа сопротивление возрастает до максимального в исследованном разрезе значения (табл. 2, рис. 2). Можно предположить, что причина конверсии типа проводимости $n \to p$ инициирована ростом показателя состава x > 0.2.

Температурные зависимости удельного сопротивления образцов твердых растворов на основе тройных соединений $FeIn_2S_4$, $MnIn_2S_4$ проявляют характеруню для компенсированных полупроводников экспоненциальную зависимость

$$\rho = \rho_0 \exp\left(\frac{E}{kT}\right),\tag{2}$$

где *Е* — энергия активации доминирующих центров, определяющих перенос носителей заряда, *k* — постоянная Больцмана [11].

Установлено, что энергия активации в указанных кристаллах возрастает с ростом значения ρ от 0.2 до 0.6 эВ для разных образцов и при этом зависимости $\rho(T)$ не обнаруживают каких-либо гистерезисных явлений даже при преднамеренном термоциклировании образцов, что связывается с отсутствием в этих веществах фазовых переходов первого рода в области температур 300–450 К.

Предпринятые нами начальные исследовния контактных явлений между тонкими пленками индия и алюминия ($t_1 \approx 1$ мкм) и поверхностью пластин кристаллов $(FeIn_2S_4)_4(MnIn_2S_4)_{1-x}$ привели к созданию первых фоточувствительных структур на указанных твердых растворах. Омический контакт к кристаллам удается воспроизводимо получать химическим осаждением чистой меди из водного раствора Cu₂SO₄, а также нанесением серебряной пасты. На основании измеренных стационарных вольт-амперных характеристик в лучших структурах $In(Al)/(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ при напряжениях смещения $U < 5 \,\mathrm{B}$ обнаруживается выпрямление ~ 5 , причем пропускное направление всегда реализуется при положительной полярности внешнего смещения на кристаллах твердых растворов р-типа проводимости и отрицательной для *п*-типа.

Первые исследования таких структур показали, что при их освещении интегральным светом лампы накаливания воспроизводимо проявляется фотовольтаический эффект, знак которого согласуется с направлением выпрямления, а изменения в локализации светового зонда на фотоприемной поверхности таких структур, энергии падающих фотонов и интенсивности освещения не влияют на знак фотонапряжения. Перечисленные закономерности фоточувствительности созданных

Рис. 3. Спектры относительной квантовой эффективности $\eta(\hbar\omega)$ барьеров Шоттки In/(FeIn₂S₄)_x (MnIn₂S₄)_{1-x} (кривые 1-3) при T = 300 К. Показатель состава x: 1 - 0.2, 2 - 0.2, 2 - 0.4, 3 - 0.6. Спектры $\eta(\hbar\omega)$ для исключения их наложений смещены вдоль оси ординат. Стрелками у кривых 1-3 указано энергетическое положение точек перехода к максимальному значению $\eta(\hbar\omega)$.

структур In(Al)/(FeIn₂S₄)_x (MnIn₂S₄)_{1-x} служат основанием для заключения о том, что их можно объяснить существованием единственного энергетического барьера, возникающего в результате приведения тонких пленок металлов In, Al в контакт с кристаллами твердых растворов (FeIn₂S₄)_x (MnIn₂S₄)_{1-x}. Вольтовая фоточувствительность S_U полученных структур In/(FeIn₂S₄)_x (MnIn₂S₄)_{1-x} всегда преобладает при их освещении со стороны барьерной пленки (табл. 2).

На рис. 3 представлены типичные спектры относительной квантовой эффективности фотопреобразования $\eta(\hbar\omega)$ полученных поверхностно-барьерных структур In(Al)/(FeIn₂S₄)_x(MnIn₂S₄)_{1-x}, рассчитанные как отношение фототока короткого замыкания к числу падающих фотонов (рис. 3). Из рис. 3 видно, что в условиях освещения структур со стороны тонких барьерных пленок In, Al быстрый рост η наступает при $\hbar\omega > 1$ эВ и этот рост практически одинаков во всех

Рис. 4. Спектры $(\eta \hbar \omega)^2 = f(\hbar \omega)$ — кривые 1, 3, 5 и $(\eta \hbar \omega)^{1/2} = f(\hbar \omega)$ — кривые 2, 4, 6 структур In/(FeIn₂S₄)_x (MnIn₂S₄)_{1-x}; x, мол%: 1, 2 — 0.2; 3, 4 — 0.4; 5, 6 — 0.6. T = 300 K.

кристаллах твердых растворов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$. Несмотря на большие изменения в соотношении концентраций железа и марганца, спектры фотопреобразования характеризуются практически одинаковым по структуре контуром и обеспечивают непрерывно возрастающую с ростом энергии фотонов фоточувствительность в весьма широком спектральном диапазоне от 1 до 3.5 эВ, как и в поверхностно-барьерных структурах на основе позиционно-упорядоченных соединений FeIn_2S₄ и MnIn_2S₄ [9,10]. Это свойство структур In(A1)/(FeIn_2S_4)_x(MnIn_2S_4)_{1-x} можно считать их главным достоинством.

Полученные спектры фоточувствительности структур позволили осуществить первый анализ энергетического спектра новых материалов с позиций теории фундаментального поглощения многокомпонентных разбавленных магнитных полупроводников [11]. Из рис. 4 следует, что спектры фотоактивного фундаментального поглощения барьеров Шоттки, созданных на кристаллах твердых растворов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$, спрямляются в координатах $(\alpha \hbar \omega)^2 = f(\hbar \omega)$ (рис. 4, кривые 1 и 3), а в их более длинноволновой части — в координатах $(\alpha\hbar\omega)^{1/2} = f(\hbar\omega)$ (рис. 4, кривые 2 и 4), что служит основанием для вывода: фотоактивное поглощение в указанных структурах формируется прямыми (E_G^{dir}) и непрямыми (E_G^{ind}) межзонными оптическими переходами, значения которых приведены в табл. 2. Там же даны значения фотоэлектрических параметров созданных барьеров Шоттки на основе кристаллов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$. Максимальная вольтовая фоточувствительность при образовании твердых растворов находится на уровне известного значения S_U^{max} для барьеров Шоттки на основе позиционно-упорядоченного тройного соединения FeIn₂S₄. Энергетическое положение максимальной фоточувствительности $\hbar\omega^{max}$ в полученных на основе твердых растворов структурах реализуется в пределах 0.5–1.0 эВ. Полная ширина полосы фоточувствительности от показателя состава твердого раствора. Полученные результаты свидетельствуют о возможности применения полученных структур в качестве широкополосных фотопреобразователей оптического излучения.

4. Заключение

Таким образом, доказано существование непрерывного ряда твердых растворов $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ и созданы первые фоточувствительные структуры на их основе. Получены первые спектры относительной квантовой эффективности фотопреобразования в новых структурах и сделан вывод о характере межзонного поглощения, а также определены значения ширины запрещенной зоны для непрямых и прямых оптических переходов в этих твердых растворах. Сформулировано также заключение о возможностях практического применения новых структур в широкополосных фотопреобразователях оптического излучения.

Работа выполнена при финансовой поддержке Белорусского республиканского фонда фундаментальных исследований (проект № Ф10МЛД-001).

Список литературы

- Н.А. Горюнова. Сложные алмазоподобные полупроводники (М. Сов. радио, 1968).
- 2 Ж.И. Алфёров, Б.В. Царенков. ФТП, 19, 2113 (1985).
- [3] В.И. Стафеев. ФТП, 44, 577 (2010).
- [4] I.M. Tiginyanu, V.V. Ursaki, F.J. Manjon, V.E. Tezlevan. J. Phys. Chem. Sol., 64, 1603 (2003).
- [5] Н.Н. Нифтиев, О.Б. Тагиев. ФТП, 38, 164 (2004).
- [6] А.В. Ведяев. УФН, 172, 1458 (2002).
- [7] E. Agostinelli, D. Fiorani, A.M. Testa. Fundamental and Applicative Aspects of Disordered Magnetism (World Scientific Publ. Co, Singapore 30, 1988).
- [8] V. Sagredo, M.C. Moron, L. Betancouri, G.E. Delgado. J. Magn. Mater., **312**, 294 (2007).
- [9] И.В. Боднарь, В.Ю. Рудь, Ю.В. Рудь, Е.И. Теруков. ФТП, 44, 39 (2010).
- [10] В.Ю. Рудь, Ю.В. Рудь, М.А. Осипова, И.В. Боднарь. ФТП, 44, 48 (2010).
- [11] S.M. Sze. *Physics of Semiconductor Devices* (N.Y., Willey Interscience Publ., 1981).
- [12] H.D. Lutz, M. Feher. Spectrochim. Acta, 27A, 357 (1971).

Редактор Т.А. Полянская

Quaternary solid solutions (Feln₂S₄)_x (Mnln₂S₄)_{1-x} and photosensitive structures on their base

I.V. Bodnar, V.Yu. Rud*, Yu.V. Rud+, D.V. Lozhkin

Belarusian State University of Informatics and Radioelectronics, 220027 Minsk, Belorussia * St. Petersburg State Polytechnical University, 195251 St. Petersburg, Russia + Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Employing the method of the directed crystallization of melt $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ the homogenous crystals of a similar atom composition have been grown within the complete range of the index of $1 \ge x \ge 0$ compound. As we see the crystals of the continuous raw of the quaternary solid solutions in the range of x = 0-1 were crystallized in the spinel structure and the elementary cell parameter a enjoys the linear dependence on the value x. $In(Al)/(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ photosensitive structures is likely to be obtained. We obtained first spectra of the relative quantum efficiency of photo transformation of the structure $In(Al)/(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$ at room temperature. According to the those spectra analysis we determined the energies of direct and indirect interzone transitions for the crystals of solid solutions $(FeIn_2S_4)_x(MnIn_2S_4)_{1-x}$. The dependence of those parameters on the positiondisordered phases' composition of given solutions is being discussed. We draw a conclusion that the crystals of the solutions $(\text{FeIn}_2S_4)_x(\text{MnIn}_2S_4)_{1-x}$ could possibly be used in the broad band photoconverters of the optical radiation.