Фотовольтаический детектор на основе гетероструктуры II типа с глубокой квантовой ямой AISb/InAsSb/AISb в активной области для среднего инфракрасного диапазона

© М.П. Михайлова[¶], И.А. Андреев, К.Д. Моисеев, Э.В. Иванов, Г.Г. Коновалов, М.Ю. Михайлов, Ю.П. Яковлев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 5 августа 2010 г. Принята к печати 16 августа 2010 г.)

Созданы и исследованы фотодетекторы для спектрального диапазона 2–4 мкм на основе асимметричной гетероструктуры II типа *p*-InAs/AlSb/InAsSb/AlSb/(*p*, *n*)GaSb с глубокой одиночной или тремя глубокими квантовыми ямами на гетерогранице, выращенные методом газофазной эпитаксии из металлорганических соединений. Исследованы транспортные, люминесцентные, фотоэлектрические, вольтамперные и вольт-фарадные характеристики таких структур. Интенсивная положительная и отрицательная люминесценция наблюдались в спектральном диапазоне 3–4 мкм при высоких температурах (300–400 K). Спектры фоточувствительности лежали в диапазоне 1.2–3.6 мкм (T = 77 K). Высокая квантовая эффективность $\eta = 0.6-0.7$, токовая чувствительность $S_{\lambda} = 0.9-1.4$ A/BT и обнаружительная способность $D_{\lambda}^* = 3.5 \cdot 10^{11} - 10^{10}$ см $\cdot \Gamma q^{1/2}$ /BT были получены в области T = 77-200 K. Низкое значение емкости (C = 1.5 пФ при V = -1 B, T = 300 K) позволило оценить быстродействие фотодетектора $\tau = 75$ пс, что соответствует ширине полосы частот около 6 ГГц. Такие фотодетекторы перспективны для гетеродинного приема излучения квантово-каскадных лазеров и инфракрасной спектроскопии.

1. Введение

В последние годы значительное внимание уделяется созданию новых типов фотодетекторов (ФД) для среднего инфракрасного (ИК) диапазона на основе гетероструктур с квантовыми ямами с целью улучшения их параметров (снижение темновых токов, улучшение быстродействия и др. [1]). В работах [2,3] сообщалось о создании квантово-размерных фотодиодов на основе гетероструктур GaAs/AlGaAs и InGaAs/SbP с двойными барьерами для интервала длин волн 3-5 мкм. Такие фотодиоды перспективны для гетеродинного детектирования и систем коммуникаций в свободном пространстве (free space). Диапазон 2-5 мкм важен также для газового анализа, экологического мониторинга, медицинской диагностики. Преимуществом инфракрасных фотодиодов с квантовыми ямами является их высокое быстродействие (порядка нескольких пикосекунд [1]). Для детектирования в открытом пространстве нужна ширина полосы пропускания свыше 10-20 ГГц. Для передачи информации в этом случае используются квантово-каскадные лазеры, для которых время регистрации лимитируется низким быстродействием существующих фотодетекторов. К преимуществам квантово-размерных фотодиодов можно отнести также их работу при малых смещениях, с низкими темновыми токами и, как следствие, с низким уровнем шумов. Работы по таким ФД ведутся свыше 15 лет, однако в России такие исследования до последнего времени фактически не проводились. Система InAs(Sb)-AlSb обладает уникальной зонной диаграммой благодаря большому разрыву в зоне проводимости $\Delta E_C > 1.35$ эВ, $\Delta E_V = 0.15$ эВ и возможностью создания

глубоких квантовых ям [4]. Это новый перспективный материал для оптоэлектронных приборов, квантовокаскадных лазеров, полевых транзисторов и резонанснотуннельных диодов [5–7].

В данной работе сообщается о создании и исследовании фотовольтаического детектора на основе асимметричной гетероструктуры II типа *p*-InAs/AlSb/ InAsSb/AlSb/(p, n)GaSb с глубокой одиночной или несколькими квантовыми ямами на гетерогранице, работающего в диапазоне 2–4 мкм.

2. Методика создания и исследования фотодиодов

Наногетероструктуры, содержащие 1 или 3 квантовые ямы 20 нм AlSb/5 нм InAs_{0.84}Sb_{0.16}/20 нм AlSb и накрывающие слои (p, n)-GaSb толщиной 0.5 мкм, были выращены на *p*-подложках InAs(100):Мп методом газофазной эпитаксии из металлорганических соединений (MOVFE) низкого давления на установке AXTRON-200 при температуре 500°С в атмосфере водорода в лаборатории MOVPE Института физики Чешской академии наук [8]. Схематическая зонная диаграмма структуры с тремя квантовыми ямами представлена на рис. 1. Накрывающий слой GaSb был преднамеренно не легирован, тогда как подложка InAs была легирована акцепторной примесью Mn до концентрации $p = 10^{17} \, \mathrm{cm}^{-3}$ при T = 300 К. В структурах с одной или тремя квантовыми ямами (КЯ), содержащих AlSb-барьеры толщиной 20 нм, ширина квантовых ям InAsSb составляла 5 нм. При T < 100 К подложка становилась полуизолятором, что позволяло измерять магнитотранспортные свойства.

[¶] E-mail: Mikh@iropt1.ioffe.ru

Рис. 1. Схематическая зонная диаграмма асиметричной гетероструктуры с тремя глубокими квантовыми ямами AlSb/InAsSb/AlSb на интерфейсе.

Магнитотранспортные свойства полученных структур исследовались на прямоугольных образцах холловской геометрии с шестью омическими контактами в полях до 5 Тл при низкой температуре T = 77.4 К. Величина холловской подвижности в образце с одиночной квантовой ямой AlSb/InAs_{0 84}Sb_{0 16}/AlSb шириной 5 нм, выращенной на подложке p-InAs(100):Мn, составляла $\mu = 5000 \,\mathrm{cm}^2/(\mathrm{B}\cdot\mathrm{c})$. Данные измерений показали, что на границе II типа p-InAs/AlSb существует электронный канал, аналогичный наблюдаемому нами ранее [9]. Величина транспортного уширения [10] $2\Gamma = 2\hbar/\tau_{\rm ir}$, где $au_{
m tr} = \mu m^* / e = 10^{-13}\,
m c$ была оценена при значении эффективной массы электронов в твердом pacтворе InAsSb $m^* = 0.016m_0$. Значение $2\Gamma = 16$ мэВ было получено при учете того факта, что подвижность определяется рассеянием на неоднородностях интерфейса [11]. Как отмечено в работе [10], для двойной гетероструктуры InAs/AlSb величина 2Г связана с шириной линии межподзонных переходов и хорошо согласуется с данными для нашей структуры с квантовой ямой, рассчитанными из полуширины спектра люминесценции такой структуры $\Delta hv = 21$ мэВ при T = 77 К, полученной из данных работы [12]. Эти результаты свидетельствуют о хорошем качестве гетерограницы исследуемых структур с КЯ, выращенных методом МОГФЭ (MOVPE).

Для исследования электролюминесцентных, электрических и фотоэлектрических свойств структуры были приготовлены методом стандартной фотолитографии и мокрого травления в виде мезадиодов с диаметром чувствительной площадки 300 мкм. Спектры электролюминесценции регистрировались с помощью монохроматора Digikrom-480, синхронного детектора Stanford S-580 и охлаждаемого InSb-фотодиода (Judson ltd.). Для стабилизации измерений при температурах выше комнатной диоды монтировались на специальном держателе с термохолодильником.

Спектры фоточувствительности исследовались в диапазоне температур 77-300 К с помощью монохроматора SPM-2 с глобаром в качестве источника излучения. Квантовая эффективность оценивалась по сравнению с чувствительностью калиброванного термостолбика фирмы Карл Цейс.

3. Результаты и обсуждение

Исследования спектров электролюминесценции в диапазоне температур 77–300 К показали высокую интенсивность как положительной, так и отрицательной электролюминесценции при прямом и обратном смещении (минус на *p*-подложке) соответственно в интервале энергий фотонов 0.3–0.4 эВ [12].

На рис. 2 представлены спектры положительной и отрицательной электролюминесценции структуры *p*-InAs/AlSb/InAsSb/AlSb/*p*-GaSb при температуре T=28 и 106°С. Температурная зависимость оптической мощности положительной и отрицательной электролюминесценции в интервале высоких температур 300–380 К при токе накачки i = 200 мА показана на рис. 3. Как видно из рисунка, мощность отрицательной ЭЛ возрастает, а

Рис. 2. Спектры положительной и отрицательной люминесценции гетероструктуры *p*-InAs/AlSb/InAsSb/AlSb/*p*-GaSb при прямом («+» на *p*-InAs) и обратном («-» на *p*-InAs) смещении, при токе накачки i = 50 мА и двух температурах *T*, °C: *I*, l' - 28, 2, 2' - 106.

Рис. 3. Температурные зависимости интенсивности электролюминесценции (ЭЛ) для структуры *p*-InAs/AlSb/InAsSb/ AlSb/*p*-GaSb с одиночной квантовой ямой. *1* — положительная ЭЛ (прямое смещение), *2* — отрицательная ЭЛ (обратное смещение). Ток накачки *i* = 200 мА.

Физика и техника полупроводников, 2011, том 45, вып. 2

Параметр	Одноямная структура N 1322		Трехъямная структура N 1323	
	$T = 300 \mathrm{K}$	$T = 77 \mathrm{K}$	$T = 300 \mathrm{K}$	$T = 77 \mathrm{K}$
Дифференциальное сопротивление R_0 , Ом при 10 мВ R_0A , Ом · см ² Темновой ток I_d , А при U = -0.2 В $I_d = -0.6$ В	$ \begin{array}{r} 28 \\ 2.0 \cdot 10^{-2} \\ 2.4 \cdot 10^{-3} \\ 2.8 \cdot 10^{-3} \end{array} $	$2.6 \cdot 10^{3}$ 1.8 $1.5 \cdot 10^{-5}$ 7.2 \cdot 10^{-5}	$42 \\ 3.0 \cdot 10^{-2} \\ 1.0 \cdot 10^{-3} \\ 1.6 \cdot 10^{-3}$	$3.3 \cdot 10^{3}$ 2.4 $1.2 \cdot 10^{-5}$ 5.0 \cdot 10^{-5}

Темновые токи и дифференциальное сопротивление в нуле напряжения смещения для структур с одной и тремя квантовыми ямами на гетерогранице

Рис. 4. Вольт-амперные характеристики гетерофотодиода с тремя квантовыми ямами в активной области при малых смещениях. *T* = 77 и 295 K.

положительной — падает с ростом температуры. Высокая эффективность отрицательной ЭЛ обусловлена падением величины безызлучательной оже-рекомбинации с увеличением температуры. Кроме того, как показано в [13], оже-рекомбинация может быть подавлена на гетерогранице II типа. Это позволяет использовать предложенную структуру, переключая ее в режим светодиода или фотодиода при высоких температурах.

Вольт-амперные характеристики (ВАХ) исследуемых структур, представленные на рис. 4, имели выпрямляющий характер и соответствовали резкому гетеропереходу. Значение темновых токов для трехъямной структуры было ниже, чем для одноямной (см. таблицу).

Дифференциальное сопротивление было рассчитано из измерений ВАХ при малых смещениях вблизи нуля для структур с одиночной и тройной квантовыми ямами при трех температурах 77, 250 и 300 К. Результаты измерений приведены в таблице. Так же указано произведение R_0A , где A — размер чувствительной площадки мезадиода. Нормализованные спектральные характеристики фоточувствительности при T = 77 и 295 К показаны на рис. 5 для структур с одиночной квантовой ямой. Спектры фоточувствительности были локализованы в интервале длин волн 1.0-3.4 мкм при T = 77 К и 1.2-3.8 мкм при 295 К. Характер спектра соответствует спектру гетероперехода p-InAs/p(n)-GaSb. В одноямной структуре наблюдается добавочный слабый пик в области 4.0-4.5 мкм. Отметим, что аналогичный длинноволновой пик ранее наблюдался также в спектрах отрицательной электролюминесценции и его спектральное положение не изменялось с изменением полярности смещения [12]. Мы полагаем, что этот пик обусловлен переходом с поверхностного состояния акцептора Mn, расположенного вблизи интерфейса [13]. Абсолютная чувствительность в максимуме спектра для образца с 3 квантовыми ямами на гетерогранице была в 1.5 раза выше, чем в одноямных гетероструктурах в фотовольтаическом режиме. При приложении небольшого положительного смещения сигнал фотоответа слабо возрастал. Как видно из таблицы, при увеличении температуры от 77 до 300 К фоточувствительность падала на 3 порядка в соответствии с изменением дифференциального сопротивления. Темновые токи в трехъямных структурах были меньше, чем в одноямных. Так, при

Рис. 5. Нормализованные спектры фоточувствительности для фотодиода с одной квантовой ямой при T = 77 и 295 К.

Рис. 6. Зависимость емкости от обратного смещения для гетерофотодиода с одиночной квантовой ямой (1) и тремя квантовыми ямами (2) при T = 300 К.

T = 77 K плотность обратного тока при V = -0.4 B составляла $J_1 = 5.5 \cdot 10^{-2} \text{ A/cm}^2$ и $J_3 = 3.4 \cdot 10^{-2} \text{ A/cm}^2$ для одноямных и трехъямных гетероструктур соответственно.

В фотовольтаическом режиме фоточувствительность квантовая эффективность были оценены как И $S_{\lambda} = 0.9 - 1.4 \, \text{A.Bt}$ и $\eta = 0.6 - 0.7$. Эквивалентная мощность шума (при учете только темновых шумов) обнаружительная способность для одноямного фотодиода были рассчитаны в максимуме спектра при $\lambda = 3$ мкм и T = 77 К по известным соотношениям. Получены значения $NEP = 6 \cdot 10^{-14} \, \text{Bt}/\Gamma \mu^{1/2}, \quad D_{\lambda}^* =$ $= 3.5 \cdot 10^{11} \,\mathrm{cm} \cdot \Gamma \mathrm{u}^{1/2} / \mathrm{BT}$. Обнаружительная способность в интервале температур 77-200 К менялась в диапазоне $3.5 \cdot 10^{11} - 10^{10}$ см $\cdot \Gamma \mu^{1/2}$ /Вт.

Полученное высокое значение обнаружительной способность фотовольтаического детектора на основе асимметричной гетероструктуры II типа *p*-InAs/AlSb/InAsSb/ AlSb/(*p*, *n*)-GaSb с глубокой квантовой ямой на гетерогранице, выращенной методом МОГФЭ, сравнимо с параметрами фотодиодов на основе сверхрешеток p-n-InAs и квантово-размерных детекторов на основе двойных гетероструктур GaAlAs/GaAs и InGaAs/InP [1], выращенных методом МПЭ, работающих в спектральном диапазоне 2-3 мкм, а также с параметрами коммерческих InAs-фотодиодов.

Исследование вольт-фарадных характеристик показало значительную разницу в параметрах структур с одиночной и тройной квантовой ямой на гетерогранице (рис. 6). В одноямной структуре при изменении обратного смещения от 0 до 1 В емкость слабо менялась в интервале C = 200-300 пФ. Интересным явилось резкое уменьшение емкости от C = 200 пФ в нуле смещения до 1.5 пФ при T = 300 К для трехъямных фотодиодов. Эти значения соответствуют быстродействию $R_LC = 75$ пс при нагрузке $R_L = 50$ Ом. Такое поведение

емкости можно объяснить тем фактом, что при последовательном соединении нескольких конденсаторов, когда они соединены разноименно, суммарная емкость всегда меньше емкости любого конденсатора, входящего в соединение. Действительно, в трехъямном образце мы имеем дело с несколькими последовательно соединенными *p*-*n*-переходами, содержащими 4 AlSb-барьера. При этом быстродействие не должно зависеть от размера площади образца. Таким образом, в нашем случае мы получаем быстродействующий фотодиод с полосой ~ 10 ГГц. Ранее нами были описаны быстродействующие фотодиоды на основе объемных гетероструктур GaInAsSb/AlGaAsSb для спектрального диапазона 1.6-2.4 мкм с шириной полосы около 2 ГГц [14], а также лавинные фотодиоды для диапазона 2–4 мкм [15], Представленные в данной работе фотодиоды с квантовыми ямами в активной области перспективны для гетеродинного детектирования квантово-каскадных лазеров, информационных сетей, медицинской диагностики, экологического мониторинга.

4. Заключение

Асимметричные гетероструктуры II типа *p*-InAs/AlSb/ InAsSb/AlSb/*p*(*n*)-GaSb с одиночной и тремя квантовыми ямами на гетерогранице выращены методом МОГФЭ и исследованы их люминесцентные, транспортные и фотоэлектрические свойства. Интенсивная положительная и отрицательная электролюминесценция наблюдалась в спектральном диапазоне 3-4 мкм при T = 300-380 К. Исследование температурной зависимости положительной и отрицательной люминесценции показало, что описанные в работе светоизлучающие структуры могут работать при высоких температурах в режиме светодиод/фотодиод при переключении напряжения смещения.

Впервые детально изучены спектральные, вольтамперные и вольт-фарадные характеристики мезафотодиодов с квантовыми ямами AlSb/InAsSb/AlSb в активной области в интервале температур 77-300 К диапазоне длин волн 1-4 мкм. Была получе-В на высокая токовая монохроматическая чувствительность $S_{\lambda} = 0.9 - 1/4$ А/Вт, квантовая эффективность $\eta = 0.6 - 0.7$ и оценена обнаружительная способность $3.4 \cdot 10^{11} - 10^{10} \,\mathrm{cm} \cdot \mathrm{Br}^{-1} \Gamma \mathrm{u}^{1/2}$ при $T = 77 - 200 \,\mathrm{K}$. Наблюдалось резкое падение емкости диода в зависимости от обратного смещения ($C = 1.5 \, \mathrm{n} \Phi$ при обратном смещении U = -1 В, T = 300 К) для фотодетектора с тремя квантовыми ямами в активной области, что соответствует быстродействию 75 пс и полосе пропускания свыше 6 ГГц. Параметры исследованных в данной работе фотодетекторов с квантовыми ямами в активной области сравнимы с характеристиками квантово-размерных фотодетекторов на основе InGaAs/InP, GaAlAs/GaAs, полученных методом молекулярно-пучковой эпитаксии, а также с параметрами коммерческих фотодиодов *p*-*n*-InAs/InAsSbP, однако превосходят их по быстродействию.

Авторы выражают благодарность сотрудникам лаборатории МОГФЭ Института физики Чешской академии наук за выращивание квантово-размерных гетероструктур.

Работа частично поддержана программой президиума РАН.

Список литературы

- S. Haywood, M. Missons. In: *Mid-Infrared Semiconductor* Optoelectronics, ed. by A. Krier (Springer Series in Optical Sciences, 2006) p. 429.
- [2] B.F. Levine. J. Appl. Phsy., 74, R-01 (1996).
- [3] E. Lina, A. Gusman, J. Sanchez-Rocha et al. Infr. Phys. Technol., 44, 383 (2003).
- [4] W. Kruppa, M.J. Yang, B.R. Bennet, J.B. Boss. Appl. Phys. Lett., 85, 774 (2004).
- [5] J. Devenson, R. Teissier, O. Cathabard, A.N. Baranov. Appl. Phys. Lett., 90, 111 (2007).
- [6] D.H. Chow, E.T. Yu, J.R. Sonderson et al. J. Appl. Phys., 68, 3744 (1990).
- [7] M.P. Mikhailova, K.D. Moiseev, Yu.P. Yakovlev. Semicond. Sci. Technol., 19, R109 (2004).
- [8] E. Hulicius, A. Hospodkova, J. Pangrac, T. Simehek, K.D. Moiceev, E.V. Ivanov, M.P. Mikhailova, Yu.P. Yakovlev. *Abstracts of 8th Int. Conf. MIOMD* (Bad Ischl, Austria, 4-16 May, 2007) p. 184; A. Nakagawa, H. Kroemer, J.H. English. Appl. Phys. Lett., 54, 1893 (1989).
- [9] S. Sasa, M. Nakai, M. Turukawa, M. Inoe. Conf. Ser., 187, 363 (2005).
- [10] M.P. Mikhailova, K.D. Moiseev, T.I. Voronina et al. J. Appl. Phys., **102**, 13710 (2007).
- [11] М.П. Михайлов, Э.В. Иванов, К.Д. Моисеев, Ю.П. Яковлев, Е. Hulicius, А. Hospodkova, J. Pangrac, Т. Simecek. ФТП, 44 (2), 69 (2010).
- [12] М.П. Михайлова, Т.Н. Данилова, Г.Г. Зегря, А.Н. Именков, К.Д. Моисеев, В.В. Шерстнев, Ю.П. Яковлев. ФТП, 33, 351 (1999).
- [13] K. Moiseev, E. Ivanov, V. Romanov, M. Mikhailova, Yu. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, T. Simecek. Phys. Procedia, 3, 1189 (2010).
- [14] Yu.P. Yakovlev, I.A. Andreev, S.S. Kizhaev, E.V. Kunitsyna, M.P. Mikhailova. *Proc. of SPIE*, v. 6636, 66 360D-1 (2000).
- [15] M.P. Mikhailova, I.A. Andreev. In: *Mid-Infrared Semiconductor Optoelectronics*, ed. by A. Krier (Springer Series in Optical Sciences, 2006) p. 542.

Редактор Т.А. Полянская

Photovoltaic detector based on type II heterostructure with deep Als/InAsSb/AISb quantum well in an active layer for the mid-infrared spectral range

M.P. Mikhailova, I.A. Andreev, K.D. Moiseev, E.V. Ivanov, G.G. Konovalov, M.Yu. Mikhailov, Yu.P. Yakovlev

loffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract Photodetectors for the spectral range $2-4\,\mu\text{m}$ based on type II asymmetric p-InAs/AlSb/InAsSb/AlSb/(p, n)-GaSb heterostructure with a single or triple deep quatum wells on the interface grown by metal-organic vapor phase epitaxy were designed. Transport, luminescent, photoelectric, current-voltage and capacityvoltage characteristics were studied. Intensive positive and negative electroluminescence was observed in the spectral range $3-4\mu m$ at high temperature (300-400 K). Spectra photocensitivity were in the spectral range $1.2-3.6\,\mu\text{m}$. High quantum efficiency $\eta = 0.6 - 0.7$, current sensitivity $S_{\lambda} = 0.9 - 1.4$ A/W and detectivity $D_{\lambda}^{*} = 3.5 \cdot 10^{11} - 10^{10} \text{ cmHz}^{1/2}/\text{W}$ were found at T = 77 - 200 K. Low value of capacity (C = 1.5 pF at V = -1 V, T = 300 K) let us to evaluate speed response of the photodetectors under study as $\tau = 75$ ps, that corresponds to bandwidth about 6 GHz. Such photodiodes are promising for heterodyne detection of quantumcascade lasers and infrared spectroscopy.