Влияние динамического режима адсорбции на импеданс композитных структур с пористым кремнием

© А.Ю. Карлаш[¶], Г.В. Кузнецов, С.В. Литвиненко, Ю.С. Милованов, В.А. Скрышевский

Киевский национальный университет им. Т. Шевченко, 01133 Киев, Украина

(Получена 17 февраля 2010 г. Принята к печати 11 марта 2010 г.)

Исследованы импедансные и оптические свойства прессованных композитов на основе порошков микрокристаллического и нанопористого кремния. Кристаллиты пористого кремния получены методом химического травления исходного микрокристаллического кремниевого порошка. Кислородная пассивация поверхности в процессе формирования пористого порошка обеспечивает стабильность характеристик композита. Анализ экспериментальных зависимостей импеданса в частотном диапазоне $1-10^6$ Гц позволяет разделить вклады в общую проводимость композита объема зерен и межкристаллитных границ. По результатам исследования временных зависимостей импеданса определены скорости изменения электрофизических параметров композитных структур в условиях динамического адсорбционно-десорбционного воздействия внешних реагентов (H₂O и C₂H₅OH).

1. Введение

Нанокристаллический кремний является перспективным материалом для создания композитных структур для оптоэлектронных преобразователей, газовых и химических сенсоров, солнечных батарей, накопителей водорода [1-4]. Существует несколько технологий получения ультрадисперсных систем с кремниевыми нанокристаллитами: ионное легирование, импульсное лазерное осаждение, нанесение кластеров Si в плазме выкочастотного разряда и др. Значительный интерес проявляется также к разработке методов формирования дисперсных керамических композитных структур на основе наноразмерных порошков кремния [5,6]. Параметры таких структур легко контролируются путем изменения исходного состава, свойств объема зерна (структуры и размеров кристаллитов, концентрации легирующих примесей) и межзеренных границ (пористости, состояния поверхности кристаллита) [7–9].

Одной из возможностей модификации состава и структуры кремниевых композитов может быть применение порошков пористого кремния (*por-Si*). В монокристаллитах *por-Si* наблюдаются характерные для наноструктурированных полупроводников явления квантования энергетического спектра, увеличения ширины запрещенной зоны, уменьшения диэлектрической проницаемости. Разнообразие фрактальной морфологии порошкового материала приводит к существенным отличиям электрических, оптических и механических характеристик и соответственно к новым возможностям практического применения.

Для получения порошков пористого кремния *por*-Si можно использовать сравнительно простую технологию химического травления (stain eitching) мелкозернистого порошкового кремния [9,10]. Методы химического травления микрокристаллического (*mc*-Si) кремниевого порошка позволяют формировать порошки *por*-Si с различными размерами и морфологией (микро-, нано-, комбинированные микронанокристаллиты). Наличие развитой химически активной поверхности определяет высокую чувстительность кристаллитов *por*-Si к различного рода внешним воздействиям, в частности к адсорбционным [1,2]. Возникает проблема разработки методов обеспечения стабильности и контроля параметров порошка *por*-Si как на стадии изготовления, так и на стадии формирования композитной структуры.

Одним из информативных методов выявления закономерностей влияния окружающей среды на физикохимические свойства дисперсных композитных систем является спектроскопия полного импеданса [11,12]. Анализ годографов полного импеданса позволяет разделить вклады в проводимость от объема и межкристаллитных границ зерен, исследовать явления переноса заряда, выяснить роль процессов адсорбции и химического взаимодействия в различных газовых и жидкостных средах. Как правило, измерения частотных зависимостей емкостных и резистивныхх характеристик образца проводят в стационарном режиме при фиксированных параметрах контролируемой среды [11]. В то же время актуальной остается задача определения физико-химического состояния композита в динамическом режиме при непрерывно изменяющемся взаимодействии с внешними реагентами. Изучение временных трансформаций импедансных спектров позволяет более детально оценить влияние изменений адсорбционно-индуцированных процессов на чувствительность и динамику отклика композитных сенсорных структур.

В работе ставилась задача установления корреляций между частотными и временными зависимостями полного импеданса и определения скорости изменения параметров композитных структур с пористым кремнием непосредственно в условиях меняющегося адсорбционно-десорбционного воздействия. Для исследования взаимодействия композитных образцов с жидкими средами были выбраны этиловый спирт и вода, адсорбция полярных молекул которых приводит к существенным изменениям химических связей и зарядовых

[¶] E-mail: karlash@univ.Kiev.ua

состояний на поверхности кремния [13]. Кроме того, влага является обязательной компонентой большинства газовых смесей, которые контролируются с помощью химических сенсоров.

2. Образцы и методика эксперимента

В качестве исходного материала использовалась мелкозернистая фракция порошка промышленного кремния *p*-типа (*mc*-Si) с удельным сопротивлением 0.001-0.003 Ом · см. Максимальный размер кристаллитов не превышал нескольких микрометров. Порошок пористого кремния изготавливали методом химического травления исходного порошка в смеси фтористоводородной и азотной кислот: $HF: HNO_3: H_2O = 4:1:20$ при постоянном перемешивании и $T = 35-55^{\circ}$ С. После травления порошок (в дальнейшем por-Si) собирался в виде пены и высушивался на воздухе при комнатной температуре. Такой комбинированный микронанопорошок состоял из кремниевых гранул размером 30-50 нм, покрытых нанокристаллитами 2-5 нм (см. вставку на рис. 1). Подтверждением последнего является наличие интенсивной красно-оранжевой фотолюминесценции пористого порошка (рис. 2). Изготовленные порошки por-Si тщательно перемешивались с исходным порошком *mc*-Si в весомых соотношениях 0-100%. Полученные смеси прессовались в специальной пресс-форме при давлениях до 5 · 10⁷ Па с добавлением тефлона в качестве связующего (до 20% по массе). В результате получаются достаточно прочные пластины в виде дисков диаметром 10 мм и толщиной до 1 мм. После компактирования композитные структуры использовали для дальнейших импедансных и оптических измерений.

Частотные и временные зависимости компонент полного импеданса исследовались с помощью измерителя иммитанса Е7-20 в фторопластовой ячейке с прижимными контактами (Pt) диаметром 10 мм. Амплитуда измерительного синусоидного сигнала составляла 40–100 мВ, диапазон частот — 25–10⁶ Гц, температура — 25°С. Измеренные значения модуля инпеданса |Z| и угла θ сдвига фазы пересчитывались в активную $Z_{
m Re} = rac{|Z|}{\sqrt{1 + {
m tg}^2\, heta}}$ и реактивную $Z_{
m Im} = |Z| \sqrt{rac{{
m tg}^2\, heta}{1 + {
m tg}^2\, heta}}$ компоненты полного импеданса $Z(\omega) = Z_{\text{Re}} - j Z_{\text{Im}}$. Для исследования влияния жидкостной среды на импедансные спектры образцы погружали в ячейку с дистиллированной водой (H₂O) или чистым этиловым спиртом (С2Н5ОН, 96%). Изменения во времени регистрировались в режиме естественного высушивания образца после удаления жидкости из объема ячейки.

Влияние условий формирования кремниевых порошков и дисперсных композитных структур на их основе на транспортные и рекомбинационные процессы в объеме и на границах зерен контролировали методами импеданс-спектроскопии, ИК-спектроскопии и фотолюминесценции. Спектры пропускания измерялись с помощью фурье-спектрометра Perkin Elmer Sprectrum BXII

Рис. 1. ИК-спектры пропускания порошков исходного микрокристаллического кремния (*I*), пористого кремния (*2*) и пористого кремния после обработки в растворе 5% HF (3). На вставке — схематическое изменение формы кристаллитов до и после химического травления: *I* — кристаллическое ядро, *2* — оболочка кристаллита.

Рис. 2. Влияние прессования ($P = 3 \cdot 10^7$ Па) на спектры фотолюминесценции пористого кремния; I — свежеприготовленная компактированная структура; 2 — компактированная структура после воздействия C_2H_5OH и сушки на воздухе; 3 — порошок пористого кремния (*por*-Si).

в диапазоне 4000—400 см⁻¹. Исследования проводились как для пластин, так и для порошков в смеси с KBr. Спектры фотолюминесценции исследовали при возбуждении импульсным ультрафиолетовым азотным лазером с длиной волны $\lambda = 337$ нм ($\tau = 10$ нс).

3. Экспериментальные результаты и обсуждение

3.1. Исходные порошки и композитные структуры

Для выяснения механизмов взаимодействия адсорбента с композитной структурой необходимы сведения об исходном составе порошков кремния. На рис. 1 приведены результаты исследования ИК-спектров пропускания порошков исходного микрокристаллического кремния mc-Si (рис. 1, кривая I) и полученного методом химического травления пористого кремния *por*-Si (рис. 1, кривая 2). На вставке показано изменение формы кристаллитов в процессе травления.

Спектры пропускания исходного порошка mc-Si содержат слабо выраженные колебательные полосы (рис. 1, кривая 1), что, очевидно, обусловлено существенным влиянием на прозрачность кристаллитов непористого кристаллического ядра. Приготовленный методом химического травления порошок por-Si состоит из кремниевых нанокристаллитов с высокой концентрацией Si-H-связей (рис. 1, кривая 2). В ИК-спектрах идентифицируются полосы поглощения при Si-O (1100 см⁻¹), SiH_x (x = 1, 2, 3) в области $(2080-2140 \text{ см}^{-1})$, O₃SiH (2250 см^{-1}) , которые являются характерными и для электрохимически выращенных пленок пористого кремния [14]. Слабые широкие полосы поглощения (3000-3700 см⁻¹) обычно связывают с присутствием адсорбированных на поверхности кремния частиц воды и О-Н-групп [15,16]. Пары воды являются основным окисляющим компонентом окружающей атмосферы по отношению к поверхности Si, что при длительном выдерживании порошка на воздухе и может быть причиной формирования полос поглощения групп О-Н в связях Si-OH.

При химических методах изготовления порошка por-Si возможна реализация различных механизмов пассивации ненасыщенных связей (ионами водорода, кислорода, гидроксильной группы). Вероятность замещения химически и термически нестабильных поверхностных групп SiH_x более стабильными кремний-кислородными соединениями непосредственно в процессе формирования определяется составом химического травителя [14,17]. При низких значениях концентрации HF в растворе в ИК-спектре проявляется интенсивная полоса на частоте 1100 см⁻¹, связанная с поглощением на колебаниях типа Si-O (рис. 1, кривая 2). Аналогичные мостиковые связи Si-O-Si наблюдаются в диоксиде кремния при высокотемпературном окислении в сухом кислороде [18]. Последующая обработка порошка пористого кремния в 5% HF в течение 20 с приводит к ожидаемому исчезновению полосы Si-O (рис. 1, кривая 3). Данные ИК-спектроскопии подтверждаются результатами термодинамического анализа условий электрохимического равновесия реакции взаимодействия Si с плавиковой кислотой в разбавленных электролитах [14]. При невысоких концентрациях HF и низких pH реакция образованная соединений кремния с кислородом является термодинамически выгодней водородной пассивации и определяет стабильность физических и химических свойств поверхности наночастиц кремния.

В процессе компактирования композитных структур сформированные на поверхности микрогранул порошка por-Si кремниевые нанокристаллиты сохраняют основной комплекс физических характеристик. В спектрах фотолюминесценции исходного порошка и композита в оранжевой области спектра наблюдается характерная широкая полоса свечения, которая может быть объяснена размерным эффектом в структурах с разноразмерными осцилляторами (рис. 2). Интенсивность максимума свечения после прессования существенно возрастает, что, очевидно, связано с эффективным формированием связей между атомами кремния и адсорбированными на поверхности кремниевых наночастиц атомами водорода и кислорода. Согласно [6], увеличение механического давления при сжатии кремниевых порошков приводит к разрушению структурных связей Si-Si и возникновению значительной концентрации валентных связей атомов кремния, которые при дальнейшем насыщении образуют наблюдаемые в ИК-спектрах структуры Si-H, $O_v - Si - H_x$ (рис. 1). Уменьшение концентрации оборванных связей при повышении давления прессования приводит к дополнительным каналам излучательной рекомбинации и росту интенсивности полос в спектре фотолюминесценции.

После экспозиции в среде этанола исходное значение спектра практически восстанавливается через 2-3 ч сушки на воздухе (рис. 2, кривая 2). Стабильность компактированных структур может определяться процессами образования на поверхности кремниевых кристаллитов кремний-кислородных соединений, более устойчивых по сравнению с кремний-водородными (рис. 1). Кроме того, образование при химическом травлении на поверхности кремниевых кристаллитов оксидных соединений препятствует процессам агломерации частиц в процессе компактирования.

3.2. Частотные зависимости импеданса кремниевых структур

На рис. З в координатах комплексной плоскости $Z_{\text{Re}}-Z_{\text{Im}}$ показаны результаты измерений частотных зависимостей импеданс-спектров композитных кремниевых образцов в атмосфере воздуха. Годограф представляет собой либо незначительно смещенную вдоль оси Z_{Re} единичную полуокружность (для образцов *mc*-Si + (20%)*por*-Si), либо сдвоенные полуокружности (для образцов *mc*-Si). Точками показаны данные измерений, сплошными линиями — результаты расчета согласно используемой для аппроксимации эквивалентной схемы (см. вставку к рис. 3).

Полный импеданс $Z(\omega)$ эквивалентной схемы включает низкочастотную R_BC_B и высокочастотную R_VC_V цепочки, соответствующие процессам транспорта носителей заряда через границы зерен и в объеме зерна, а

Состав структуры	Параметры аппроксимации (RC)									
mc-Si	R_B , Ом	C_B, Φ		R_V , Ом		C_V, Φ	<i>R</i> ₀ , Ом			
	$3.3 \cdot 10^5$	$2.5\cdot 10^{-10}$		$6.9 \cdot 10^5$		$23.0\cdot10^{-10}$	3.9 · 1	.0 ³		
	Параметры аппроксимации (СРЕ)									
mc-Si + (20%) por -Si	<i>R</i> , Ом		Q		<i>R</i> ₀ , Ом		S			
	$2.4\cdot 10^6$		$5.3 \cdot 10^{-10}$		$3.5 \cdot 10^3$		0.87			

Таблица 1.

также омическое сопротивление токоподводящих контактов R_0 [11]:

$$Z(\omega) = R_O + \frac{R_B}{1 + j\omega R_B C_B} + \frac{B_V}{1 + \omega R_V C_V}.$$
 (1)

Для образцов *mc*-Si в частотном диапазоне $1-10^6$ Гц появляется возможность регистрации на годографе двух незначительно перекрывающихся полуокружностей (рис. 3, кривая 2). Это свидетельствует о вкладе в общую проводимость структуры как объема, так и границ кристаллитов. В точке максимума на частоте ω_s выполняются соотношения

$$\varpi_s = \frac{1}{\tau_s} = \frac{1}{C_V B_V} \quad \text{M} \quad \varpi_s = \frac{1}{\tau_s} = \frac{1}{C_B B_B}$$

соответственно для высокочастотной и низкочастотной областей спектра. При $\omega = 0$ и $\omega = \infty$ мнимый компонент импеданса $Z_{\rm Im} = 0$, что позволяет определять значения сопротивлений R_0, R_V, R_B непосредственно по положению полуокружностей на действительной оси. Параметры аппроксимации импеданс-спектров образцов *mc*-Si и *mc*-Si + (20%) *por*-Si приведены в табл. 1.

Как правило, в дисперсных керамических материалах удельное сопротивление (отнесенное к единичной длине) границ кристаллитов больше объемного. Однако измеренное общее значение R_B меньше R_V , так как межзеренные границы могут быть на несколько порядков тоньше самих зерен. Температурные изменения сопротивлений R_V и R_B носят активационный характер, но для сопротивления R_V сильно легированного объема они выражены значительно меньше. Высокая степень легирования кремния, очевидно, является причиной и высоких значений емкости C_V . Обратно пропорциональная толщине граничного слоя величина емкости C_B обычно не превышает значений $C_B = 10^{-9} \Phi$, тогда как сопротивление R_B межкристаллитного слоя трудно характеризовать типичной величиной.

В образцах mc-Si + (20%) *por*-Si присутствующие в составе композита кластеров *por*-Si способствует сближению значений постоянной времени τ_s параллельных RC-цепочек объема и границ кристаллитов, что приводит к росту перекрытия соответствующих полуокружностей. В годографе наблюдается только единичный неидеальный полукруг (рис. 3, кривая 2), реальная

форма которого определяется степенью перекрытия полуокружностей. В этом случае резистивно-емкостные свойства системы удовлетворительно описываются при использовании в эквивалентной схеме элемента постоянной фазы (СРЕ — constant phase element) [12]. После замены емкости этим элементом выражение для полного импеданса композитной структуры имеет вид [11]

$$Z(\omega) = R_0 + \frac{R_s}{1 + (j\omega)^s R_s Q},\tag{2}$$

где Q — элемент постоянной фазы, s — показатель, характеризующий неоднородность электрических свойств структуры $(-1 \le s \le 1)$. При s = 1 элемент СРЕ соответствует емкости, при s = 0 — сопротивлению. Определенные для структур mc-Si + (20%) por-Si значения параметров Q, s и сопротивлений R_0 , R_s показаны в табл. 1.

Малые размеры нанокристаллитов *por*-Si вызывают не только уширение в них запрещенной зоны, но и высокое электрическое сопротивление независимо от концентрации носителей зарядов в исходном кремниевом порошке [9]. Кроме того, перенос заряда между кристаллитами в значительной мере блокируется электростатическим

Рис. 3. Зависимость годографов импеданса композитных структур от состава исходных порошков. *1 — mc*-Si, *2 — mc*-Si + (20%)*por*-Si. На вставке — структура композита и эквивалентная схема для моделирования.

Физика и техника полупроводников, 2010, том 44, вып. 10

барьером, связанным с наличием оксидного слоя на границе.

3.3. Влияние адсорбции на временные зависимости импеданса

Рассмотрим основные особенности изменений импедансных спектров композитных структур под влиянием изменяющегося во времени воздействия внешней среды. При измерениях импеданса на постоянной частоте ω_n обычно получают лишь результирующие значения последовательно или параллельно соединенных сопротивления *R* и емкости *C* образца, отражающих в обобщенном виде всю совокупность происходящих процессов. В случае параллельной *RC*-цепочки действительную Z_{Re} и мнимую Z_{Im} части полного импеданса $Z(\omega)$ на фиксированной частоте ω_n можно представить в виде

$$Z_{\text{Re}} = \frac{R}{1 + \omega_n^2 \tau^2}, \quad -Z_{\text{Im}} = \frac{\omega_n \tau R}{1 + \omega_n^2 \tau^2}, \quad (3)$$

где $\tau = RC$ — временная константа эквивалентной схемы. Из выражения (3) следует, что в предположении $R \approx \text{const}$ зависимости Z_{Re} и Z_{Im} от частоты ω и переменной τ имеют аналогичный вид. Импедансспектр в координатах комплексной плоскости $Z_{\text{Re}}-Z_{\text{Im}}$ описывается уравнением окружности с координатами центра $Z_{\text{Re}} = R/2$ и $Z_{\text{Im}} = 0$. Максимум зависимости наблюдается при $\tau_n = \frac{1}{\varpi_n} = C_n R_n$, что дает возможность простой экстраполяции временной зависимости импеданса. (R_n и C_n — соответственно значения сопротивления и емкости на частоте $\omega = \omega_n$). Переход от режима адсорбции к режиму десорбции не влияет на вид годографа во всем интервале возможных значений постоянной τ (0 < τ < ∞).

На постоянной частоте измерительного сигнала $\omega = \omega_n$ временные зависимости импеданса определяются изменениями сопротивления R(t) и емкости C(t) структуры. В предположении линейного характера временных зависимостей переменных R(t) и C(t) во всем диапазоне концентрации адсорбента получим:

$$R(t) = R(0)(1 + \alpha_R t), \quad C(t) = C(0)(1 + \alpha_C t), \quad (4)$$

где

$$\alpha_R = \frac{1}{R(0)} \left[\frac{R(A) - R(0)}{t(A) - t(0)} \right] \text{ M } \quad \alpha_C = \frac{1}{C(0)} \left[\frac{C(A) - C(0)}{t(A) - t(0)} \right]$$

соответственно скорости изменения сопротивления R(t) и емкости C(t). Индекс A соответствует состоянию адсорбционного насыщения ("влажный" образец), индекс 0 — состоянию без адсорбционного воздействия ("сухой" образец).

Особенностью исследованных композитных структур является достаточно высокая чувствительность к адсорбционно-десорбционному воздействию этилового спирта и воды. На рис. 4 показано влияние динамического режима десорбции этилового спирта на модификацию временных зависимостей импеданса структур

Рис. 4. Модификация годографов импеданса композитных структур a - mc-Si, b - mc-Si + (20%) *por*-Si в среде C₂H₅OH (96%) на разной частоте измерительного сигнала: I - 0.1, 2 - 1.0, 3 - 10 кГц.

mc-Si (рис. 4, *a*) и *mc*-Si + (20%)*por*-Si (рис. 4, *b*) для трех значений частоты измерительного сигнала ω_n : 0.1, 1, 10 кГц. Точками показаны данные экспериментальных измерений, сплошными линиями — результаты расчета согласно (3) и (4).

Локальные электрические поля адсорбированных полярных молекул приводят к изменению зарядового состояния поверхности и электрических параметров мелкодисперсной полупроводниковой структуры. При высушивании ($t \rightarrow t(0)$ — "сухой" образец) в области низких концентраций адсорбата графики в координатах комплексной плоскости $Z_{\text{Re}}-Z_{\text{Im}}$ имеют вид неидеальной полуокружности (рис. 4). Зависимости в виде полуокружностей сходны с полученными из частотных измерений (рис. 3) и отражают кинетический характер процессов переноса заряда. В среде этилового спирта ($t \rightarrow t(A)$ — "влажный" образец) в области высоких концентраций адсорбата переход к линейной

	Параметры								
Состав структуры		α_R , мин ⁻¹		α_C , мин $^{-1}$					
	10 ² , Гц	10 ³ , Гц	10 ⁴ , Гц	10 ² , Гц	10 ³ , Гц	10 ⁴ , Гц			
mc-Si mc-Si + (20%)por-Si	0.0096 0.0093	0.0096 0.0093	0.0098 0.0096	1.0 0.80	1.70 0.20	0.50 0.087			

Таблица 2.

зависимости, характерной для диффузионных процессов переноса электроактивного вещества [12]. Причиной такой зависимости может быть проявление эстафетного механизма ионного переноса по поверхности в результате перекрытия волновых функций адсорбата [17] при высокой концентрации адсорбированных молекул спирта или воды. Кроме того, к ионной проводимости может приводить формирование капиллярного гидростатического давления при осаждении жидкости в порах. На соотношение кинетических и диффузионных процессов переноса заряда существенно влияют морфологические различия исследуемых структур *mc*-Si и *mc*-Si + (20%) por-Si (рис. 4).

В табл. 2 приведены рассчитанные значения скорости изменения сопротивления α_R и α_C композитных структур для различных частот измерительного сигнала.

Адсорбционная чувствительность при комнатной температуре означает, что энергия связи адсорбата с адсорбентом не превышает нескольких kT. В этом смысле более устойчивыми являются структуры с повышенным содержанием *por*-Si, характеризующиеся более низкими значениями α_R и α_C во всем интервале частот. Зависимость импеданса от частоты измерений ω_n в основном определяется вкладом связанной с изменениями зарядового состояния емкостной компоненты.

Кинетика изменения поверхностного заряда определяется наложением двух процессов: появлением поверхностного адсорбционного заряда и перезарядкой собственных поверхностных состояний полупроводниковой структуры в новых условиях равновесия [13]. В области более высоких частот $\omega_n > 1$ кГц доминирующим фактором является заряжение относительно быстрых адсорбционных состояний. Характеристическое время перезарядки зависит от концентрации адсобированных диполей и длительности адсорбционного-десорбционного процесса. Как правило, скорость переноса заряда уменьшается с ростом концентрации адсорбата, так как для зарядки адсорбционных состояний необходимо преодолевать возрастающий в процессе адсорбции энергетический барьер. В области низких частот $\omega_n < 1$ кГц существенной становится роль перезарядки более медленных поверхностных состояний, концентрация которых практически не зависит от адсорбционного процесса. В то же время изменение соотношения концентраций собственных и адсорбционных состояний, а также времен их перезарядки может приводить к появлению максимума в кинетической кривой изменений поверхностного заряда. На рис. 5 показаны временные зависимости импеданса композитных образцов различного состава на частоте $\omega_n = 1 \,\mathrm{k}\Gamma$ ц после воздействия водной среды. Динамика десорбции воды в режиме высушивания характеризуется более низкими значениями скорости изменения параметров по сравнению со средой этилового спирта: для структур *mc*-Si ($\alpha_R = 0.0067 \,\mathrm{Muh}^{-1}$, $\alpha_C = 0.15 \,\mathrm{Muh}^{-1}$) и для структур *mc*-Si + (20%) *por*-Si ($\alpha_R = 0.0067 \,\mathrm{Muh}^{-1}$, $\alpha_C = 0.54 \,\mathrm{Muh}^{-1}$).

В водной среде лимитирующее влияние медленных диффузионных процессов проявляется при более низких концентрациях адсорбата и на более низких частотах. Уже на частоте $\omega_n = 1 \, \mathrm{k} \Gamma \mathrm{u}$ годограф демонстрирует наличие как кинетических (полуокружность), так и диффузионных (прямая линия) процессов (рис. 5). Увеличение содержания пористого кремния приводит к повышению стабильности композитных структур, параметры композитов mc-Si + por-Si практически полностью восстанавливаются после нескольких адсорбционнодесорбционных циклов. Доминирующими являются кинетические процессы переноса заряда (наличие полукруга в годографе). Это согласуется с полученными данными ИК-спектроскопии (рис. 2) о влиянии частичной кислородной пассивации на уменьшение концентрации ненасыщенных валентных связей и заряженных хемосор-

Рис. 5. Модификация годографов импеданса нанокомпозитных структур a - mc-Si, b - mc-Si + (20%) *por*-Si в среде H₂O на частоте 1.0 кГц: 1 - mc-Si, 2 - mc-Si + (20%) *por*-Si.

Физика и техника полупроводников, 2010, том 44, вып. 10

Возможной причиной проявления комплексности характера прохождения тока через границы раздела фаз является низкочастотный вклад в проводимость ионнопротонных слагаемых (H+, H₃O+, OH-, O-), обусловленных присутствием гидратированной воды в поверхностном слое кристаллитов кремния. В низкочастотной области спектра перенос ионных дефектов в цепочках молекул адсорбированной воды может обеспечить значительную протонную проводимость в соединениях кристаллогидратов, решетка которых насыщена кристаллизационной водой [19]. На высоких частотах малоподвижные компоненты заряда не успевают переходить через межфазную границу, емкость межкристаллического слоя становится частотно независимой и определяется морфологическими особенностями структуры. В области низких частот $f < 10^3$ Гц при графоаналитическом определении параметров эквивалентной схемы следует учитывать дополнительную к барьерной емкости частотозависимую комплексную компоненту.

4. Заключение

Таким образом, можно сделать вывод, что графоаналитическая обработка временных зависимостей импеданса в условиях динамической адсорбции позволяет получать информацию о свойствах объема и границ кристаллитов дополнительно к стационарным импедансным исследованиям в диапазоне частот.

Различия в составе и структурных характеристиках исходных порошков mc-Si и por-Si, а также условий компактирования определяют стабильность свойств полученных композитов. Частичная кислородная пассивация поверхности непосредственно в процессе формирования порошка пористого кремния обеспечивает стабильность характеристик композитных структур. Адсорбция полярных молекул (H₂O и C₂H₅OH) определяет кинетику изменений поверхностных зарядовых состояний и соответственно электрических параметров структур. Результаты исследования временных зависимостей импеданса позволили определить скорости изменения параметров композитных структур в условиях динамического адсорбционно-десорбционного воздействии.

Авторы выражают благодарность A. Venrturello и G. Geobaldo (Politecnico di Torino) за предоставленные результаты FE-SEM анализа порошков кремния.

Список литературы

- M.Y. Channam, A.A. Abouelsaood, J.F. Nijs. Sol. Energy Mater. Solar Cells, 60, 105 (2000).
- [2] C. Baratto, G. Faglia, E. Comini. G. Sherveglieri, A. Taroni, V. La Ferrara, L. Quercia, G. Di Francia. Sensors Actuators B: Chemical, 77, 62 (2001).
- [3] V. Strukha, V. Skryshevsky, V. Polishchuk, E. Souteyrand, J.R. Martin. J. Porous Mater., 7, 111 (2000).
- 7 Физика и техника полупроводников, 2010, том 44, вып. 10

- [4] V.A. Skryshevsky, A. Laugier, V.I. Strikha, V.A. Vikulov. Mater. Sci. Engin. B, 40, 54 (1996).
- [5] J. Costa, P. Poura, J.K. Morante, E. Bertran. J. Appl. Phys., 83, 7879 (1998).
- [6] Н.Н. Кононов, Г.П. Кузьмин, А.Н. Орлов, А.А. Сурков. О.В. Тихоневич. ФТП, 39, 868 (2005).
- [7] Э.Б. Каганович, Э.Г. Манойлов, И.Р. Базылюк, С.В. Свечников. ФТП, 37, 353 (2003).
- [8] С.Г. Дорофеев, Н.Н. Кононов, А.А. Ищенко, Р.Б. Васильев, М.А. Гольдштрах, К.В. Зайцева, В.В. Колташев, В.Г. Плотниченко, О.В. Тихоневич. ФТП, 43, 1460 (2009).
- [9] V. Lysenko, J. Vitiello, B. Remaki, D. Barbier, V. Skryshevsky. Appl, Surf. Sci., 230, 425 (2004).
- [10] L. Schirone, G. Sotgiu, M. Montecchi. J. Luminecs., 80, 163 (1999).
- [11] A.J. Bard, L.R. Faulkner. Electrochemical methods. Fundamentals and applications (Wiley & Sons, Inc., 2001).
- [12] C. Gabrielli. Used and application of electrochemical impedance techniques (Farnborough, 1990).
- [13] И.В. Гаврильченко, С.А. Дяченко, Г.В. Кузнецов, В.А. Скрышевский. УФЖ, 51, 460 (2006).
- [14] С.А. Гаврилов, А.И. Белогорохов, Л.И. Белогорохова. ФТП, 36, 104 (2002).
- [15] R.A. Bley, S.M. Kanzlarich, J.E. Davis, H.W.H. Lee. Chem. Mater., 8, 1881 (1996).
- [16] T.D. Shen, I. Shmagin, C.C. Koch, R.M. Kolbas, Y. Fahmi, L. Bergman, R.J. Nemanich, M.T. McClure, Z. Sitar, M.X. Quan. Phys. Rev. Bm, 55, 7615 (1997).
- [17] Д.И. Биленко, О.Я. Белобровая, Э.А. Жаркова, Д.В. Терин, Э.И. Хасина. ФТП, **39**, 834 (2005).
- [18] V.P. Tolstoy, I.V. Chernyshova, V.A. Skryshevsky. *Handbook* of infrared spectroscopy of ultrathin films (Wiley, N.Y., 2003).
- [19] T. Arigane, K. Yoshida, T. Wadayama, A. Hatta. Surf. Sci., 427–428, 304 (1999).

Редактор Л.В. Беляков

Effect of dynamic adsorption mode on impedance of composite structures of porous silicon

A.Yu. Karlach, G.V. Kuznetsov, S.V. Litvinenko, Yu.S. Milovanov, V.A. Skryshevsky

Taras Shevchenko Kiev University, 01601 Kiev, Ukraine

Abstract The impedance and optical properties of pressed composites based on microcrystalline and nanoporous Si were investigated. Crystallites of porous silicon are obtained by a method of stain etching of an initial microcrystalline silicon powder. The oxygen passivation of a surface during formation of porous powder provides stability of the composite characteristics. The analysis of experimental dependences of impedance in the frequency range of $1-10^6$ Hz allows select the contributions to general composites conductivity of a volume grains and interface crystallites. The speeds of change of physical parameters of composite structures are determined from the dynamic time-dependent impedance at adsorption–desorption effect of external (H₂O or C₂H₅OH) reactants.