Повторение формы сверхбыстрой автомодуляции спектра поглощения света при изменении энергии импульса накачки GaAs

© Н.Н. Агеева, И.Л. Броневой[¶], Д.Н. Забегаев, А.Н. Кривоносов

Институт радиотехники и электроники им. В.А. Котельникова Российской академии наук, 125009 Москва, Россия

(Получена 10 марта 2010 г. Принята к печати 7 апреля 2010 г.)

Сверхбыстрая автомодуляция фундаментального поглощения света возникает во время интенсивной пикосекундной оптической накачки GaAs и, по основному предположению, отображает автоколебания обеднения заселенностей электронов в зоне проводимости. В настоящей работе дается количественно подтвержденное объяснение экспериментально обнаруженному ранее циклическому повторению формы сверхбыстрой автомодуляции спектра поглощения при изменении энергии импульса накачки и фиксированной задержке между накачкой и зондированием (измерением поглощения). Повторение формы объясняется изменением фазы автоколебаний поглощения света. Объяснение основано на ранее экспериментально обнаруженной зависимости частоты автоколебаний поглощения от энергии накачки. Поэтому оно также является и новым подтверждением указанной зависимости (удовлетворительно совпадающей с аналогичной расчетной зависимостью частоты автоколебаний обеднения заселенностей).

Автомодуляция фундаментального поглощения света возникает во время интенсивной пикосекундной оптической накачки GaAs [1-3]. Под автомодуляцией спектра поглощения подразумевается спонтанное возникновение неоднородного, повторяющегося по спектру с периодом $\Delta = \hbar \omega_{LO} (1 + m_e/m_h) \approx 40$ мэВ [1,4,5] усиления поглощения, здесь $\hbar\omega_{LO}$ — энергия продольного оптического фонона, m_e — масса электрона, m_h — масса тяжелой дырки [6]. Автомодулированный спектр представляется как сумма гладкого (без локальных особенностей) спектра и двух, собственно представляющих автомодуляцию, компонент. Мы не будем здесь касаться крупномасштабной компоненты автомодуляции, имеющей в спектральном интервале Δ форму несимметричного колокола с шириной основания Δ и "размывающейся" за время > 10 пс [2,4,5,7]. Внимание будет обращено на локальные особенности (выступы и вогнутости) со спектральной шириной менее Δ , представляющие вторую компоненту. Эта компонента представляет тонкую структуру автомодуляции, меняющуюся за время < 1 пс, за что она и названа сверхбыстрой автомодуляцией. Предшествующие исследования сверхбыстрой автомодуляции поглощения представлены в [3,5,7-9]. По основному предположению, согласующемуся с полученными к настоящему времени результатами, сверхбыстрая автомодуляция поглощения света отображает субтерагерцовые автоколебания обеднения заселенностей электронов в зоне проводимости. Автоколебания обеднения возникают в результате совместного влияния накачки, собственного стимулированного излучения GaAs и электрон-LO-фононного взаимодействия на электроннодырочную плазму (ЭДП) [9].

В экспериментах pump-probe с длительностью (FWHM) импульсов накачки и зондирования около 10 пс было обнаружено повторение формы сверхбыстрой ав-

томодуляции спектра поглощения не только по спектру. Циклическое повторение формы наблюдалось в следующих ситуациях [8]: 1) по мере изменения задержки τ зондирующего импульса относительно импульса накачки с фиксированной энергией W; 2) при изменении энергии импульса накачки W и фиксирванной τ , близкой к нулю. Количественно подтвержденное объяснение первой ситуации было дано в [7] для области τ , близких к нулю, в которой накачка приближается к квазистационарной. Для второй ситуации объяснение предлагается в настоящей работе. Оно основывается на установленной в [7] зависимости частоты F автоколебаний поглощения от энергии W, а эта зависимость удовлетворительно совпадает с расчетной зависимостью от W частоты автоколебаний обеднения заселенностей [9].

На рис. 1 представлены спектры поглощения, измеренные в [8] при фиксированной задержке $\tau = 3 \, \mathrm{nc}$ и различных W, обозначенных в относительных единицах (о.е.). Для наглядности спектры представлены еще и сплошными линиями, которые выделяют крупные явные, обсуждаемые далее, локальные особенности на спектре и усредняют разброс экспериментальных точек или мелкую модуляцию (которые трудно различимы). На спектрах, полученных при накачке с W = 0.2, 1.2 и 1.9 о.е. (кривые 1, 3 и 5) вблизи $\hbar \omega \approx 1.43$ эВ располагался выступ (на который стрелки указывают снизу), а вблизи $\hbar\omega \approx 1.44$ эВ небольшая вогнутость (стрелки сверху), граничащая с перегибом. При W = 1.6 и 2.2 о.е. (кривые 4 и 6) сверхбыстрая автомодуляция была приблизительно противоположной: в области $\hbar\omega \approx 1.43$ эВ наблюдались локальные вогнутости (на которые стрелки указывают сверху), а вблизи $\hbar\omega \approx 1.44$ эВ на спектре появлялся локальный максимум (стрелки снизу).

При сравнении модуляции спектров надо учитывать, что модуляция "накладывается" на гладкий спектр, ассоциируемый с расчетным спектром при фермиевском распределении ЭДП. Крутизна расчетного спектра

[¶] E-mail: bil@cplire.ru

в исследуемом спектральном интервале меняется при изменении плотности и температуры ЭДП (см. рис. 1 в [3]). Следует учитывать, что даже если бы при какихто двух W возникала абсолютно одинаковая модуляция двух спектров, то при непрерыввном изменении модуляции с W, имея возможность только дискретно менять W, найти экспериментально именно эти два спектра практически нереально. В такой экспериментальной ситуации совпадение форм может быть установлено только приближенно. Учитывая вышесказанное, можно принять, что одну сходную форму модуляция имеет при W = 0.2, 1.2 и 1.9 о.е., другую при W = 1.6 и 2.2 о.е. Промежуточной между этими формами является форма модуляции спектра при W = 0.8 о.е. (кривая 2), поскольку выступ при $\hbar\omega \approx 1.44$ эВ наполовину размыт. Таким образом, при изменении W форма сверхбыстрой автомодуляции спектров на рис. 1 меняется, циклически приближенно повторяясь.

Хотя в [8] спектры были измерены до $\hbar\omega \approx 1.458$ эВ, на рис. 1 они представлены до $\hbar\omega \approx 1.452$ эВ. Это

Рис. 1. Спектры поглощения, измеренные при задержке $\tau = 3$ пс и различных энергиях накачки W, о.е. (относительные единицы): 1 - 0.2, 2 - 0.8, 3 - 1.2, 4 - 1.6, 5 - 1.9, 6 - 2.2. Для наглядности спектры сдвинуты относительно своего истинного положения на величину, указанную в скобках справа от спектров. Стрелки на графике поясняются в тексте.

Рис. 2. Частота F_W автоколебаний поглощения света при различных энергиях накачки W: I — эксперимент, 2 — расчет, 3 — экстраполяция. W_0 — пороговая для появления собственного излучения энергия накачки.

сделано потому, что через опущенный участок спектра проходит граница интервала $\Delta \approx 40$ мэВ, с которым модуляция повторяется по спектру благодаря электрон-LO-фононному взаимодействию. Чтобы выделить сверхбыструю автомодуляцию вблизи такой границы, ширины измеренного в [8] участка спектра (а она обусловливалась трудоемкостью и длительностью измерений) недостаточно, как пояснялось в [5]. Поэтому область вблизи границы мы не рассматриваем.

Циклическое повторение в [8] формы автомодуляции спектра поглощения по мере изменения т при фиксированной W позволяло предположить значительную степень когерентности автоколебаний поглощения света с разными ћа во время накачки. Пока только в интервале т, близких к нулю, сверхбыстрая автомодуляция спектра поглощения была представлена как результат когерентных автоколебаний поглощения света с различными энергиями фотона $\hbar\omega$ [7]. Из полученных в [7] амплитудно-фазо-частотных характеристик этих автоколебаний в настоящей работе используется зависимость их частоты F_W от W (рис. 2). С помощью этой зависимости мы сопоставили циклическое повторение формы модуляции с тем изменением фазы автоколебаний в фиксированный момент накачки, которое обусловлено изменением W. При этом предполагалось, что автоколебания поглощения при разных $\hbar\omega$ когерентны не только в области близких к нулю au (т.е. в области максимума накачки), но и на фронте импульса накачки, и частота автоколебаний является функцией интенсивности накачки. Последнее предполагалось и в [7-9] на основании полученных в этих работах результатов. Использовавшаяся далее при оценках зависимость $F_W = f(W)$ (кривая 3) была экстраполированной через экспериментальные точки до W = 2.2 o.e. Эта экстраполяция приемлема, поскольку не противоречит расчетной зависимости от W частоты автоколебаний обеднения заселенностей (кривая 2) [9].

В эксперименте [8] при изменении энергии W менялась амплитуда импульса накачки, а его временная и пространственная формы оставались неизменными. Поэтому при накачке импульсом с энергией W частота автоколебаний F в момент времени t может быть представлена как произведение $F = F_W g(t)$, где $[F, F_W] = T \Gamma II$, а форм-фактор g(t) — это изменение частоты автоколебаний во время накачки импульсом с той W, при которой $F_W = 1$ Т Γ II. Соответственно в момент времени $t = t_1$ фаза автоколебаний φ_W , начавшихся в момент $t = t_0$ при накачке импульсом с энергией W, может быть определена выражением

$$\varphi_W = 2\pi \int_{t_0}^{t_1} F dt = 2\pi F_W \int_{t_0}^{t_1} g dt.$$
 (1)

Вышеописанное циклическое изменение формы модуляции спектра поглощения позволяет предположить, что при изменении W от 2.2 до 1.9 о.е. фаза φ_W меняется приблизительно на π :

$$\varphi_{2.2} - \varphi_{1.9} = 2\pi (F_{2.2} - F_{1.9}) \int_{t_0}^{t_1} g dt \approx \pi.$$
 (2)

Тогда изменение фазы при изменении энергии W относительно фазы при W = 2.2 о.е. может быть приблизительно оценено с помощью выражения

$$\varphi_{2.2} - \varphi_W = \frac{\pi (F_{2.2} - F_W)}{F_{2.2} - F_{1.9}}.$$
(3)

Здесь предположено, что приближенно можно принять t_0 одинаковым для W = 0.2-2.2 о.е., учитывая, что $W \gg W_0$, где $W_0 = 0.03$ о.е. — энергия накачки, пороговая для появления собственного излучения, необходимого для образования автомодуляции поглощения [9]. При том, что частота автоколебаний поглощения не зависит от $\hbar\omega$ и автоколебания когеренты [7], $\varphi_{2.2} - \varphi_W$ не зависит от $\hbar\omega$.

Зависимость $\varphi_{2.2} - \varphi_W = f(W)$, рассчитанная в приближении (3) с помощью $F_W = f(W)$, представлена на рис. 3. Для тех W, при которых измерялись спектры, значения $\varphi_{2.2} - \varphi_W$ дополнительно представлены как в таблице, так и значками на графике. Для W = 1.9, 1.6, 1.2, 0.2 о.е. разность фаз близка к

$$\varphi_{2.2} - \varphi_W \approx \pi n, \tag{4}$$

где с точностью $\leq 0.2\pi$ n — целое число. Форма модуляции спектра была сходной, во-первых, при W = 2.2и 1.6 о.е. и в (4) n = 2 (т.е. четное) для W = 1.6 о.е. Вовторых, иной формы, но сходной между собой, была модуляция при энергиях W = 1.9, 1.2, 0.2 о.е., для которых в приближении (4) с указанной точностью n нечетное. Промежуточной между этими двумя формами была форма модуляции при W = 0.8 о.е. В согласии с этим и разность фаз не соответствует (4), а равна $\varphi_{2.2} - \varphi_{0.8} = \pi n + 0.6\pi = 4.6\pi$. Из приведенного сопоставления следует, что форма сверхбыстрой автомодуляции спектра, меняясь при изменении фазы φ_W приближенно повторяется, когда изменение фазы кратно 2π .

Рис. 3. График и таблица разности фаз $\varphi_{2,2} - \varphi_W$ в функции от энергии накачки *W*. Значками на графике отмечены те точки этой зависимости, параметры которых приведены в таблице.

Таким образом, вышеприведенные оценки показали, что изменением фазы автоколебаний поглощения можно объяснить циклическое повторение формы сверхбыстрой автомодуляции спектров фундаментального поглощения света, наблюдавшееся в [8] при изменении энергии импульса накачки W и фиксированной, близкой к нулю, временной задержке τ . Это объяснение является еще и новым подтверждением той зависимости от W частоты автоколебаний поглощения, которая была обнаружена в [7] и объяснена количественно в [9] автоколебаниями обеднения заселенностей электронов. Полученное объяснение говорит также в пользу того, что автоколебания в течение пикосекундной накачки являются приблизительно когерентными.

Авторы признательны Ю.В. Андрееву за обсжудение рукописи статьи.

Список литературы

- I.L. Bronevoi, A.N. Krivonosov, V.I. Perel'. Sol. St. Commun., 94, 805 (1995).
- [2] I.L. Bronevoi, A.N. Krivonosov, T.A. Nalet. Sol. St. Commun., 98, 903 (1996).
- [3] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов, С.В. Стеганцов. ФТП, 40 (7), 806 (2006).
- [4] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов, С.Е. Кумеков, С.В. Стеганцов. ФТП, 36 (2), 144 (2002).
- [5] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов, Т.А. Налет, С.В. Стеганцов. ФТП, 41 (12), 1418, (2007).
- [6] J.S. Blakemore. J. Appl. Phys., 53, R123 (1982).

- [7] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов. ФТП, 42 (12), 1426 (2008).
- [8] Н.Н. Агеева, И.Л. Броневой, А.Н. Кривоносов, Т.А. Налет. ФТП, 42 (9), 1053 (2008).
- [9] Н.Н. Агеева, И.Л. Броневой, Д.Н. Забегаев, А.Н. Кривоносов. ФТП, 44 (9), 1157 (2010).

Редактор Л.В. Беляков

Repetition of ultrafast self-modulation of light absorption spectrum with a change of the energy of pulse pumping of GaAs

N.N. Ageeva, I.L. Bronevoi, D.N. Zabegaev, A.N. Krivonosov

Kotel'nikov Institute of Radioengeneering and Electronics, Russian Academy of Sciences, 125009 Moscow, Russia

Abstract Ultrafast self-modulation of fundamental absorption of light arises during intensive picosecond optical pumping of GaAs and, by core contemplation, displays self-oscillations of electron population depletion in conduction band. In the present work, we offer quantitatively confirmed explanation of earlier experimentally found cyclic repetition of the form of ultrafast self-modulation of absorption spectrum, occurring with a change of pumping pulse energy at fixed delay between pumping and probing (absorption measurement). The form repetition is explained by change of the phase of light absorption self-oscillations. Explanation is based on the earlier experimentally found dependence of absorption self-oscillations frequency on the pumping energy. Therefore it is also a new confirmation of the mentioned dependence (well coinciding with analogous calculated dependence of the frequency of population depletion self-oscillations).

3*