Рекомбинация носителей заряда в арсенид-галлиевом *p*-*i*-*n*-диоде

© Г.И. Айзенштат[¶], А.Ю. Ющенко^{*}, С.М. Гущин[•], Д.В. Дмитриев⁺, К.С. Журавлев⁺, А.И. Торопов⁺

Томский государственный университет,

634034 Томск, Россия

* Томский государственный университет систем управления и радиоэлектроники,

634034 Томск, Россия

• Открытое акционерное общество

"Научно-исследовательский институт полупроводниковых приборов",

634034 Томск, Россия

⁺ Институт физики полупроводников Сибирского отделения Россйской академии наук, 630090 Новосибирск, Россия

(Получена 23 марта 2010 г. Принята к печати 30 марта 2010 г.)

Установлено, что в p-i-n-диодах на арсениде галлия при высоких плотностях прямого тока существенную роль играет излучательная рекомбинация носителей заряда. Экспериментально показано, что диоды, работающие в СВЧ интегральных схемах, интенсивно излучают свет в инфракрасном диапазоне с длинами волн от 890 до 910 нм. Полученные результаты указывают на необходимость учета особенностей процессов рекомбинации в арсенид-галлиевых СВЧ p-i-n-диодах.

1. Введение

Арсенид-галлиевые *p*-*i*-*n*-диоды широко используются в сверхвысокочастотных (СВЧ) интегральных схемах коммутаторов, ограничителей мощности, аттенюаторов, где к ним предъявляются разнообразные требования. Так, активные элементы, работающие в схемах коммутаторов в частотном диапазоне до 100 ГГц, должны иметь при обратном включении предельно малые значения емкости порядка $30\,\phi\Phi$ и одновременно низкие значения сопротивления в прямом включении [1]. Уменьшение номинала емкости достигается простым уменьшением площади прибора, при этом величина плотности прямого тока может превышать значения $j = 10^4 \text{ A/cm}^2$. Чрезвычайно высокие плотности тока приводят к интенсивному накоплению неравновесных электронов *n* и дырок p в *i*-области, поскольку инжектированные носители оказываются "запертыми" потенциальными барьерами переходов $n^+ - i$ и $i - p^+$. В условиях, когда $n \gg n_0$, а $p \gg p_0$, плотность тока рекомбинации [2] равна

$$j_r \approx qwn/\tau_{\rm m},$$
 (1)

где q — заряд электрона; w — толщина *i*-области; n_0, p_0 — равновесные концентрации электронов и дырок; $\tau_{nr} = \tau_e + \tau_h$ — время жизни носителей при рекомбинации через ловушки, равное сумме времен жизни электронов и дырок. Из формулы (1) следует, что концентрации неравновесных электронов и дырок в *i*-области должны быть равны $n = 2 \cdot 10^{18}$ см³ для типичных значений параметров материала ($\tau_{nr} = 10-20$ нс) и параметров арсенид-галлиевых СВЧ p-i-n-диодов, имеющих толщину *i*-области w = 1.5 мкм, площадь прибора $S = 3 \cdot 10^{-6}$ см² при номинальном токе через прибор I = 10 мА. Столь высокие значения концентраций неравновесных носителей в активной области свидетельствуют о том, что рекомбинация в p-i-n-диоде должна определяться не безизлучательной рекомбинацией через глубокие уровни, что справедливо для кремниевых приборов [2], а излучательной рекомбинацией зона-зона. Действительно, при $n = 2 \cdot 10^{18}$ см⁻³ время жизни носителей, связанное с процессами излучательной рекомбинации, будет равно $\tau_r(n) \approx (B \cdot n)^{-1} = 2.5$ нс, где $B = 2 \cdot 10^{-10}$ см³/с — коэффициент бимолекулярной рекомбинации для GaAs [3]. Поскольку при конкуренции двух механизмов рекомбинации время жизни излучательной рекомбинации через глубокие уровни $\tau_{\rm nr} \approx 10-20$ нс, общий темп рекомбинации будет определяться именно первым процессом.

Итак, простые оценки показывают, что арсенид-галлиевые СВЧ p-i-n-диоды, работающие в составе гибридных или монолитных интегральных схем, должны эффективно излучать свет. При этом величина прямого тока в диодах должна определяться временем жизни излучательной рекомбинации. Указанные эффекты и стали предметом наших исследований.

2. Экспериментальные результаты и их обсуждение

Были изготовлены четыре типа СВЧ p-i-n-диодов на арсенид-галлиевых эпитаксиальных структурах и на гетероструктуре AlGaAs–GaAs. Параметры структур указаны в таблице.

Диоды были созданы на полуизолирующей подложке в виде мезаструктур. Площадь отдельного прибора составляла $S = 3 \cdot 10^{-6}$ см². На поверхности диода был создан электрод в виде воздушного мостика из золота толщиной 5 мкм, соединяющий контакт к p^+ -слою с

[¶] E-mail: ayzen@mail.tomsknet.ru

Тип структуры	Метод выращивания структуры	Легирование <i>i</i> -слоя	Толщина <i>i</i> -слоя, мкм	Концентрация носителей в <i>i</i> -слое, см ⁻³
No 1 GaAs $p^+ - p^ n^+$	Молекулярно-лучевая эпитаксия	Нелегированный	1.2	< 10 ¹⁴
No 2 GaAs $p^+ - n^ n^+$	Молекулярно-лучевая эпитаксия	Легированный кремнием	1.2	< 10 ¹⁵
N $ ext{0.3}$ GaAs $p^+ - i - n^+$	Газофазная эпитаксия	Компенсированный хромом	2.5	< 10 ⁸
N₂ 4 AlGaAs–GaAs–GaAs p^+ – p^- – n^+	Молекулярно-лучевая эпитаксия	Нелегированный	1.2	< 10 ¹⁴

Параметры эпитаксиальных структур, предназначенных для создания *p*-*i*-*n*-диодов

Рис. 1. Вольт-амперная характеристика *p*-*i*-*n*-диода.

контактной площадкой на подложке. Открытой поверхностью для вывода излучения была только боковая поверхность мезаструктуры высотой не более 2 мкм.

Основные характеристики диодов измерялись в частотном диапазоне от 0.5 до 40 ГГц. Вносимые и обратные потери диода, смещенного в прямом направлении (при токе 10 мА), соответствовали характеристикам резистора номиналом 5 Ом. Развязка закрытого диода соответствовала емкости номиналом 30 ϕ Ф. Измерялись также статические характеристики. На рис. 1 представлена вольт-амперная характеристика (ВАХ) диода № 1. Из рис. 1 видно, что при U > 0.4 В зависимость $\ln(I)$ от напряжения U изображается отрезком прямой. Тангенс угла наклона на оси напряжений равен $d(\ln I)/dU = q/(2kT)$, что полностью соответствует теории "тонких" p-i-n-диодов, у которых толщина активной области много меньше длины амбиполярной диффузии [2].

Таким образом, результаты измерений ВАХ и СВЧ-характеристик показали, что созданные экспериментальные образцы являются p-i-n-диодами с набором стандартных характеристик без каких-либо особенностей.

Наблюдение излучения на p-i-n-диодах производилось с использованием видеокамеры, регистрирующей инфракрасное излучение. На рис. 2 показаны полученные фотографии p-i-n-диода при четырех уровнях прямого тока, протекающего через диод № 1. Можно видеть, что, начиная с величины тока порядка 0.2 мА, диод является эффективным источником света. Интенсивность света увеличивается при увеличении тока. Точно такие же картины были получены на всех исследуемых диодах, в том числе и на диоде № 3 (*i*-слой компенсирован хромом). Особенностью диода с активной областью, компенсированной хромом, было то, что атомы хрома являются центрами гашения люминесценции, а кон-

Рис. 2. Фотографии светящегося диода при разных значениях прямого тока.

1408

Рис. З. Спектры излучения *p*-*i*-*n*-диода.

центрация их была сравнительно высока и составляла примерно $N_{\rm cr} = 10^{16} \,{\rm cm}^{-3}$. Тем не менее и на данном диоде при уровнях токов, указанных на рис. 2, можно было наблюдать излучение соответствующей яркости.

На экспериментальных образцах p-i-n-диодов снимались спектры излучения. На рис. 3 показаны измеренные спектры на диоде № 4 для импульсного прямого тока, равного $I_{pulse} = 200 \text{ мA}$, и для токов $I_{DC} = 15$ и 40 мА, но при непрерывном питании. При импульсном питании пик спектра находится на длине волны 890 нм, что хорошо соответствует излучательным переходам зона-зона (зона-мелкая примесь) в арсениде галлия, а при непрерывном питании спектры сдвигаются в длинноволновую область вследствие разогрева кристаллов диодов и сужения запрещенной зоны [4]. Спектральные характеристики излучения p-i-n-диодов подтверждают наши исходные предположения.

На исследуемых *p*-*i*-*n*-диодах проводилось измерение времени жизни носителей заряда по известной методике, основанной на переключении диодов из пропускного в запорное состояние [5]. Для диодов, изготовленных из эпитаксиальных структур арсенида галлия, выращенных методом молекулярно-лучевой эпитаксии, время жизни равнялось $\tau \approx 3.5$ нс, для диодов из гетероструктуры $\tau \approx 2.5$ нс, а для структур, компенсированных хромом, $\tau \approx 5$ нс. При наличии двух механизмов рекомбинации эффективное время жизни равно $\tau_{\rm eff} = \tau_{\rm nr} \tau_{\rm r} / (\tau_{\rm nr} + \tau_{\rm r})$. Если предположить, что время жизни определяется излучательной рекомбинацией, то ток через прибор будет приблизительно равен $I_r \approx q w B n^2$, а время жизни при прямом токе I = 10 мA будет равно $\tau_{\rm r} = 5$ нс для диодов, у которых w = 1.2 мкм, а для диода, имеющего w = 2.5 мкм, $\tau_{\rm r} = 7$ нс. Если время жизни, связанное с рекомбинацией через глубокие центры, соответствует типовым значениям $\tau_{\rm nr} \approx 10$ нс [6], то эффективное время жизни для диодов будет равно соответственно $\tau_{\rm eff} = 3.5$ и 5 нс, что соответствует экспериментальным данным.

Необходимо заметить, что интенсивное излучение p-i-n-диодов может быть полезным для определения теплового сопротивления $R_{\rm T}$ диодов в гибридных или в монолитных интегральных схемах. С использованием спектров, представленных на рис. 3, легко найти изменение ширины запрещенной зоны и с помощью известной формулы Варшни (Varshni) [7] определить изменение температуры при заданной рассеиваемой мощности диода. Так, в нашем случае $R_{\rm r} \approx 1200^{\circ}$ C/Bт.

3. Заключение

Установлено, что в p-i-n-диодах на арсениде галлия при высоких плотностях прямого тока сущестенную роль играет излучательная рекомбинация носителей заряда. Именно она определяет такой важный параметр p-i-n-диода как время жизни носителей. Экспериментально показано, что диоды, работающие в СВЧ интегральных схемах, интенсивно излучают свет в инфракрасном диапазоне с длинами волн от 890 до 910 нм. Полученные результаты указывают на необходимоть учета особенностей процессов рекомбинации в арсенид-галлиевых СВЧ p-i-n-диодах.

Список литературы

- [1] T. Buber, N. Kinayman, Yong-Hoon Yun, J. Brogle. IEEE MTT-S Int. Microwave Symp. Digest, *2*, 1307 (2003).
- [2] А.И. Лебедев. Физика полупроводниковых приборов (М., Физматлит, 2008) с. 41.
- [3] Ф. Шуберт. Светодиоды (М., Физматлит, 2008) с. 76.
- [4] W.N. Carr. IEEE Trans. Electron. Dev., ED-12, 531 (1965).
- [5] M. Derdouri, Ph. Leturec, M. Munoze-Yague. IEEE Trans. Electron. Dev., ED-27, (11), 2097 (1980).
- [6] M. Rogalla, R. Geppert, R. Gopprt, M. Hornung, J. Ludwig, Th. Schmidt. R. Irsigler, K. Runge, A. Soldner-Rembold. Nucl. Instrum. Meth. Phys. Res. A, 410, 74 (1998).
- [7] И.П. Варшни. Собственная излучательная рекомбинация в полупроводниках (М., Наука, 1972).

Редактор Л.В. Беляков

Charge carrier recombination in gallium arsenide p-i-n-diode

G.I. Ayzenshtat, A.Y. Yushenko, S.M. Gushchin•, D.V. Dmitriev+, K.S. Zhuravlev+, A.I. Toropov+*

Tomsk State University, 634034 Tomsk, Russia * Tomsk State University of Control Systems and Radioelectronics, 634034 Tomsk, Russia • Scientific-Research Institute of Semiconductor Devices, 634050 Tomsk, Russia + Institute of Semiconductor Physics, Russian Academy of Sciences, Siberian Bransh, 630090 Novosibirsk, Russia

Abstract It was determined, that radiative recombination of charge carriers plays an essential role at high density of the forward current in GaAs p-i-n-diodes. It was experimentally shown, that the diodes working in the microwave integrated circuits intensively radiate light in the infra-red range with wavelengths from 890 to 910 nm. The results indicate that it is necessary to account the recombination processes features in GaAs microwave p-i-n-diodes.