Проводимость кристаллов Hg₃In₂Te₆ в сильных электрических полях

© О.Г. Грушка[¶], С.М. Чупыра, О.М. Мыслюк, С.В. Биличук, И.И. Заболоцкий

Черновицкий национальный университет им. Ю. Федьковича, 58000 Черновцы, Украина

(Получена 7 июня 2010 г. Принята к печати 22 июня 2010 г.)

Изучено влияние электрического поля и температуры на проводимость объемных кристаллов Hg₃In₂Te₆. Показано, что вольт-амперные характеристики в сильных электрических полях являются характеристиками *S*-типа с эффектом переключения в низкоомное состояние. Критическое напряжение перехода от закона Ома к экспоненциальной зависимости тока (*I*) от напряжения (*U*) и пороговое напряжение перехода в область отрицательного дифференциального сопротивления dU/dI < 0 линейно зависят от толщины образца. Определены энергии активации проводимости в слабом и сильном электрических полях. Установлено, что сверхлинейный участок вольт-амперной характеристики с dU/dI > 0 описывается зависимостью вида $I = I_0 \exp(U/U_0)$ и обусловлен электронными переходами с локальных центров с энергетическим уровнем $E_t = 0.19$ зВ.

Соединение Hg₃In₂Te₆ принадлежит к классу дефектных полупроводников с большой концентрацией катионных стехиометрических вакансий, $\sim 10^{21} \, {\rm cm}^{-3}$. Благодаря этим вакансиям материал обладает высокой стойкостью к действию ионизирующих излучений, слабой зависимостью электрических параметров от введенных примесей и рядом других свойств, выгодных для практического применения в электронных и оптоэлектронных приборах [1,2]. При введении примесей металлов в концентрации 10¹⁹-10²⁰ см⁻³ уровень Ферми, расположенный вблизи середины запрещенной зоны, не сдвигается сколько-нибудь значительно благодаря эффекту самокомпенсации примесей [3]. Это обеспечивает кристаллам Hg₃In₂Te₆ биполярную проводимость, свойственную собственному проводнику, в области температур 250-400 К. Характерной особенностью кристаллов Hg₃In₂Te₆ является нелинейность их вольт-амперных характеристик (BAX) S-типа. Как известно [4], активные элементы с ВАХ S-типа могут быть в двух устойчивых состояниях — высокоомном и низкоомном — и в зависимости от характера переключения в низкоомное состояние применяются в качестве переключателей в микроэлектронике или запоминающих устройств.

В настоящей работе приводятся результаты исследований вольт-амперных характеристик кристаллов $Hg_3In_2Te_6$, выращенных методом Бриджмена. Образцы были *n*-типа проводимости с удельным сопротивлением $\sim 10^4$ Ом · см, концентрацией носителей заряда $\sim 10^{13}$ см⁻³ при 300 К и холловской подвижностью 250-300 см²/(B·c), слабо зависящей от температуры. Измерения BAX I = f(U) при 300 К проводились на объемных образцах различной толщины L (расстояние между электродами) в режиме постоянного тока. Температурные измерения были выполнены в электрических полях с напряжениями U, меньшими порогового напряжения U_3 , после которого наблюдается переход в область отрицательного дифференциального сопротивления, dU/dI < 0.

Вольт-амперные характеристики образцов с различной толщиной *L* при комнатной температуре (рис. 1) имеют при $U < U_1$ (U_1 — критическое напряжение) омический участок, $I \propto U$; при $U_1 < U < U_2$ наблюдается экспоненциальный участок $J = J_0 \exp(U/U_0)$ (J плотность тока), при $U_2 < U < U_3$ (U_3 — пороговое напряжение) — участок резкого возрастания тока, который переходит в участок с отрицательным дифференциальным сопротивлением, dU/dI < 0. Последний заканчивается при напряжении, при котором происходит переключение в низкоомное состояние с dU/dI > 0. При этом сопротивление уменьшается на 3-4 порядка. Природа подобных S-образных ВАХ обычно объясняется электронно-тепловым механизмом неустойчивости и электронным фазовым переходом [4-6].

Для кристаллов $Hg_3In_2Te_6$ при 300 К переход омического участка в экспоненциальный происходит при критическом поле $E_1 = U_1/L = 25-30$ В/см, т.е. эффект сильного поля, при котором наблюдается отклонение от

Рис. 1. Вольт-амперные характеристики образцов $Hg_3In_2Te_6$ с различной толщиной *L*, см: 1 - 0.11, 2 - 0.17, 3 - 0.25, 4 - 0.37, 5 - 0.51.

[¶] E-mail: semicon-dpt@chnu.edu.ua

Рис. 2. Зависимости критического напряжения U_1 (1) и порогового напряжения U_3 (2) от толщины образца.

закона Ома, возникает при относительно малых полях. При этом критическое и пороговое напряжения линейно зависят от толщины образца: $U_1 \propto L$, $U_3 \propto L$ (рис. 2). Согласно [7], линейная зависимость критического напряжения от толщины образца связана с началом ионизации локальных центров.

На рис. 3 приведены зависимости ВАХ от температуры при $U < U_3$. Для области слабых полей, при $U < U_1$, определена удельная проводимость $\sigma = J/E$, которая зависит от температуры *T* по закону $\sigma = \sigma_0 \exp(-E_a/kT)$ (рис. 4), где энергия активации $E_a = 0.36 \text{ эВ}$ близка к половине ширины запрещенной зоны Hg₃In₂Te₆ $(E_g/2 = 0.37 \text{ эВ}), k$ — постоянная Больцмана. В области сильных полей, при $U_1 < U < U_2$, плотность тока экспоненциально растет с увеличением напряжения в соответствии с формулой $J = J_0 \exp(U/U_0)$, где U_0 характерное напряжение, зависящее от температуры. С понижением температуры от 334.1 до 249.8 К U₀ увеличивается от 2.7 до 20.7 В. Экспоненциальное возрастание тока с напряжением обычно связывают [8] с эффектом увеличения концентрации носителей заряда, которое возможно из-за сдвига равновесия между процессами захвата электронов на ловушки и их обратного выброса в пользу последних в результате нагрева электронного газа или же в случае, когда напряженность приложенного электрического поля становится сравнимой с напряженностью поля ловушки, что приводит к ионизации ловушки.

По точкам пересечения прямых $\lg J = f(U)$ в области $U_1 < U < U_2$ (рис. 3) с осью ординат при U = 0

определены значения предэкспоненциального множителя J_0 . Температурная зависимость J_0 описывается выражением $J_0 \propto \exp(-E_t/kT)$. По наклону прямой $\lg J_0 = f(10^3/T)$ (рис. 4) определили энергию ионизации ловушек $E_t = 0.19$ эВ.

Область напряжений $U_1 < U < U_2$, при которых наблюдается зависимость $J = J_0 \exp(U/U_0)$, с понижением температуры расширяется и сдвигается в сторону увеличения U. При этом крайние точки U_1 и U_2 области экспоненциальной зависимости $\lg J = f(U)$ сами зависят от температуры (рис. 5). В случае, когда концентрация носителей заряда определяется не только положением равновесного уровня Ферми E_F и температурой, но и энергией активации ловушек E_t [7], $U_1, U_2 \propto \exp[(E_F - E_t)/kT]$. Оказалось, что наклоны зависимостей логарифмов U_1, U_2, U_3 от 10^3 /T практически одинаковы, что соответствует энергии $E_F - E_t = 0.17$ эВ.

Рис. 3. Вольт-амперные характеристики Hg₃In₂Te₆ при различных температурах *T*, K: *1* — 249.8, *2* — 262.8, *3* — 275.4, *4* — 287.8, *5* — 299.8, *6* — 311.5, *7* — 322.6, *8* — 334.1.

Рис. 4. Температурные зависимости удельной проводимости σ в области слабых полей (1) и предэкспоненциального множителя плотности тока J_0 в области сильных полей (2).

Рис. 5. Температурные зависимости напряжений U_1 (*I*), U_2 (*2*), U_3 (*3*).

Проведенная оценка энергии ионизации ловушек показала, что локальные уровни в запрещенной зоне $Hg_3In_2Te_6$ находятся на 0.19 эВ ниже дна зоны проводимости и на 0.17 эВ выше равновесного уровня Ферми. Поэтому в исходном состоянии локальные центры пусты. С ростом приложенного напряжения концентрация носителей заряда увеличивается, в результате чего квазиуровень Ферми перемещается вверх от уровня E_F и ловушки заполняются. С разогревом скорость захвата электронов на ловушки уменьшается, что приводит к увеличению концентрации носителей заряда. Энергия захватываемого электрона зависит от напряженности электрического поля, поэтому концентрация носителей заряда становится функцией напряженности электрического поля.

Список литературы

- P. Gorley, Z. Grushka, Ya. Radevych, O. Grushka, I. Zabolotsky. Proc. SPIE, 6796, 67961W (2007).
- [2] P.N. Gorley, O.G. Grushka, Z.M. Grushka, A.I. Malik. 8th Conf. Electronic Materials, IUMRS-ICEM (Xi'an, China, 2002) p. 27.
- [3] О.Г. Грушка, П.Н. Горлей. Перспективные материалы, № 6, 33 (2003).
- [4] К.Д. Цэндин, Э.А. Лебедев, А.Б. Шмелькин. ФТТ, 47 (3), 427 (2005).
- [5] В.Б. Сандомирский, А.А. Суханов, А.Г. Ждан. ЖЭТФ, 58 (5), 1683 (1970).
- [6] Э.А. Лебедев, С.А. Козюхин, Н.Н. Константинова, Л.П. Казакова. ФТП, 43 (10), 1383 (2009).
- [7] М. Ламперт, П. Марк. Инжекционные токи в твердых телах (М., Мир, 1973).
- [8] В.Л. Бонч-Бруевич, С.Г. Калашников. Физика полупроводников (М., Наука, 1977).

Редактор Л.В. Шаронова

Conductivity of Hg₃In₂Te₆ crystals in high electric fields

O.G. Grushka, S.M. Chupyra, O.M. Myslyuk, S.V. Bilichuk, I.I. Zabolotsky

Chernovtsy National University, 58000 Chernovtsy, Ukraine

Abstract The influence of the electrical field and the temperature on the electrical conductivity of bulk Hg₃In₂Te₆ crystals has been studied. It was shown that current–voltage characteristics in high electrical fields are of *S*-type with the effect of switching over into a low-resistance state. Both critical voltage of deviation from Ohm law to exponential current dependence on voltage and threshold voltage of switching to negative differential resistance, dU/dI < 0, depend on sample thickness linearly. The activation energies of conductivity in weak and high fields were determined. It was established, that the superlinear part of current–voltage characteristics with dU/dI > 0 is described by the dependence $I = I_0 \exp(U/U_0)$ and is due to electron transitions from local centers with the energy level $E_t = 0.19$ eV.